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Abstract: The nonlinear Schrödinger equation (NLSE) with a non-Hermitian term is the model for
various phenomena in nonlinear open quantum systems. We deal with the Cauchy problem for the
nonlocal generalization of multidimensional NLSE with a non-Hermitian term. Using the ideas of
the Maslov method, we propose the method of constructing asymptotic solutions to this equation
within the framework of semiclassically concentrated states. The semiclassical nonlinear evolution
operator and symmetry operators for the leading term of asymptotics are derived. Our approach
is based on the solutions of the auxiliary dynamical system that effectively linearizes the problem
under certain algebraic conditions. The formalism proposed is illustrated with the specific example
of the NLSE with a non-Hermitian term that is the model of an atom laser. The analytical asymptotic
solution to the Cauchy problem is obtained explicitly for this example.

Keywords: semiclassically concentrated solutions; Maslov’s complex germ method; open quantum
systems; asymptotic solution; dissipation; atom laser
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1. Introduction

A great variety of nonlinear phenomena in matter-wave and optical media is modeled
based on generalizations and modifications of the nonlinear Schrödinger equation (NLSE).
A significant share of theoretical research based on NLSE is associated with nonlinear
optics [1], the physics of Bose–Einstein condensates (BEC) [2,3], the dynamics of quantum
vortices [4,5], and other areas of nonlinear physics. In the BEC theory based on the mean-
field approximation, the NLSE, termed the Gross–Pitaevskii equation (GPE) [2], is the base
model equation. Mathematically, it is considered in multidimensional space–time with the
variable coefficients responsible for the external fields of the traps confining the condensate
in some area. In nonlinear optics, the NLSE describes optical solitons [6–8], which represent
spatially localized perturbations of an electromagnetic field steadily propagating in a
nonlinear medium.

These models usually describe conservative systems isolated from the environment,
in which dissipative phenomena are not taken into account. However, in real conditions,
quantum systems interact with the environment. In many-particle quantum systems, this
interaction is dissipative, weakening the coherent effects, and, accordingly, blurring the
manifestation of pronounced quantum properties. On the other hand, the combination of
dissipative effects with quantum ones gives rise to new scenarios of behavior in nonlinear
systems. This encourages interest in the study of dissipative phenomena in nonlinear
quantum systems, primarily BEC and nonlinear optical ones, which has been the subject of
detailed studies in many publications. Some examples below give an idea of these studies.

Mathematics 2024, 12, 580. https://doi.org/10.3390/math12040580 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040580
https://doi.org/10.3390/math12040580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7806-327X
https://orcid.org/0000-0003-2170-1503
https://doi.org/10.3390/math12040580
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040580?type=check_update&version=3


Mathematics 2024, 12, 580 2 of 22

In [9], the use of BEC atoms in an atom laser is discussed. This problem is directly
related to the interaction of the condensate with non-condensed trapped atoms, which
is a dissipative process. The theoretical description of this system is constructed in the
mean-field approximation and GPE with additional dissipative terms. After some simplifi-
cations, we obtain a closed description in terms of the complex Ginzburg–Landau equation
(GLE) [10], which formally has the NLSE form with a non-Hermitian operator. In the
review [11], in particular, the impact on the BEC parameters by Feshbach resonance, which
leads to the generation of trains of solitons, was studied. This problem was considered
in terms of a dissipative one-dimensional GPE with a time-dependent complex addition
to the potential. The paper [12] considers the dynamics of nonlinear waves in periodic
complex PT potentials when the NLSE becomes invariant under parity and time-reversal
symmetry. A special kind of non-equilibrium stationary states was introduced and studied
in [13] based on the GPE with a stochastic noise term, which is considered by adding terms
that violate the hermiticity of the GPE operator. The paper emphasizes that the states under
study and the resulting specific phase transitions in BEC are possible only in the presence
of dissipation. The non-Hermiticity can be incorporated into the NLSE for the order pa-
rameter using the phenomenological approach [14] or as the reduction of the NLSE and
the reaction-diffusion equation under adiabatic elimination procedure (see, e.g., [15] and
references therein). The Lindblad master equation, which is also widely used for the study
of open quantum systems, is derived from the microscopic dynamics [16,17] as opposed to
the models under consideration that can be treated as macroscopic ones. The dissipative
NLSE also arises in the description of solitons in nonlinear media such as the cavity of
the mode-locked lasers (the so-called Haus master equation [18] that is the (1 + 1)-NLSE
with a non-Hermitian term) and related models [19] including multidimensional [20] and
nonlocal [21] ones.

Most of the studies devoted to the mentioned nonlinear systems, including the BEC,
deal with the local form of the NLSE since it is simpler for mathematical analysis, espe-
cially for numerical systems. Although such simplification is reasonable for short-range
interactions, it cannot be used for long-range interactions. The example of the last ones is
dipole-dipole interaction [22,23] that significantly affects the dynamics of the BEC [24,25].
In [26], the author studied the influence of the nonlocal interaction of condensate particles
and an external periodic field on the BEC dynamics in the framework of the mean-field
theory and nonlocal generalized GPE without dissipative terms. Therefore, it is of interest
to study the nonlocal NLSE as a more general problem since the well-studied local form
can be treated as the limiting case of the nonlocal one in a manner. The NLSE with either
the local or nonlocal nonlinearity can be derived from the linear many-body Schrödinger
equation using various approaches depending on the assumptions made (see, e.g., [27–32]).

Using the nonlocal form of the model equations, we apply the semiclassical formalism
to the problem under consideration. The semiclassical approximation is widely used for
linear equations of quantum mechanics. Some modern semiclassical approaches based
on ideas of the Maslov method [33] were also applied to some nonlinear problems (see,
e.g., [34,35]). In [36–38], the formalism of semiclassical asymptotics for a generalized
nonlocal GPE in a special class of trajectory concentrated functions is developed that
corresponds to closed quantum systems. In [39–41], this formalism was applied to kinetic
reaction-diffusion equations that correspond to open classical systems. The conception
of this work is to combine the ideas of those approaches to solve the nonlinear problem
corresponding to open quantum systems.

Solving nonlinear equations is a nontrivial problem for both the analytical and nu-
merical methods. There are several numerical approaches to highly nonlinear problems,
including the NLSE [42–45]. One of the practical drawbacks of numerical methods is that
their efficiency drops for multidimensional problems, which leads to the lower achieved
accuracy. The analytical asymptotic method under consideration does not face such an
issue. The WKB method can be applied to the nonlinear problem when the nonlinearity
is weak enough. Such applications were studied, e.g., in [46,47]. On the contrary, the
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method of semiclassically concentrated states, based on the ideas of Maslov‘s complex
germ method, allows us to construct the asymptotic solutions for the highly nonlinear prob-
lem under consideration. In this paper, following [36,37,39,40], we extend the method of
semiclassical asymptotics as applied to a generalized nonlocal NLSE with a non-Hermitian
term that is responsible for the dissipation. In particular cases, the equation considered in
the paper transforms into a complex nonlocal GLE [10], as well as into a nonlocal NLSE
with a complex potential [12,48]. The general formalism is illustrated by an example. The
method proposed in this work, along with the problem under consideration, includes [36]
as the particular case corresponding to the closed quantum systems along with the more
specific case considered in, e.g., [49].

The paper is organized as follows. In Section 2, the original nonlinear problem is posed.
In Section 3, we introduce the moment of the desired solution and give some additional
notations. In Section 4, we explain what we mean by the semiclassically concentrated
states, derive the classical equations corresponding to the nonlinear quantum problem, and
introduce the class of functions where the asymptotic solutions are sought. In Section 5,
we deal with the auxiliary dynamical system that allows us to proceed to the linear partial
differential equation associated with the original nonlinear problem. In Section 6, we derive
this linear partial differential equation and construct the leading term of the asymptotic
solution to the Cauchy problem for the original nonlinear equation under some algebraic
conditions. The explicit analytical form of the semiclassical nonlinear evolution operator
is given. In Section 7, we discuss the semiclassical symmetries for the problem under
consideration. Section 8 provides the example for the presented formalism. Here, we apply
our method to the specific NLSE, i.e., the model of an atom laser. Analytical asymptotic
solutions are obtained for this equation. In Section 9, we conclude with some remarks.

