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Abstract: When drilling deep wells, it is important to regulate the formation pressure and prevent
kicks. This is achieved by controlling the equivalent circulation density (ECD), which becomes
crucial in high-pressure and high-temperature wells. ECD is particularly important in formations
where the pore pressure and fracture pressure are close to each other (narrow windows). However,
the current methods for measuring ECD using downhole sensors can be expensive and limited by
operational constraints such as high pressure and temperature. Therefore, to overcome this challenge,
two novel models named ECDeffc.m and MWeffc.m were developed to predict ECD and mud weight
(MW) from surface-drilling parameters, including standpipe pressure, rate of penetration, drill string
rotation, and mud properties. In addition, by utilizing an artificial neural network (ANN) and
a support vector machine (SVM), ECD was estimated with a correlation coefficient of 0.9947 and
an average absolute percentage error of 0.23%. Meanwhile, a decision tree (DT) was employed to
estimate MW with a correlation coefficient of 0.9353 and an average absolute percentage error of
1.66%. The two novel models were compared with artificial intelligence (AI) techniques to evaluate
the developed models. The results proved that the two novel models were more accurate with
the value obtained from pressure-while-drilling (PWD) tools. These models can be utilized during
well design and while drilling operations are in progress to evaluate and monitor the appropriate
mud weight and equivalent circulation density to save time and money, by eliminating the need for
expensive downhole equipment and commercial software.

Keywords: equivalent circulating density; mud weight; artificial intelligence; drilling efficiency;
support vector machine; artificial neural network; decision tree

1. Introduction

Equivalent circulating density (ECD) is a parameter that takes into account the original
mud density, the weight of drilling cuttings, and the impact of annular pressure loss in
open and cased holes. Several factors affect ECD, including mud weight (MW), hydraulic
diameter (the difference between hole diameter and drill string outside diameter), plastic
viscosity (PV), yield point (YP), annular velocity (Vann), and wellbore geometry factor [1–5].
The calculation of ECD provides important information on the conditions within the
borehole and plays a crucial role in drilling operations, particularly in critical gas and
oil wells where the drilling mud window is limited [6,7]. Variations in ECD can cause
some drilling issues, including poor hole cleaning, reduced rate of penetration (ROP), lost
circulation, stuck pipe, and well control incidents. Understanding the concept of ECD
and its application is key to achieving optimal well-drilling and rig performance while
maintaining safety and environmental standards [8]. Additionally, ECD can serve as a
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useful tool in planning the trajectory of a wellbore, which is a critical aspect of drilling
operations. Although there are various types of wellbore trajectories, directional drilling is
now widely used in place of vertical wells to meet the requirements of modern and complex
projects while also ensuring that the project is economically viable [2,9,10]. When planning
a well path, it is crucial to consider geological factors and material strengths. Moreover, the
trajectory of the wellbore can significantly influence hole cleaning, pressure losses, and the
management of equivalent circulating density (ECD). To drill an oil well, it is necessary to
use drilling fluids that clean, cool, and, most importantly, maintain hydraulic pressure to
control the fluids of the geological formation. Monitoring the rheological behavior of the
fluid is essential in estimating the hydraulic pressure of the well. The design of the well is
heavily influenced by these factors [11]. In critical formations, ECD is utilized to manage
the formation pressure and avoid influxes. The existing techniques for computing ECD in
oilfields mainly depend on expensive downhole sensors that offer real-time measurements
of ECD. However, many of these instruments have limitations in their downhole operation,
including high-pressure and high-temperature conditions [10,11]. As downhole ECD tools
are expensive and mathematical models are often inaccurate, predicting ECD from drilling
parameters has become a new area of focus in drilling engineering. With the aid of advanced
computing power, machine-learning techniques can achieve higher prediction accuracy
than conventional and statistical models. The accurate calculation of ECD is crucial in
drilling and completing an oil well, particularly in deep water, horizontal well sections, or
depleted reservoirs, due to its sensitivity. Errors in ECD calculations can lead to disastrous
consequences. Annular frictional pressure loss (AFPL) is the influencer of pressure loss in
traditional ECD predictions and has garnered increased attention in the literature [10–12].
In drilling and completion operations, the impact of the AFPL on the ECD is significant
because it provides the total pressure loss at the wellbore. Other factors that influence ECD
include the presence of drill cuttings in the wellbore and the depth and diameter of the
wellbore. The surge pressure is also controlled during drilling to ensure safe operations and
speed up pipe tripping [13,14]. Controlling the well pressure and ECD is a critical aspect of
drilling horizontal wells. Precise and frequent measurement of the rheological parameters
of the drilling fluid is crucial for effective hydraulic control. Moreover, intelligent drilling,
which utilizes information on the drilling fluid to create an optimization model for the
ROP, is crucial. Proper drilling fluid designs can enhance drilling efficiency and minimize
incidents. Nevertheless, laboratory testing is still the primary method used to determine
the drilling fluid’s qualities [13,14].