2. Nonlocal NLSE with a Non-Hermitian Term

Let us write the non-stationary nonlocal NLSE with a non-Hermitian term as follows:{
− ih̄∂t + H(ẑ, t)[Ψ]− ih̄ΛH̆(ẑ, t)[Ψ]

}
Ψ(x⃗, t) = 0,

H(ẑ, t)[Ψ] = V(ẑ, t) +κ
∫
Rn

dy⃗ Ψ∗ (⃗y, t)W(ẑ, ŵ, t)Ψ(⃗y, t),

H̆(ẑ, t)[Ψ] = V̆(ẑ, t) +κ
∫
Rn

dy⃗ Ψ∗ (⃗y, t)W̆(ẑ, ŵ, t)Ψ(⃗y, t).

(1)

Here, t ∈ R1, x⃗ ∈ Rn, Λ and κ are real non-Hermiticity and nonlinearity parameters,
respectively, h̄ acts as a formal small asymptotic parameter [33], and symbol (∗) denotes the
complex conjugation. The operators V(ẑ, t), V̆(ẑ, t), W(ẑ, ŵ, t), and W̆(ẑ, ŵ, t) in (1) depend

on non-commuting operators ẑ = ( ˆ⃗p, x⃗), ŵ = ( ˆ⃗py, y⃗), ˆ⃗p = −ih̄
∂

∂x⃗
= −ih̄∇, ˆ⃗py = −ih̄

∂

∂y⃗
,

y⃗ ∈ Rn. Note that we put the arrows only for n-dimensional vectors. We do not put ones
for z that is 2n-dimensional.

We consider solutions Ψ to Equation (1) that belong to the Schwartz space S with
respect to x⃗ and deal with the L2(Rn

x) scalar product

⟨Φ|Ψ⟩(t) =
∫
Rn

dx⃗ Φ∗(x⃗, t)Ψ(x⃗, t). (2)

The operators ẑ, ŵ satisfy the following commutation relations:

[ẑk, ẑj] = ih̄Jkj, j, k = 1, . . . , 2n, (3)
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where J =
(

0 −In
In 0

)
is the 2n × 2n symplectic identity matrix, In is the n × n identity

matrix. The commutators and anticommutators of operators Â and B̂ are denoted by
[Â, B̂] = ÂB̂ − B̂Â and [Â, B̂]+ = ÂB̂ + B̂Â, respectively. The scalar products of vectors
from Rn and R2n are denoted by ⟨a, b⟩ = ∑j ajbj.

Let us introduce the set S of functions A(z, t, h̄)=A( p⃗, x⃗, t, h̄) that satisfy the following
conditions for every fixed t ≥ 0:

(1) A( p⃗, x⃗, t, h̄) ∈ C∞ with respect to p⃗ and x⃗;
(2) A( p⃗, x⃗, t, h̄) and all its derivatives grow not faster that polynomials of | p⃗| and |⃗x| as

| p⃗|, |⃗x| → ∞;
(3) A( p⃗, x⃗, t, h̄) regularly depends on the parameter h̄ in a neighborhood of h̄ = 0.

Definition 1. A pseudo-differential Weyl-ordered operator is an operator Â = A(ẑ, t, h̄) =
A( ˆ⃗p, x⃗, t, h̄) that is defined by [50]

A( ˆ⃗p, x⃗, t, h̄)Φ(x⃗, t, h̄) =
1

(2πh̄)n

∫
R2n

dp⃗dy⃗ exp
( i

h̄
⟨ p⃗, x⃗ − y⃗⟩

)
A
(

p⃗,
x⃗ + y⃗

2
, t, h̄

)
Φ(⃗y, t, h̄), (4)

where A( p⃗, x⃗, t, h̄) ∈ S and Ψ(x⃗, t, h̄) ∈ S for fixed t, h̄.
The function A(z, t, h̄) in (4) is termed the Weyl symbol of the operator Â = A(ẑ, t, h̄).
We denote by A the set of pseudo-differential operators defined above.

The operators V(ẑ, t), V̆(ẑ, t), W(ẑ, ŵ, t), and W̆(ẑ, ŵ, t) in (1) belong to A. The func-
tions V(z, t), V̆(z, t), W(z, w, t), and W̆(z, w, t) are their Weyl symbols, respectively. These
operators are Hermitian with respect to the scalar product (2).

Whenever no confusion arises, we will simplify our notation. We will drop the explicit
dependence on h̄ in the functions and indicate it where appropriate, in particular, in
solutions Ψ to Equation (1), Ψ(x⃗, t, h̄) = Ψ(x⃗, t).

3. Expectation of an Operator Over Functions from S
A non-Hermitian term in the operator of the Equation (1) results in that L2-norm of the

solution Ψ(x⃗, t, h̄), ∥Ψ∥2(t, h̄) = ⟨Ψ|Ψ⟩(t, h̄), does not conserve. Hereinafter, || · || stands
for the L2-norm. Let us denote

σΨ(t, h̄) = ∥Ψ∥2(t, h̄), (5)

and derive the evolution equation for σΨ(t, h̄). From (1), taking into account the Hermiticity
of operators H(ẑ, t)[Ψ] and H̆(ẑ, t)[Ψ], one obtains

σ̇Ψ(t, h̄) = −2Λ
∫
Rn

dx⃗ Ψ∗(x⃗, t; h̄)H̆(ẑ, t)[Ψ]Ψ(x⃗, t; h̄) = −2Λ⟨Ψ|H̆[Ψ]|Ψ⟩, (6)

where σ̇Ψ = dσ/dt, and H̆(ẑ, t)[Ψ] is given by (1). We will consider the solutions with
σΨ(t, h̄) = O(1) as h̄ → 0. Actually, this condition depends on the definition of the
nonlinearity coefficient κ. We will limit our consideration to the case κ = O(1) since it
is of the greatest interest from the physical point of view. It corresponds to the situation
when the linear and nonlinear parts of Equation (1) are comparable. In this case, regular
perturbation theory in nonlinearity parameters does not yield qualitative results.

For the operator Â(t) ∈ A determined by its Weyl symbol Â(t) = A(ẑ, t), we define
the expectation for the solution Ψ(x⃗, t, h̄) to (1) by the following relation:

⟨Â(t)⟩Ψ =
1

σΨ(t, h̄)
⟨Ψ|Â(t)|Ψ⟩ = 1

σΨ(t, h̄)

∫
Rn

dx⃗ Ψ∗(x⃗, t, h̄)A(t)(ẑ, t)Ψ(x⃗, t, h̄). (7)
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The evolution equation for the expectation ⟨Â(t)⟩Ψ on solutions to (1) reads

∂

∂t
⟨Â(t)⟩Ψ = −∂ log σΨ(t, h̄)

∂t
⟨Â(t)⟩Ψ +

〈
∂Â(t)

∂t

〉
Ψ
+

i
h̄
〈[

H(ẑ, t)[Ψ], Â(t)
]〉

Ψ−

− Λ
〈[

H̆(ẑ, t)[Ψ], Â(t)
]
+

〉
Ψ = −∂ log σΨ(t, h̄)

∂t
⟨Â(t)⟩Ψ +

〈
∂Â(t)

∂t

〉
Ψ
+

+
i
h̄
〈
[V(ẑ, t), A(ẑ, t)]

〉
Ψ − Λ

〈
[V̆(ẑ, t), A(ẑ, t)]+

〉
Ψ+

+κ
〈 ∫
Rn

dy⃗ Ψ∗
( i

h̄
[W(ẑ, ŵ, t), A(ẑ, t)]− Λ[W̆(ẑ, ŵ, t), A(ẑ, t)]+

)
Ψ(⃗y, t)

〉
Ψ

. (8)

The Equation (8) can be significantly simplified in the semiclassical approximation,
and such simplified equations will determine the semiclassical evolution of the solutions
to (1). In the next Section, we will clarify how we interpret the semiclassical limit within
the framework of our approach.

4. Class of Semiclassically Concentrated Functions

Definition 2. The function Ψ(x⃗, t, h̄) belongs to a class T t
h̄ (Z(t), σ(t)) of functions semiclassically

concentrated in a neighborhood of a trajectory z = Z(t) with a weight of σ(t) if for any operator
Â = A(ẑ, t, h̄) ∈ A with the Weyl symbol A(z, t, h̄) the following relations hold

lim
h̄→0

⟨Â⟩Ψ = A(Z(t), t, 0), (9)

lim
h̄→0

σΨ(t, h̄) = σ(t). (10)

Here, the functions Z(t) and σ(t) are functional parameters of the class T t
h̄ (Z(t), σ(t)).

The relation (9) is similar to the definition of the Dirac δ-function in terms of δ-sequence.
As is known, δ(x − x0) is determined as a linear functional that maps any function f (x)
from the specific space (e.g., smooth functions with compact support) to its value at the
point x0. In (9), the analog of the function f (x) is an operator Â from the set A. The
relation (9) maps this operator to its Weyl symbol A(z, t, h̄) on the trajectory z = Z(t)
as h̄ → 0. Thus, the curve z = Z(t) acts as x0, the function Ψ acts as δ-sequence, and
the operator Â along with its Weyl symbol A(z, t, 0) acts as a test function. Summing
up, for every given moment t, the point z = Z(t) is determined in R2n, and a function
Ψ ∈ T t

h̄ (Z(t), σ(t)) is semiclassically concentrated in a neighborhood of these points that
constitute a trajectory z = Z(t) in R2n.

To obtain the semiclassical evolution of the expectation ⟨Â(t)⟩Ψ for a solution Ψ(x⃗, t, h̄)
to (1) from the class T t

h̄ (Z(t), σ(t)), we go to the limit h̄ → 0 in (8). In view of (9) and
properties of Weyl symbols, we obtain

d
dt

A(Z(t), t) =− d log σ(t)
dt

· A(Z(t), t) +
[

∂A(z, t)
∂t

−
{

V(z, t), A(z, t)
}
− 2ΛV̆(z, t)A(z, t)+

+κσ(t)
(
−
{

W(z, w, t), A(z, t)
}
− 2ΛW̆(z, w, t)A(z, t)

)]∣∣∣∣
z=w=Z(t)

. (11)

Here,
{

A(z), B(z)
}

, z = ( p⃗, x⃗), stands for Poisson bracket:

{
A(z), B(z)

}
=

〈
∂A(z)

∂z
, J

∂B(z)
∂z

〉
=

n

∑
i=1

(
∂A
∂xi

∂B
∂pi −

∂B
∂xi

∂A
∂pi

)
. (12)

In (11), we have used the property of the Weyl-ordered pseudo-differential operators A(ẑ),
B(ẑ), C(ẑ), D(ẑ) with symbols A(z), B(z), C(z), D(z), respectively, where
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C(ẑ) =
[
A(ẑ), B(ẑ))

]
, D(ẑ) =

[
A(ẑ), B(ẑ))

]
+

, (13)

that is as follows [51]:

lim
h̄→0

C(z)
ih̄

=
{

A(z), B(z)
}

, lim
h̄→0

D(z) = 2A(z)B(z). (14)

Let us consider two important corollaries of (11).
For the unit operator Â = Î with the symbol A(z) = 1, Equation (11) yields the

following evolution equation for σ(t):

σ̇(t) = −2Λσ(t)
[
V̆(Z(t), t) + σ(t)κW̆(Z(t), Z(t), t)

]
, (15)

where σ̇ = dσ/dt.
In view of (15), for the operator Â = ẑ, we obtain the equation for the curve z = Z(t)

in R2n:
Ż(t) = JVz(Z(t), t) +κσ(t)JWz(z, w, t) |z=w=Z(t), (16)

where Vz = ∂V(z, t)/∂z = (∂V(z, t)/∂pi, ∂V(z, t)/∂xi).
By analogy with [37], the system (15) and (16) is termed the Hamilton–Ehrenfest system

with dissipation (HESD) of the first order for Equation (1) in the class T t
h̄ (Z(t), σ(t)).

Please note that the system (15) and (16) contains the partial information about local-
ization properties of the solutions to (1) in the space of the dynamical system of the first and
zeroth moments of the function Ψ. From the derived equations (in particular, (15) and (16)),
it is clear that it makes sense to consider only the case Λ = O(1) within the framework of
the semiclassical approximation. If Λ → ∞ as h̄ → 0, the solution would rapidly damp so
that its dynamics would not be observed at damping times. If Λ → 0 as h̄ → 0, we could
ignore the non-Hermitian part in the semiclassical approximation that corresponds to the
case Λ = 0 in our approach. Please note that the last case will be naturally included in our
general formalism.

To derive explicit analytical expressions for approximate solutions to (1) in the form of
semiclassical asymptotics with respect to the parameter h̄, h̄ → 0, let us consider the class
P t

h̄
(
Z(t), S(t), σ(t)

)
of functions that singularly depend on asymptotics parameter h̄ [36]:

P t
h̄(Z(t), S(t), σ(t)) =

{
Φ : Φ(x⃗, t, h̄) =

√
σ(t)
h̄n/2 · φ

( ∆x⃗√
h̄

, t, h̄
)
· exp

[ i
h̄

(
S(t) + ⟨P⃗(t), ∆x⃗⟩

)]}
. (17)

Here, Φ(x⃗, t, h̄) is a general element of the class P t
h̄(Z(t), S(t), σ(t)); the real functions

Z(t) = (P⃗(t), X⃗(t)), S(t), and positively defined function σ(t) are functional parameters of
the class P t

h̄(Z(t), S(t), σ(t)); ∆x⃗ = x⃗ − X⃗(t); the function φ(ξ⃗, t, h̄) belongs to the Schwartz
space S with respect to the variables ξ⃗ ∈ Rn and regularly depends on h̄ in a neighborhood
of h̄ = 0; the functions Z(t), S(t), φ(ξ⃗, t, h̄), and σ(t) smoothly depend on t. Please note that
in [36], this class was introduced without normalization factor σ(t) since the solutions with
conserved norm were considered there. Here, we have added this factor for convenience
without loss of generality of the family of classes P t

h̄
(
Z(t), S(t), σ(t)

)
.

For ease of notation, we will abbreviate P t
h̄(Z(t), S(t), σ(t)) by P t

h̄ when no confusion
will arise.

Functions of the class P t
h̄ are concentrated at a point moving over the trajectory

z = Z(t) in the sense (9) and (10) [36]. They have the special form determined by the
ansatz (17). We will term it as the semiclassical ansatz (17).

It was proved in [36,37] that, for functions from the class on a finite time interval
t ∈ [0; T], the following asymptotic estimates hold:
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{∆ẑ}α = Ô(h̄|α|/2), (18)

∆(α)
Φ (t, h̄) =

⟨Φ|{∆ẑ}α|Φ⟩
⟨Φ|Φ⟩ = O(h̄|α|/2), Φ ∈ P t

h̄. (19)

Here, the following notations are used. The estimate Â = Ô(h̄s), s ≥ 0, in (18) stands for an
operator Â such that

||ÂΦ||
||Φ|| = O(h̄s), Φ ∈ P t

h̄; (20)

Z(t) = (P⃗(t), X⃗(t)), ∆ẑ = ẑ − Z(t) = (∆ ˆ⃗p, ∆x⃗), ∆ ˆ⃗p = ˆ⃗p − P⃗(t), ∆x⃗ = x⃗ − X⃗(t); {∆ẑ}α

is the operator determined by the Weyl symbol ∆zα according to (4). The multi-index α ∈
Z2n
+ (2n-tuple) reads α = (α1, α2, . . . , α2n); αj ∈ Z1

+, j = 1, 2, . . . , 2n; |α| = α1 + α + . . . + α2n.