Real-time measurement of drilling fluid characteristics is crucial for drilling engineer-
ing to ensure efficient decision making and the optimization of drilling fluid performance.
Failure to identify the properties of the drilling fluid and react in time can result in slower
rates of penetration, accidents, and significant financial losses. Laboratory testing alone is
not sufficient because it impedes the optimization of drilling fluid performance in real-time
conditions. Maintaining optimum mud pressure throughout all operations is one of the
prerequisites and techniques to reduce failures and unproductive time, particularly in
drilling operations where issues tend to arise more frequently [15]. Due to its potential to
cause major drilling issues, ECD management is one of the most critical factors, and opti-
mizing the relevant parameters is essential. When designing and drilling extended-reach
wells, managing ECD is a vital consideration. High ECD can cause significant drilling
complications, making it crucial to manage this factor carefully [15]. A major drilling issue,
such as borehole instability, is also brought on by ECD variation, which is followed by
the repetitive creation and erosion of the cuttings deposit bed in drilling extended-reach
wells. ECD may swing between high and low readings during drilling and circulation.
Lowering the penetration rate or cutting the circulation duration can also reduce ECD
volatility. High ECD was caused by insufficient mud circulation, especially when there
was a high penetration rate, even though long circulation times caused ECD to fluctuate.
Accurate ECD may result from knowledge of the borehole condition [15–17]. Many studies
have been conducted to predict borehole conditions. Zuo et al. developed a new model to
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characterize downhole reservoir fluid by decontaminating the effect of oil-based mud [18].
In addition, Gonzalez et al. also showed how to estimate viscosity and density using
mechanical oscillators based on tuning forks in various scenarios [19]. The logging-while-
drilling (LWD) acoustic and formation pressure tools have been used by Freitag et al. to
predict the pore pressure and then discuss the gathering of seismic data while drilling [20].
A real-time pressure monitoring solution was provided with an integration technique of
LWD and look-ahead vertical seismic profile (VSP) to drill and complete well LD10-C
safely [21]. Alkinani et al. predicted ECD prior to drilling by using an artificial neural
network (ANN) [22]. Five efficient artificial intelligent models, including Bayesian ridge
regression (BRR), K-nearest neighbors (KNN), support vector machine (SVM), decision
tree (DT), and adaptive boosting regressor with decision tree (ABR-DT), were proposed
for estimating mud weight based on a databank of 817 data points from five wells in the
South Pars gas field [23]. Wang et al. proposed research on the application of the ensemble
gradient boost decision tree (GBDT) to develop a robust model that can be used to precisely
predict the occurrence of lost circulation [24]. Table 1 provides a summary of the other
relevant literature related to borehole prediction.

Table 1. Literature review related to borehole prediction.

No. Outcomes Measured Summary Ref.

1 • Pressure
The pressure-while-drilling measurement in real time can assist to
avoid some drilling problems. [25]

2 • Dynamic viscosity
• Density

The dynamic viscosity and density of the ice-chips and
drilling-fluid mixture are required to calculate circulation
parameters.

[26]

3 • ECD
• Cuttings transport

High equivalent circulating density may cause serious drilling
problems in extended-reach drilling. [27]

4
• Risk of differential pressure

sticking and drilling mud leakage
in reservoir and cap formation

The risk of differential pressure sticking and drilling mud leakage
in reservoir and cap formation were both increased in depleted
oilfields drilling.