For v = (v1, v2, . . . , v2n), vα = vα1
1 vα2

2 . . . vα2n
2n . The functions ∆(α)

Φ (t, h̄) are |α|-th order
central moments of the function Φ.

In particular, we have

∆xj = Ô(
√

h̄), ∆ p̂j = Ô(
√

h̄), j = 1, n,

− ih̄∂/∂t − Ṡ(t) + ⟨P⃗(t), ˙⃗X(t)⟩+ ⟨Ż(t), J∆ẑ⟩ = Ô(h̄). (21)

We use the contracted notation j = 1, n for j = 1, 2, . . . , n in (21) and below. Hereinafter, all
calculations and commentaries are given for t ∈ [0; T] where T < ∞.

5. Moments of Functions from the Class P t
h̄

To construct semiclassical asymptotics for solutions to (1) in the class (17), let us
introduce the moments of a function Ψ(x⃗, t, h̄) ∈ P t

h̄ as it follows

σΨ(t, h̄) = ⟨Ψ|Ψ⟩(t, h̄), ZΨ(t, h̄) =
1

σΨ(t, h̄)
⟨Ψ|ẑ|Ψ⟩(t, h̄). (22)

Here, σΨ(t, h̄) is the zeroth order moment of Ψ(x⃗, t, h̄), ZΨ(t, h̄) is the first order moment,
and the central moments ∆(α)

Ψ (t, h̄) are given by (19).
Let us present the operators V(ẑ, t), V̆(ẑ, t), W(ẑ, ŵ, t), and W̆(ẑ, ŵ, t) from (1) in the

form of formal power series in ∆ẑ and ∆ŵ in a neighborhood of the trajectory z = Z(t).
Then, we have

V(ẑ, t) =V(t) + ⟨Vz(t), ∆ẑ⟩+ 1
2
⟨∆ẑ, Vzz(t)∆ẑ⟩+ . . . ,

W(ẑ, ŵ, t) =W(t) + ⟨Wz(t), ∆ẑ⟩+ ⟨Ww(t), ∆ŵ⟩+ 1
2
⟨∆ẑ, Wzz(t)∆ẑ⟩+

+
1
2
⟨∆ŵ, Www(t)∆ŵ⟩+ ⟨∆ẑ, Wzw(t)∆ŵ⟩+ . . . (23)

Hereinafter, the following notations are used:

V(t) = V(Z(t), t), Vz(t) =
(

∂V(z, t)
∂zk

∣∣∣
z=Z(t)

)
, Vzz(t) =

(
∂2V(z, t)

∂zk∂zj

∣∣∣
z=Z(t)

)
,

W(t) = W(Z(t), Z(t), t), Wz(t) =
(

∂W(z, w, t)
∂zk

∣∣∣
z=w=Z(t)

)
, k, j = 1, 2n,

(24)

and so on by analogy. The expansions for V̆(ẑ, t) and W̆(ẑ, ŵ, t) are similar to (23). In
view of (18), the part of the operators dropped (24) is estimated as Ô(h̄(m+1)/2) where m



Mathematics 2024, 12, 580 8 of 22

is the greatest power of a polynomial of ∆ẑ, ∆ŵ that was taken into consideration in the
asymptotic expansion. In particular, if we limit ourselves to terms that were explicitly
written in (23), then m = 2.

Let us denote the aggregate vector of moments of the function Ψ(x⃗, t, h̄) by

gΨ(t, h̄) =
(

σΨ(t, h̄), ZΨ(t, h̄), ∆(α)
Ψ (t, h̄)

)
, |α| = 2, ∞. (25)

It is known that gΨ(t, h̄) determines the function Ψ(x⃗, t, h̄) (see, e.g., [52]). However, the
system of equations for (25) is an infinite set of ordinary differential equations (ODEs).

Let us also introduce the aggregate vector g(M)
Ψ (t, h̄) that reads

g(M)
Ψ (t, h̄) =

(
σΨ(t, h̄), ZΨ(t, h̄), ∆(α)

Ψ (t, h̄)
)
+ O(h̄(M+1)/2), |α| = 2, M. (26)

In (26), we suppose that all moments included in g(M)
Ψ (t, h̄) are determined within accu-

racy of O(h̄(M+1)/2) where M indicates both the greatest order of moments included in
g(M)

Ψ (t, h̄) and their accuracy in this aggregate vector. Substituting (23) in (6) and (8), using
estimates (18) and (19), one obtains the closed system of ODEs of the form

ġ(M)
Ψ (t, h̄) = Γ(M)

(
g(M)

Ψ (t, h̄), t, h̄
)

. (27)

Finally, let us introduce the aggregate vector g(M)(t, h̄, C) that is a particular solution of

ġ(M)(t, h̄, C) = Γ(M)
(

g(M)(t, h̄, C), t, h̄
)

. (28)

with integration constant C. The system (28) is termed the HESD of the M-th order.
Please note that in view of properties of the class P t

h̄, the following relations hold [36]:

ZΨ(t, h̄) = Z(0)
Ψ (t) + h̄Z(1)

Ψ (t) + O(h̄3/2),

σΨ(t, h̄) = σ
(0)
Ψ (t) + h̄σ

(1)
Ψ (t) + O(h̄3/2).

(29)

From (9) and (10), it also follows that

Z(0)
Ψ (t) = Z(t), σ

(0)
Ψ (t) = σ(t). (30)

The asymptotic solutions can be obtained in those classes P t
h̄
(
Z(t), S(t), σ(t)

)
that are

defined by functions determined by Equations (15) and (16) and a function S(t) given by

Ṡ(t) = ⟨P⃗(t), ˙⃗X(t)⟩ − V(t)−κσ(t)W(t). (31)

Due to the uniqueness of the solution to the Cauchy problem for (27) and (28), we
have g(M)

Ψ (t, h̄) = ġ(M)(t, h̄, C) under the algebraic condition

C = C[Ψ]. (32)

In view of (30), the algebraic condition (32) is degenerate for the integration constants
of the HESD of the first order (15) and (16) in the class P t

h̄ with the given Z(t) and σ(t).
Hence, the functions Z(t) = Z(0)(t) and σ(t) = σ(0)(t) do not depend on C.

Thus, Equations (15) and (16) form the system (28) for M = 1. Next, we will show
that we must solve at least the HESD of the second order to construct the leading term of
asymptotics for the solution Ψ(x⃗, t) to (1). To construct higher-order asymptotics, we must
solve the HESD of a higher order. The equations of the HESD of the second order are given
explicitly in Appendix A.
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6. Associated Linear Schrödinger Equation with Dissipation

In the class P t
h̄(Z(t), S(t), σ(t)), the solution to (1) can be sought in the form

Ψ(x⃗, t, h̄) =
M

∑
k=0

h̄k/2Ψ(k)(x⃗, t, h̄) + Ō(h̄(M+1)/2), (33)

where Ψ(k)(x⃗, t, h̄) ∈ P t
h̄(Z(t), S(t), σ(t)), k = 0, M, and the estimates f (x⃗, t, h̄) = Ō(h̄s),

s ≥ 0, means
max

t∈[0;T]
|| f (x⃗, t, h̄)|| = O(h̄s). (34)

Let us write (1) as follows:

L̂[Ψ]Ψ(x⃗, t, h̄) =
{
− ih̄∂t + H(ẑ, t)[Ψ]− ih̄ΛH̆(ẑ, t)[Ψ]

}
Ψ(x⃗, t) = 0. (35)

Following [36], we expand the operators H(ẑ, t)[Ψ] and H̆(ẑ, t)[Ψ] in a series in ∆ẑ, expand
the kernels of nonlinear terms in a series in ∆ŵ (see (23)), and replace the respective integrals
to the moments of the function Ψ. Then, in view of (18) and (19), we obtain the expansion
of the operator L̂[Ψ] in the form

L̂[Ψ] =
M

∑
k=0

L̂(k)(gΨ(t, h̄)) + Ô(h̄(M+1)/2), (36)

where L̂(k)(gΨ(t, h̄)) = Ô(h̄k/2), h̄ → 0, k = 0, M.
Using (35) and (36), we can write (35) as follows:( M

∑
k=0

L̂(k)(gΨ(t, h̄))
)( M

∑
m=0

h̄m/2Ψ(m)(x⃗, t, h̄)
)
= Ō(h̄(M+1)/2). (37)

Since the operators L̂(k)(gΨ(t, h̄)) smoothly depend on the argument gΨ(t, h̄), in view
of (26), the operators L̂(k)(gΨ(t, h̄)) can be substituted for L̂(k)(g(M)

Ψ (t, h̄)) in (37).
It can be shown that L̂[Ψ] = Ô(h̄) in the class P t

h̄, i.e., the expansion (36) can be chosen
so that

L̂(0)(gΨ(t, h̄)) = 0,

L̂(1)(gΨ(t, h̄)) = 0.
(38)

The first identity in (38) follows from (21) and (31), while the second one follows from (21)
and (16).

Thus, (37) can be written as follows:( M−2

∑
k=0

L̂(k+2)(g(M)
Ψ (t, h̄))

)( M

∑
m=0

h̄m/2Ψ(m)(x⃗, t, h̄)
)
= Ō(h̄(M+1)/2). (39)

Grouping terms of various orders with respect to h̄ in (39), we derive the system of
equations for functions Ψ(k), k = 0, M − 2:

h̄1 : L̂(2)(g(M)
Ψ (t, h̄))Ψ(0)(x⃗, t, h̄) = 0,

h̄3/2 : h̄1/2 L̂(2)(g(M)
Ψ (t, h̄))Ψ(1)(x⃗, t, h̄) + L̂(3)(g(M)

Ψ (t, h̄))Ψ(0)(x⃗, t, h̄) = 0,

. . .

h̄M/2 : h̄(M−2)/2 L̂(2)(g(M)
Ψ (t, h̄))Ψ(M−2)(x⃗, t, h̄)+

+ h̄(M−3)/2 L̂(3)(g(M)
Ψ (t, h̄))Ψ(M−1)(x⃗, t, h̄) + . . .+

+ L̂(M)(g(M)
Ψ (t, h̄))Ψ(0)(x⃗, t, h̄) = 0. (40)
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In particular, for M = 2, one readily finds that (40) yields the following single equation for
the leading term of asymptotics:

L̂(2)(g(2)Ψ (t, h̄))Ψ(0)(x⃗, t, h̄) = 0. (41)

Following [36], we term Ψ(0)(x⃗, t, h̄) by the solution with right-hand side accuracy of
O(h̄3/2) in the sense that it is generated by (39) with accuracy of Ō(h̄3/2). Hereinafter, we
suppose that L̂2 is the operator from the expansion (36) satisfying (38).

Let us introduce the auxiliary linear equation

L̂(2)(g(M)(t, h̄, C))Φ(x⃗, t, h̄, C) = 0, M ≥ 2, (42)

with a solution Φ(x⃗, t, h̄, C) ∈ P t
h̄(Z(t), S(t), σ(t)).

Then, the following proposition holds [36]

Proposition 1. Let Ψ(x⃗, t, h̄) ∈ P t
h̄(Z(t), S(t), σ(t)) be a solution to the Cauchy problem for (1)

with the initial condition
Ψ(x⃗, t, h̄)

∣∣∣
t=0

= φ(x⃗, h̄), (43)

and Φ(⃗x, t, h̄, C[φ]) be a solution to the Cauchy problem for (42), C = C[φ], with the initial condition

Φ(x⃗, t, h̄, C[φ])
∣∣∣
t=0

= φ(x⃗, h̄). (44)

Then, we have
Φ(x⃗, t, h̄, C[φ])− Ψ(x⃗, t, h̄) = Ō(

√
h̄). (45)

This proposition follows from the uniqueness of the solution to the Cauchy problems
for (28) and (42).

To put it differently, the leading term of the asymptotic solution to the Cauchy problem
for the original nonlinear Equation (1) in the class P t

h̄ can be found among solutions to
C-parametric family of linear Equation (42). The search for the appropriate solution is
reduced to the algebraic conditions

C = C[φ]. (46)

The parameters C (integration constants for (28)) that meet the condition (46) can be
determined by initial conditions for the moments of the function Ψ, g(M)

Ψ (t, h̄)
∣∣
t=0.

Following [37], we term (42) as the associated linear Schrödinger equation with dissi-
pation (ALSED). It can be written as follows:

L̂(2)(g(M)(t, h̄, C))Φ(x⃗, t, h̄) =

=

{
− ih̄∂t + H(t, C, h̄) + ⟨Hz(t), ∆ẑ⟩+ 1

2
⟨∆ẑ, Hzz(t)∆ẑ⟩

}
Φ(x⃗, t, h̄) = 0,

(47)

where

H(t, C, h̄) =H(0)(t) + h̄H(1)(t, C),

H(0)(t) =V(t) +κσ(t)W(t),

H(1)(t, C) =
κ
2

σ(t) Sp [Www(t) · ∆(1)
2 (t, C)] +κσ(t)⟨Ww(t), Z(1)(t, C)⟩+

+κσ(1)(t, C)W(t)− iΛV̆(t)− iΛκσ(t)W̆(t),

Hz(t) =Vz(t) +κσ(t)Wz(t),

Hzz(t) =Vzz(t) +κσ(t)Wzz(t). (48)
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Here, ∆(1)
2,ij(t) =

1
2h̄

⟨∆ẑi∆ẑj + ∆ẑj∆ẑi⟩ is the dispersion matrix (matrix of the second-order
central moments).

Green’s function for (47) and (48) reads [53]

G(x⃗, y⃗, t, C, h̄) =
1√

det
(
− 2πih̄M3(t)

) exp

{
i
h̄

[ t∫
0

(
⟨P⃗(τ), ˙⃗X(τ)⟩ − H(τ, C, h̄)

)
dτ+

+⟨P⃗(t), ∆x⃗⟩ − ⟨P⃗(0), ∆y⃗⟩ − 1
2
⟨∆x⃗, M−1

3 (t)M1(t)∆x⃗⟩+

+⟨∆x⃗, M−1
3 (t)∆y⃗⟩ − 1

2
⟨∆y⃗, M4(t)M−1

3 (t)∆y⃗⟩
]}

,

(49)

where ∆y = y − X⃗(0), and 2n × 2n matrix M(t) =
(

M1(t) −M3(t)
−M2(t) M4(t)

)
is a solution to

the Cauchy problem

Ṁ = −M · Hzz
(
t
)

J, M(0) =
(

In×n 0
0 In×n

)
. (50)

This function generates the following semiclassical evolution operator for asymptotic
solutions from the class P t

h̄(Z(t), S(t), σ(t)):

Ψ(0)(x⃗, t) = Û(t)φ(x⃗) =
∫
Rn

G(x⃗, y⃗, t, C[φ])φ(⃗y)dy⃗, Ψ(0)(x⃗, 0) = φ(x⃗). (51)

Note that the semiclassical evolution operator Û(t) is nonlinear since the integrand in (51)
depends nonlinearly on φ(x⃗) by way of C[φ].

7. Semiclassical Symmetry Operators

The solutions to Equations (47) and (48) that determine the asymptotic solutions to (1)
can be generated using symmetry operators.