[28]

5
• ECD
• Temperature
• Wellbore pressure

The geothermal gradient and flow rate were the most influential
parameters on the temperature and ECD distribution in the
wellbore of the first medium-deep geothermal well.

[29]

6 • Equivalent circulating density The wellbore trajectory may have a major impact on well design. [30]

7 N/G
Applied managed pressure drilling (MPD) to reach the target depth
in tight gas reservoir by zero nonproductive time (NPT). [31]

8 • Fracture pressure
Implement fracture pressure model and design the ECD to avoid
the well control problems and lost materials. [32]

9
• Formation fluid
• Formation collapse
• Fracture pressure

Utilized pressure while drilling (PWD) to reduce drilling risk by
maintaining the ECD and mud weight in the safe zone. [33]

10
• ROP
• Concentration of cuttings
• Mud flowrate

The ROP, concentration of cuttings, and flowrate have influenced
the ECD and pressure loss. [13]

11 • Newtonian fluid
• Non-Newtonian fluid

The study was examined using the Couette viscometer, pipe
viscometer, and mathematical/physical/AI based on marsh funnel
and acoustic technology to estimate the real-time rheological
properties of drilling fluid.

[15]

12
• Density
• Temperature
• Pressure

Predicting the density of drilling fluid by using some
computer-based calculations. [34]

More importantly, ANNs have been employed in some studies to predict rheological
properties. As an example, Elkatatny et al. constructed a mathematical model to predict
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the properties by only using mud density, marsh funnel, and solid content [35]. Elkatatny
also used three previous estimations by developing an empirical equation based on KCl-
polymer measurements [36]. On the other hand, Gomaa et al. constructed an empirical
model that is suitable for ultradeep gas well drilling [7]. Alkinani et al. utilized the ANN
model to predict ECD before drilling [37]. In addition to a prior ANN model, Gamal et al.
combined robotic tools with an adaptive neuro-fuzzy interference system (ANFIS) model to
predict ECD by only using the surface-drilling parameters [38]. Moreover, Ahmadi (2016)
used the least square support vector machine (LSSVM) and ANFIS to predict rheological
fluid at high-pressure and high-temperature (HPHT) conditions [39].

Other computer intelligences, such as SVM, random forest (RF), and functional net-
work (FN), have been applied by Alsaihati et al. to predict ECD in high-pressure and
high-temperature wells [40]. Rahmati and Tatar estimated the density of drilling fluid
by using the radial basis function (RBF) under HPHT conditions [41]. Then, Xianming
organized the well pressure and ECD in real-time correction by analyzing some drilling
parameters [42]. Table 2 shows several studies that utilized artificial intelligence as a
prediction tool.

Table 2. Summary of recent studies using AI as a prediction tool.

Input Parameter Model Used Data The Average Absolute
Percentage Error R2 Ref.

1
- PV
- YP
- AV

- ANN 9000 Ranges from 1–5 of 60 N/G [35]

2

- GPM
- ROP
- RPM
- SPP
- WOB

- ANN
- ANFIS

3570 - 0.30%
- 0.69%

- 0.98
- 0.96

[38]

3

- YP
- PV
- AV
- Flow behavior

index
- Consistency

index

- ANN 1200 - Less than 8% - 0.96 [7]

4 - Pressure
- Temperature

- SVM
- FN
- RF

1152
- 0.23
- 0.42
- 0.35

- 0.99
- 0.99
- 0.95

[40]

5

- PV
- AV
- YP
- Flow behavior

index
- Consistency

index

- ANN 3000 Less than 6% - [36]
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Table 2. Cont.

Input Parameter Model Used Data The Average Absolute
Percentage Error R2 Ref.

6

- Flow rate
- Mud weight
- PV
- YP
- TFA
- RPM
- WOB

- ANN 2000 N/A - 0.982 [37]

7
- Pressure
- Density
- Temperature

- PSO-
ANFIS

- ANFIS
- LSSVM

N/G
- N/G
- 35.002
- 0.000145

- 0.869
- 0.8502
- 0.999

[39]

The findings presented in this study demonstrate the capability of the AI model to
predict wellbore conditions in real time. Moreover, the reviewed literature has shown
that various models have been developed and used to predict mud weight and equivalent
circulating density. The Alsaihati [40], Zheng [29], and Xianming [42] models were among
those used for ECD prediction, while [23,27,33] were used for MW prediction. However,
the reviewed studies did not consider several critical factors that significantly affect drilling
operations. These factors include cuttings features, drilling mechanical parameters, well
trajectory profiles (which contain inclinations and azimuths), and fluid rheological prop-
erties, along with calculated cuttings slip and annular velocities. While some expensive
tools are available for measuring these parameters, they have operating limitations such
as pressure, temperature, and tool failures. More importantly, the literature review also
revealed significant discrepancies between actual drilling hydraulic values and those pre-
dicted by previously accepted mathematical equations. To improve the accuracy of drilling
hydraulic calculations, other factors, such as pipe eccentricity, wellbore roughness, pressure
and temperature, and pipe rotation speed, can be further improved by optimizing the input
parameters utilized. Therefore, the novelty of this paper lies in the development of novel
models for calculating the equivalent circulating density and the modified mud weight
effective. The ECD model takes into consideration parameters such as standpipe pressure
(SPP), rate of penetration (ROP), drill string rotation (RPM), mud properties including
the modified PV, YP, and low shear yield point (LSYP), angles of borehole and azimuth,
modified average cuttings concentration in an annulus, modified hole geometry factor, and
other factors. Moreover, the modified mud weight effective model considers the circulation
and rotation influence, modified average cutting concentration in an annulus, and the
modified hole geometry factor. More importantly, to enhance the model’s performance,
the study employs novel methodologies by utilizing artificial neural networks (ANNs) in
conjunction with support vector machines (SVMs) and decision trees (DTs). The study aims
to estimate ECD using both ANN and SVM models, and predict mud weight using DT. The
accuracy of these models has been validated using actual data to confirm their reliability
in real-time drilling operations. The novel models for ECD and modified mud weight
effective, in conjunction with the use of ANN, SVM, and DT models, represent significant
advancements in the field and have the potential to improve the safety and efficiency of
drilling operations. The flowchart of the work with the utilized AI to predict the ECD and
MW is shown in Figure 1.
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1.1. Drilling Fluid Rheology and Hydraulic

Rheology and fluid hydraulics are important aspects of drilling operations. Rheology
refers to the study of the flow and deformation of materials, including drilling fluids, and
hydraulics refers to the study of the movement of fluids, including mud, in the drill table
system, which utilizes pipes, valves, and pumps to circulate drilling mud, remove cuttings,
cool drill bits, and lubricate the drill string. The rheology of the drilling fluid affects its
ability to transfer pressure to the wellbore walls, casing efficiency, wellbore wall stability,
and pump performance. The rheological properties of drilling fluid, such as PV, YP, gel
strength, and density, can vary with composition and temperature. As an example, if
you raise the PV of a fluid, it will cause several effects. These include an increase in the
ECD, surge and swab pressure, and the likelihood of differential sticking due to more
solids in the fluid. Furthermore, increasing the plastic viscosity will result in a reduction
in the rate of penetration due to bad hole cleaning [43,44]. Fluid hydraulics includes
the study of fluid pressure, flow, and velocity in the drill table system. The hydraulic
properties of the drilling fluid affect the efficiency of various operations, such as mud
flushing, drilling, and circulation. For example, properly tuned hydraulics can prevent
blockages and ensure efficient waste removal. Thus, mud rheology and hydraulics are
important aspects of drilling operations that need to be considered when planning and
executing drilling operations [35].