Let a(t) ∈ C2n be a solution to

ȧ = JHzz(t)a. (52)

Then, the operator
â(t) = ⟨a(t), ∆ẑ⟩ (53)

is a symmetry operator of the first order for Equations (47) and (48).
In view of the explicit form for the evolution operator (49) and (51), an asymptotic

solution to (1) in the class P t
h̄(Z(t), S(t), σ(t)) can be written as follows:

Ψ(0)(x⃗, t) = exp
[
− i

h̄

t∫
0

H(τ, C[ψ])dτ

]
ψ(x⃗, t). (54)

Then, the function Ψ̃(0)(x⃗, t) given by

Ψ̃(0)(x⃗, t) = exp
[
− i

h̄

t∫
0

H(τ, C[ψ̃])dτ

]
ψ̃(x⃗, t),

ψ̃(x⃗, t) = â(t)ψ(x⃗, t),

(55)

is also an asymptotic solution to (1). In terms of the evolution operator Û(t) (51), the
relation (55) reads
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Ψ̃(0)(x⃗, t) = Û(t)â(t)Û−1(t)Ψ(0)(x⃗, t). (56)

The relation (56) indicates clearly that the functions Ψ̃(0) and Ψ(0) are related nonlinearly
due to the nonlinearity of Û(t).

Let ak(t) ∈ C2n, k ∈ N, be linearly independent solutions to (54) satisfying the skew-
orthogonality condition

{ak, am} = {a∗k , a∗m} = 0, {a∗k , am} = 2iδkm, ∀k, m ∈ N, (57)

where {a1, a2} = ⟨a1, Ja2⟩, and δkm the Kronecker delta. Then, the respective symmetry
operators for the ALSE

âk(t) =
1√
2h̄

⟨ak(t), J∆ẑ⟩, â+k (t) =
1√
2h̄

⟨a∗k (t), J∆ẑ⟩, (58)

form Heisenberg’s Lie algebra:

[âk, âm] = [â+k , â+m ] = 0, [âk, â+m ] = δkm, ∀k, m ∈ N. (59)

Thus, the linear symmetry operators (58) for ALSE that form the Lie algebra (59) gener-
ate the nonlinear approximate symmetry operators for the original nonlinear Equation (1).
Using the set of operators (58), one can construct analogs of the well-known Fock states [54]
for the nonlinear Equation (1).

8. Example

Hereunder, we illustrate the formalism proposed with the simple but nontrivial
example. Let us consider the model equation{

− ih̄∂t + c1 p̂2 + c2κ
∫
R

exp
(
− (x − y)2

γ2

)
|Ψ(⃗y, t)|2dy−

−ih̄Λ
[
− ϵ + p̂2 +κ

∫
R

exp
(
− (x − y)2

γ2

)
|Ψ(⃗y, t)|2dy

]}
Ψ(x⃗, t) = 0.

(60)

It was derived in [9] for the description of the field of the BEC in an atom laser that is a
fundamentally open system. This equation is the reduction of the system of two related
equations. The first one, the GPE, describes the field Ψ of condensed atoms. The second
one, the reaction-diffusion equation, describes the density of uncondensed atoms. As we
noted earlier, we operate with a nonlocal form of nonlinearity within the framework of
our formalism. The cases of c1 > 0, ϵ > 0, Λ > 0, and c2 ≷ 0 were considered in [9].
These coefficients depend on the coupling constant between condensed and uncondensed
atoms [15], parameters of the laser pumping, parameters of a trap, and properties of atoms
themselves, such as the effective mass and self-interaction strength.

In our notations, we have

V(z, t) = c1 p2,

W(z, w, t) = c2 exp
(
− (x − y)2

γ2

)
,

V̆(z, t) = −ϵ + p2,

W̆(z, w, t) = exp
(
− (x − y)2

γ2

)
,

z = (p, x), w = (py, y). (61)
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Let us pose the initial condition of the form

Ψ(x, t)
∣∣∣
t=0

= φ(x) =

√
N

ζ
√

πh̄
exp

(
− x2

2h̄ζ2

)
, (62)

that implies that some amount of condensate is trapped at the initial moment of time.
From (62), in view of (22), (A1) and (46), the initial conditions for HESD (15), (16)

and (A3)–(A5) read

σ(0) = σ(0)(0) = N, σ(1)(0) = 0, Z(0) = Z(0)(0) = 0, Z(1)(0) = 0,

∆(1)
2 (0) =


1

2ζ2 0

0
ζ2

2

.
(63)

In this section, we will omit the argument C since the initial conditions (63), which are
integration constants C, will be explicitly included in expressions.

In view of (63) and symmetries in coefficients (61), one readily obtains

Z(t) = 0, Z(1)(t) = 0. (64)

The Cauchy problem for (15) is given by

σ̇(t) = −2Λσ(t)
(
− ϵ +κσ(t)

)
, σ(0) = N, (65)

and its solutions reads

σ(t) =
Nϵe2Λϵt

ϵ + Nκ(e2Λϵt − 1)
. (66)

Note that in our formalism, the function σ(t) must be positively defined. Hence, for Λ > 0,

ϵ < 0, and Nκ < ϵ, the asymptotics can be constructed only for 0 ≤ t <
1

2Λϵ
ln
(

1 − ϵ

Nκ

)
.

The consideration of a finite time interval when constructing asymptotics is reasonable
since the exact solutions to the original nonlinear equation do not necessarily exist for
infinite time intervals.

The condition ϵ > 0 means that the threshold condition (gain = losses) is met [9].
The formula (66) shows that for great t, in zeroth approximation by h̄, the evolution of
the condensate in a trap is affected by the effective pump (effective implies that ϵ takes
account of both the gain and losses) and nonlinearity factor. The positive nonlinearity
factor, κ > 0, corresponds to the respective interatomic interaction. The increase in the
effecting pump leads to an increase in the amount of condensate, while the increase in the
respective interaction strength leads to a decrease in the amount of condensate.

Next, we calculate the matrix coefficient

Hzz(t) =

2c1 0

0 −2c2κσ(t)
γ2

. (67)

In view of the symmetry of the matrix ∆(1)
2 (t), we denote

∆(1)
2 (t) =

(
αpp(t) αpx(t)
αpx(t) αxx(t)

)
. (68)
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Then, Equation (A3) reads

d
dt

αpp(t)
αpx(t)
αxx(t)

 =

 0 4c2κγ−2σ(t) 0
2c1 0 2c2κγ−2σ(t)
0 4c1 0

αpp(t)
αpx(t)
αxx(t)

,

αpp(0)
αpx(0)
αxx(0)

 =
1
2

ζ−2

0
ζ2

,

(69)

while Equation (A5) reads

σ̇(1)(t) = −2Λσ(t)αpp(t)c1 − 2Λκσ(t)σ(1)(t)(1 + c2),

σ(1)(0) = 0.
(70)

The solution to (70) is given by

σ(1)(t) = −2Λc1v−1(t)
t∫

0

v(τ)σ(τ)αpp(τ)dτ,

v(t) =
(

ϵ + Nκ
(

e2Λϵt − 1
))1+c2

.

(71)

The system (50) can be written as

Ṁ(t) = M(t)

 0 2c1

2c2κσ(t)
γ2 0

, M(0) =
(

1 0
0 1

)
. (72)

Please note that the solutions to Equation (A3) (that takes the form of (68) and (69) in
this particular example) can be expressed via the solutions to (50) (that is given by (72) in
this example) as follows:

∆(1)
2 (t) = M⊤(t)∆(1)

2 (0)M(t). (73)

The exact solutions to (72) can be expressed via the Meijer G-function. It is quite
cumbersome and, for that reason, is given in Appendix A1.

Green’s function (49) reads

G(x, y, t) =
1√

−2πih̄M3(t)
exp

{
− i

h̄

[ t∫
0

H(τ)dτ+

+
1

2M3(t)

(
M1(t)x2 − 2xy + M4(t)y2

)]}
,

H(t) = c2κσ(t)− h̄c2κσ(t)
αxx(t)

γ2 + h̄c2κσ(1)(t) + ih̄Λϵ − ih̄Λκσ(t).

(74)

The substitution of (74) and (62) into (51) yields

Ψ(0)(x, t) =

√√√√ Nζ(
M4(t)ζ2 − iM3(t)

)√
πh̄

exp

{
− i

h̄

t∫
0

H(τ)dτ

}
×

× exp

{
− x2

2h̄
·

ζ2
(

1 − M1(t)M4(t)
)
+ iM1(t)M3(t)

M3(t)
(

M3(t) + iM4(t)ζ2
) }

.