1.2. Sensors of Technological Process Parameters ECD and MW during Drilling

Drilling rigs are complex machines that require a variety of sensors to monitor and
control the drilling process. These sensors provide real-time data on different aspects of the
drilling process, including hole cleaning, drilling speed, and tool performance, which are
essential for efficient and safe operations (see Table 1) [45]. Moreover, the implementation
of software systems by service companies, operators, and rig contractors has transformed
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the capture of drilling and well-service operations and equipment data. Through elec-
tronic data capture, real-time data are readily available and provide significant value to
the industry. The availability of real-time data empowers asset team members to make
informed decisions promptly, resulting in more profitable wells for the operator. Surface
parameters are fundamental to drilling and well-service operations, and the following
parameters are commonly measured: hookload, weight on bit (WOB), ROP, Kelly or stand
height (pressure), surface torque, revolutions per minute, pump pressure, pump flow rate
(GPM), pump speed, and pit volumes. The accurate measurement and analysis of these
parameters are crucial in optimizing drilling and well-service operations. One important
sensor used in drilling operations is the measurement-while-drilling (MWD) sensor. MWD
sensors collect data on downhole parameters, such as inclination, azimuth, and toolface
orientation. These data are transmitted to the surface, allowing drillers to make informed
decisions about the drilling process and optimize hole cleaning. Another important sensor
is the WOB sensor, which measures the force applied to the drill bit during drilling. This
information helps operators optimize drilling parameters, such as drilling speed and bit
rotation, ensuring efficient hole cleaning and minimizing the risk of bit damage or stuck
pipe. The logging-while-drilling (LWD) sensor provides real-time measurements of for-
mation properties, such as resistivity, porosity, and density [46]. These data are used to
evaluate the reservoir, optimize drilling parameters, and monitor hole-cleaning efficiency.
The rate of penetration (ROP) sensor measures the speed at which the drill bit penetrates
the formation [45,46]. By monitoring ROP, drillers can optimize drilling parameters, such
as weight-on-bit and rotational speed, to maximize hole cleaning and drilling efficiency.
Mud weight sensors measure the density of the drilling fluid, or mud, which is critical
for maintaining wellbore stability and efficient hole cleaning. By monitoring mud weight,
operators can make necessary adjustments to the drilling fluid properties, ensuring optimal
drilling conditions. All of these sensors work together to provide a comprehensive picture
of the drilling process, allowing operators to make data-driven decisions that optimize
drilling performance and ensure effective hole cleaning. The data collected from these
sensors are transmitted to drilling control centers, where they are analyzed in real time
to make adjustments to drilling parameters and ensure safe operations. Moreover, the
ECD and mud weight MW are crucial for safe and efficient drilling operations. The ECD
sensor measures the density of the drilling fluid or mud during circulation. It takes into
account the weight of the mud, the pressure drop across the bit, and the velocity of the
fluid. The ECD value is critical for maintaining wellbore stability, as excessive ECD can
cause formation damage or even lead to wellbore collapse [6]. The MW sensor measures
the density of the drilling fluid or mud in the mud pit. It provides an indication of the
mud weight being used and is critical for maintaining wellbore stability and efficient hole
cleaning. If the mud weight is too low, it may not be able to carry cuttings out of the bore-
hole, leading to blockages and reduced drilling efficiency. If the mud weight is too high, it
may cause formation damage or lead to lost circulation. By monitoring these parameters,
drilling operators can ensure that the borehole is being drilled safely and efficiently. The
data collected from these sensors are transmitted to drilling control centers, where they
are analyzed in real time to make adjustments to drilling parameters and ensure optimal
drilling conditions [45,46]. An overview of the kinds of information typically gathered by
surface and downhole sensors is shown in Table 3.

However, the quality of the data produced by the rig sensors or downhole sensors has
a considerable influence on the dependability and accuracy of real-time drilling conditions.
Conventional sensors may not always be sufficient to deliver the data necessary to run
some models in real time, which can impede drilling teams’ ability to immediately modify
courses to prevent or decrease hole-cleaning concerns [47,48]. Drilling parameters, which
are modified in real time, are crucial. These modifications have an impact on surface
operating parameters such as ROP, flow rate, RPM, and WOB. There may or may not be a
distinction between real-time and non-real-time parameters, depending on how real-time
is defined.
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Table 3. An overview of the kinds of information typically gathered by surface and downhole sensors.