(75)
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In Figures 1 and 2, the squared absolute value of the function (75) is plotted, which has
the meaning of the density of condensed atoms in a trap. The figures are given for c1 = 1

2 ,
c2 = 1, ϵ = 1

2 , γ = 1, N = 1, ζ = 1, and various values of the non-Hermiticity parameter Λ,
nonlinearity parameter κ, and small parameter h̄.

(a) Λ = 2, κ = 0.2

(b) Λ = 2, κ = 0

(c) Λ = 0, κ = 0.2

Figure 1. Dependence of |Ψ(0)(x, t)|2 on x for various t and h̄ = 0.2 (solid lines). Dashed lines are for
the respective numerical solution.
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(a) Λ = 2, κ = 0.2

(b) Λ = 2, κ = 0

(c) Λ = 0, κ = 0.2

Figure 2. Dependence of |Ψ(0)(x, t)|2 on x for various t and h̄ = 0.05 (solid lines). Dashed lines are
for the respective numerical solution.

We also compare the analytical asymptotic solution Ψ(0)(x, t) with the numerical
solution to (60) in Figures 1 and 2. The numerical solution was obtained using the difference
scheme that is common for the NLSE [45]. We made the second-order spatial discretization
using the method of lines with 1000 points along x and the Dirichlet conditions at x = ±2.
The time integration on the spatial mesh was based on the Strang–Marchuk splitting
method [55] according to the following scheme:
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∂tΨ(t) =
{

Â + B[Ψ(t)]
}

Ψ(t),{
Î− τ

4
Â
}

Ψ(tn+1/2) =
{
Î+ τ

4
Â
}

Ψ(tn),

Ψ̃(tn+1/2) =
2 + τB[Ψ(tn+1/2)]

2 − τB[Ψ(tn+1/2)]
Ψ(tn+1/2),{

Î− τ

4
Â
}

Ψ(tn+1) =
{
Î+ τ

4
Â
}

Ψ̃(tn+1/2),

(76)

where Î is the identity operator corresponding to the identity matrix on the spatial mesh

and τ = tn+1 − tn is the time step. The operator Â =
1
ih̄

(
c1 p̂2 − ih̄Λ p̂2

)
is the differential

operator from (60) on the spatial mesh, and the rest terms of (60) are included in B[Ψ(t)].
The initial condition was equal for both the asymptotic and numerical solutions.

In our method, κ and Λ can be exactly equal to zero. In such a way, we can construct
asymptotic solutions to the linear Schrödinger equation with a non-Hermitian term and to
the NLSE without a non-Hermitian term, respectively. However, we do not assume these
parameters to be small in general. Hence, the solution behavior can drastically change
depending on κ and Λ. Figures 1 and 2 show that the dynamics of solutions significantly
change when we put one of the parameters κ or Λ as well as both to be not equal to zero.
Judging by the numerical solutions, our analytical asymptotic solutions are reasonably
accurate for small h̄ regardless of the presence of a non-Hermitian part.

For the given sets of parameters, we calculated the L2-norm of the difference between
the analytical asymptotic solutions and numerical solutions that are given by E(t, h̄) =
||Ψ(0) − Ψnum||(t, h̄). The values of E(t, h̄) for various t and h̄ are presented in Table 1. Also,

the values of Erel(t, h̄) =
E(t, h̄)

||Ψnum||(t, h̄)
are given in Table 2. Please note that Erel(t, h̄) = E(t, h̄)

for Λ = 0 since ||Ψ||(t, h̄) = const = 1 in this case. The behavior of Erel(t, h̄) and Erel(t, h̄)
with respect to h̄ is consistent with (45). The behavior of Erel(t, h̄) and Erel(t, h̄) with the
growth of t is similar for all three cases. Please note that we consider solutions with increasing
dispersion in all our numerical experiments. Since we deal with semiclassically localized
asymptotic solutions, the long-time behavior of the error is largely determined by the long-
time behavior of the dispersion (the greater the dispersion, the less the accuracy). Also, it is
clear from Tables 1 and 2 that both the nonlinear and non-Hermiticity hit the accuracy of our
asymptotic solutions.

Table 1. The values of E(t, h̄) for various t and h̄.

h̄ t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.05 0.00985 0.0213 0.0346 0.0505 0.0694 0.0924 0.121 0.157 0.204 0.265 Λ = 2
κ = 0.20.10 0.0191 0.0408 0.0658 0.0949 0.129 0.171 0.220 0.281 0.355 0.447

0.20 0.0363 0.0757 0.119 0.169 0.226 0.292 0.369 0.459 0.563 0.682

0.05 0.00948 0.0207 0.0338 0.0493 0.0673 0.0882 0.112 0.140 0.173 0.210 Λ = 2
κ = 00.10 0.0187 0.0403 0.0653 0.0941 0.127 0.165 0.208 0.258 0.314 0.379

0.20 0.0365 0.0770 0.122 0.173 0.230 0.293 0.365 0.446 0.536 0.638

0.05 0.00241 0.00493 0.00769 0.0108 0.0145 0.0190 0.0246 0.0317 0.0406 0.0521 Λ = 0
κ = 0.20.10 0.00436 0.00890 0.0138 0.0194 0.0259 0.0337 0.0432 0.0549 0.0695 0.0878

0.20 0.00732 0.0149 0.0231 0.0323 0.0428 0.0550 0.0697 0.0874 0.109 0.135

Table 2. The values of Erel(t, h̄) for various t and h̄.

h̄ t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.05 0.00933 0.0191 0.0298 0.0416 0.0551 0.0709 0.0900 0.114 0.144 0.184 Λ = 2
κ = 0.20.10 0.0182 0.0369 0.0569 0.0788 0.103 0.132 0.165 0.204 0.252 0.309

0.20 0.0348 0.0691 0.104 0.141 0.182 0.227 0.278 0.334 0.397 0.467

0.05 0.00862 0.0171 0.0254 0.0337 0.0418 0.0498 0.0577 0.0655 0.0731 0.0807 Λ = 2
κ = 00.10 0.0171 0.0337 0.0498 0.0654 0.0807 0.0956 0.110 0.124 0.138 0.151

0.20 0.0336 0.0654 0.0956 0.124 0.152 0.178 0.203 0.227 0.250 0.272
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9. Conclusions

In this paper, we apply the semiclassical asymptotic approach to the NLSE with
nonlocal cubic nonlinearity and a non-Hermite operator in the L2 space (1). The non-
Hermitian part of the equation accounts for the environmental impact on the system.
We introduce the class of semiclassically concentrated functions T t

h̄ in which we deduce
evolution equations for the squared norm of the solution σΨ(t) and for the first moments
Z(t) describing a localization of the semiclassical solutions. These equations already
provide partial but important information about the solutions to the equation. They form
a dynamical system that can be considered to be a nonlinear analog of the equations of
classical mechanics for a linear quantum mechanical equation. However, unlike the linear
case, the dynamic moment equations depend both on the symbol of the equation operator
and on the class of functions in which solutions of the equation are constructed.

To obtain the leading term of the semiclassical asymptotics of the Cauchy problem
for (1) explicitly within accuracy of O(h̄3/2), we follow the approach developed earlier
for the GPE with a Hermitian equation operator (see [37] and references therein) in the
class P t

h̄ of trajectory concentrated functions (17). The semiclassical approach required
significant modification for the non-Hermitian NLSE compared to the Hermitian one
due to non-conservation of the square modulus ||Ψ||2 of the solution to (1). Although
the general scheme of the method for constructing semiclassical asymptotics remains the
same as for the nonlocal NLSE with a Hermitian operator, its implementation is subject
to change. Following this scheme, we obtain a higher-order dynamical moment system
(Hamilton–Ehrenfest system with dissipation) with accuracy of O(h̄3/2) and an associated
linear Schrödinger equation. Together with the algebraic conditions (46), these equations
allow us to construct a solution to the Cauchy problem in terms of the leading term
of the semiclassical asymptotics with accuracy of O(h̄3/2). The construction of higher
corrections also does not cause principal difficulties since they can be obtained using the
evolution operator (49), (51), which is given explicitly in semiclassical approximation. Also,
semiclassical symmetry operators are constructed. The general results are illustrated by the
particular example of the non-Hermitian NLSE that admits explicit analytical solutions in
the semiclassical approximation. The example is based on the model equation of an atom
laser [9] that is a fundamentally open system.