Type of Sensor Surface Data Downhole Data

Mud sensor

Pit volume
Mud temperature

Mud pressure
Mud weight

Pump strokes

N/A

Well sensor Temperature Pressure
Gas measurements

Temperature
Pressure

Directional sensor N/A Inclination

Drilling mechanics

RPM
Weight on bit

Torque
Bending moment

Rotary torque
Hook load

Rate of Penetration

RPM
Weight on bit
Torque on bit

Bending moment Downhole vibration

Geological sensor Cuttings analysis
Density porosity

Resistivity
Gamma

More significantly, it is essential to manage the wellbore pressure, control the formation
pressure, and prevent kicks when drilling deep wells. ECD is particularly essential in for-
mations when the pore pressure and fracture pressure are narrow windows. However, the
existing methods for detecting ECD utilizing downhole sensors can be costly and constrained
by operating restrictions such as high pressure and temperature. Therefore, to address this
difficulty, the following section discusses two unique models named ECDeffc.m and MWeffc.m
with techniques designed to forecast ECD and MW from surface-drilling data, including
standpipe pressure, rate of penetration, drill string rotation, and mud characteristics.

2. Methodology

The methodology discusses the data analysis, feature selection, splitting data, model
selection, which are ANN, SVM, and DT, which is a simple and efficient algorithm for large
datasets and is easy to visualize, and the quality control and quality assurance (Qc & QA) of
the models. This section provides a detailed explanation of the selection models, real-time
factors, and workflow involved in applying computer-based intelligence to predict ECD
and MW.

2.1. Artificial Neural Network (ANN)

ANNs have the capacity to estimate complicated nonlinear functions that exist between
input and output parameters, as claimed by Fausett in 1994 [49]. The three major parts of
the ANN are a learning algorithm, a transfer function, and a network design with at least
three layers (input, hidden, and output). ANNs are made up of simple processing units
called neurons. Each layer of the hidden structure, which may have one or more layers, is
related to the others by weights. The change in these weights between the layers affects
the network’s performance. The ANN is first trained by feeding data into its input layer,
then via any necessary hidden layers, and, ultimately, to its output layer. The output layer
compares the data to the real data. Moreover, the model training should continue for the
full dataset until the average error is below a predetermined threshold. The process of
updating the specific weights and biases between each layer link in the model during each
epoch is known as using the difference between actual and forecasted data [35]. The ANN
approach was chosen for this study above other artificial intelligence network techniques
because it can generate extremely precise mathematical equations. Additionally, the ANN-
developed models are relevant on the rig site since they can be utilized by everyone without
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the requirement for specialized software [49]. Figure 2 shows a general schematic diagram
of the ANN.
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2.2. Support Vector Machine (SVM)

The first iteration of SVM was developed at AT&T Bell Labs, and, in 1997, H. Drucker
and colleagues introduced support vector regression (SVR). SVR shares many similarities
with SVM, and its structure is designed to estimate a function that maps input to a numerical
output [50]. In comparing the two, SVM does not penalize points far from the hyperplane
in classification problems if the class is predicted accurately, while SVR penalizes all points
outside the margin to obtain a function that closely approximates target points. SVR only
considers errors greater than a specified threshold. Generally, in classification problems
with nonlinearly separable data, kernel functions are used to transform the data into a
higher-dimensional feature space, enabling linear separation. In regression scenarios,
kernelization is applied for nonlinear SVR [51–54]. Figure 3 shows the execution of an SVM
classifier on a dataset containing two classes and two features (linear SVR).
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2.3. Decision Tree (DT)

DTs are predictive modelling tools used in a number of different domains. They are
typically constructed using an algorithmic approach, which defines ways of partitioning a
set of data based on different conditions [55]. It is one of the most widely used and practical
methods of supervised learning. Decision trees are nonparametric teacher-assisted learning
methods used for both classification and regression tasks [56]. The goal is to create a model that
predicts the target feature by learning simple decision rules derived from the characteristics
of the data [56]. Establishing a stopping condition that stops the data splitting procedure is
crucial to avoiding overfitting in decision trees. The internal node serves as the intermediary
in this process, which starts at the root node. The stopping condition can be specified in a
variety of ways, such as defining a maximum depth for each leaf, a minimum number of
samples required to split an internal node, and a minimum number of samples needed to split
a leaf node, and restricting the number of features that are taken into account when looking
for the best split. The decision tree’s complexity is decreased, and the risk of overfitting is
minimized by putting these constraints in place. The tree will keep splitting if there is no
stopping condition, creating a complicated decision tree [23].