The approach proposed is a new tool for the analytical study of open quantum systems.
The semiclassical approximation was well studied for closed quantum systems using vari-
ous approaches. One of their common drawbacks is that the error of semiclassical solutions
(compared to the exact one) usually grows over time. However, for dissipative systems, the
absolute error cannot grow indefinitely within the framework of our semiclassical approach
since the dynamics of both the exact and asymptotic solutions dampen over time due to the
dissipation. Hence, the absolute error of semiclassical approximation should be a bounded
function with respect to time for such systems. It means that time-limited semiclassical
approaches like ours can be even more natural and useful for the study of open quantum
systems compared to closed ones. This encourages us to develop our method for systems
with a more complex geometry of the localization domain further in the future. In particular,
the generalization of our approach to the solutions localized on curves by analogy with [37]
will likely allow us to describe the formation of a vortex lattice within the semiclassical
approach different from the hydrodynamic one.
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Appendix A. Hamilton–Ehrenfest System with Dissipation of the Second Order

Substituting the operator Aij(ẑ, t) =
1
2
(
∆ẑi∆ẑj + ∆ẑj∆ẑi

)
into (8), one can obtain the

equation for the following matrix:

∆2(t) =
(
⟨Aij(ẑ, t)⟩

)i,j=n

i,j=1
. (A1)

In view of estimates (19), we have

∆2(t) = h̄∆(1)(t) + O(h̄3/2). (A2)

Then, from (15), (16), we obtain the equation for ∆(1)(t) as

∆̇(1)
2 (t) = JHzz

(
Z(0)(t), t

)
∆(1)

2 (t)− ∆(1)
2 (t)Hzz

(
Z(0)(t), t

)
J. (A3)

The equations for the first and zeroth moments (29) with accuracy of O(h̄3/2) read

Ż(1)(t) =JHzz

(
Z(0)(t), t

)
Z(1)(t) +

1
2

J∂z

(
Sp
[

Hzz

(
Z(0)(t), t

)
· ∆(1)

2 (t)
])

−

− 2ΛH̆z

(
Z(0)(t), t

)
∆(1)

2 (t) +κσ(1)(t)JWz

(
Z(0)(t), Z(0)(t), t

)
+

+κσ(t)JWzw

(
Z(0)(t), Z(0)(t), t

)
Z(1)(t)+

+
1
2
κσ(t)J∂z

(
Sp
[
Www

(
Z(0)(t), Z(0)(t), t

)
· ∆(1)

2 (t)
])

. (A4)

σ̇(1)(t) =− 2Λσ(t)⟨H̆z

(
Z(0)(t), t

)
, Z(1)(t)⟩ − Λσ(t) Sp

[
H̆zz

(
Z(0)(t), t

)
· ∆(1)

2 (t)
]
−

− 2Λσ(1)(t)H
(

Z(0)(t), t
)
− 2Λκ(σ(t))2⟨W̆w

(
Z(0)(t), Z(0)(t), t

)
, Z(1)(t)⟩−

− Λκ(σ(t))2 Sp
[
W̆ww

(
Z(0)(t), Z(0)(t), t

)
· ∆(1)

2 (t)
]
−

− 2Λκσ(t)σ(1)(t)W̆
(

Z(0)(t), Z(0)(t), t
)

. (A5)

In (A3)–(A5), the following notations are used:

H(z, t) = V(z, t) +κσ(0)(t)W
(

z, Z(0)(t), t
)

,

H̆(z, t) = V̆(z, t) +κσ(0)(t)W̆
(

z, Z(0)(t), t
)

.
(A6)

The Equations (A3)–(A5) along with (15) and (16) form the HESD of the second order.
Please note that HESD of the first order (15) and (16) is a closed system of nonlinear ODEs
while the system (A3)–(A5) on the solutions to (15) and (16) is a closed system of linear
homogeneous ODEs.
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Appendix B. Solution to the System (72)

For c1 > 0, c2 > 0, ϵ > 0, the solution to (72) is as follows:

M(t) =
1
V

Q
(

exp[2ϵλt]
)
, Q(τ) =

(
Q1(τ) Q2(τ)

Q3(τ) Q4(τ)

)

V =G2,0
2,2

(
k2

∣∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
·
(

c1c2Nκ 2F1(2 − k1, k1 + 2; 3; k2)+

+ γ2λ2ϵ
(
2 2F1(1 − k1, k1 + 1; 2; k2)(ϵ − Nκ)− Nκ 2F1(2 − k1, k1 + 2; 3; k2)

))
−

− G2,0
2,2

(
k2

∣∣∣∣∣ −k1, k1

0, 0

)
· 2γ2λ2Nϵκ 2F1(1 − k1, k1 + 1; 2; k2),

k1 =

√
c1c2√
ϵγλ

, k2 =
Nκ

Nκ − ϵ
. (A7)

Elements of the matrix Q(τ) read

Q1(τ) = G2,0
2,2

(
τk2

∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
·
(

c1c2Nκ 2F1(2 − k1, k1 + 2; 3; k2)+

+γ2λ2ϵ(2 2F1(1 − k1, k1 + 1; 2; k2)(ϵ − Nκ)− Nκ 2F1(2 − k1, k1 + 2; 3; k2))
)
−

−2γ2λ2Nϵκτ 2F1(1 − k1, k1 + 1; 2; τk2) · G2,0
2,2

(
k2

∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
,

(A8)

Q2(τ) =
γ2λ(N(τ − 1)κ + ϵ)

c2(ϵ − Nκ)

(
G2,0

2,2

(
τk2

∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
×

×
(

c1c2Nκ 2F1(2 − k1, k1 + 2; 3; k2) + γ2λ2ϵ
(
2 2F1(1 − k1, k1 + 1; 2; k2)(ϵ − Nκ)−

−Nκ 2F1(2 − k1, k1 + 2; 3; k2)
))

+ G2,0
2,2

(
k2

∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
×

×
(

γ2λ2ϵ(Nτκ 2F1(2 − k1, k1 + 2; 3; τk2)− 2 2F1(1 − k1, k1 + 1; 2; τk2)(ϵ − Nκ))−

−c1c2Nτκ 2F1(2 − k1, k1 + 2; 3; τk2)
))

,

(A9)

Q3(τ) = 2c2λNκ(ϵ − Nκ)
(

τ 2F1(1 − k1, k1 + 1; 2; τk2) · G2,0
2,2

(
k2

∣∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
−

− 2F1(1 − k1, k1 + 1; 2; k2) · G2,0
2,2

(
τk2

∣∣∣∣∣ 1 − k1, k1 + 1
0, 1

))
,

(A10)

Q4(τ) =
N(τ − 1)κ + ϵ

ϵ

(
G2,0

2,2

(
k2

∣∣∣∣∣ 1 − k1, k1 + 1
0, 1

)
×

×
(

c1c2Nτκ 2F1(2 − k1, k1 + 2; 3; τk2) + γ2λ2ϵ
(
2 2F1(1 − k1, k1 + 1; 2; τk2)(ϵ − Nκ)−

−Nτκ 2F1(2 − k1, k1 + 2; 3; τk2)
))

− 2γ2λ2Nϵκ 2F1(1 − k1, k1 + 1; 2; k2)×

×G2,0
2,2

(
τk2

∣∣∣∣∣ 1 − k1, k1 + 1
0, 1

))
.

(A11)

Here, 2F1(a, b; c; z) is the hypergeometric function [56], and Gm,n
p,q

(
z
∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
is the

Meijer G-function [57].
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