2.4. Field Data Description

The primary objective of the study is to achieve real-time prediction of mud weight
(MW) and equivalent circulating density (ECD) during drilling operations with the aid
of artificial intelligence (AI). This approach is intended to enhance drilling efficiency by
providing accurate and reliable results. To achieve this goal, the study utilized a large
dataset, which includes 4371 records for ECD and 33,588 records for MW from offshore
gas Deviated Well-A, offshore oil Deviated Well-B, and horizontal oil Well-C. The interval
between X3000 and X4200 ft was chosen for the application of AI and the two novel
models due to its abundance of accurate and essential data. This interval was deemed
sufficient because it contained all the necessary information without any missing data. By
selecting this specific interval, the study was able to ensure the accuracy and reliability of
their analysis while optimizing the use of resources and time. This approach allowed the
researchers to focus on the most relevant and significant data, thereby enhancing the overall
quality and validity of their findings. More importantly, the study considered various
parameters to determine the density of drilling fluid, including rheological properties such
as plastic viscosity and yield point, which were assessed using a rheometer at 48 ◦C and
standard atmospheric pressure. Additionally, Marsh funnel viscosity was evaluated using a
Marsh funnel at room temperature and ambient pressure, and the percentage of solids was
measured using a mud retort to evaporate the liquid phase and gather the remaining solids.
Other vital parameters, such as mud pump flow rate, rate of penetration, and standpipe
pressure, were also recorded.

The dataset was split into a training set (80%) and a testing set (20%), with the random
state set to 42 to ensure consistency in the training and testing sets across different execu-
tions. The split ratio of 80:20 was chosen because it is the most common ratio, and, since
hyperparameter tuning was performed, a validation set was not deemed necessary.

The study utilized three models, namely, decision tree (DT), artificial neural network
(ANN), and support vector machine (SVM), implemented in Python to predict MW and ECD.
The description of the three models to predict the ECD and MW is described as follows:

a. Equivalent circulating density (ECD) prediction

For ECD prediction, the correlation between ECD-PWD (pound cubic feet (PCF)) and
several features, such as SPP (psi), LSYP, and GPM, was analyzed. ECD-PWD (PCF) had
the strongest positive correlation with GPM (0.951726), and the other features also had a
positive correlation with ECD-PWD (PCF), with values larger than 0.7.

b. Mud weight (MW) prediction

For mud weight prediction, the dataset was analyzed to find the correlation between
the mud density suction and GPM. It was found that the mud density suction has a positive
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correlation with depth (0.864299). The dataset was split into an 80% training set and a 20%
testing set (not random).

2.5. Validation of the Developed Correlations

The study aims to present a real-time prediction of MW and ECD using intelligence
retrieval or AI to maximize drilling efficiency. Figure 4 shows the workflow of the applica-
tion of computer-based intelligence to predict ECD and MW. The collected data required
for this research were analyzed, and the features in the input were selected. The correlation
between the estimated values and the real values was calculated.
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Data analysis, feature selection, data splitting, model selection, and Qc & QA of the
models are covered in the process. There are many factors that affect the efficiency of
machine-learning models for predicting the success of learning, including the following:

• The size of data. The more data added, the higher the accuracy and trust in the results.
The size of the ECD data is 4371, and the size of the mud weight data is 33,588.

• Impacts of predictability depend on feature/input selection in the data. The variables
with a high correlation coefficient value were selected, and the variables with a lower
correlation coefficient value were dropped. For the ECD-PWD (PCF) target, GPM
(gal/min), SPP (psi), and ROP (ft/h) have strong positive correlations of 0.864299,
0.803474, and 0.729802, respectively, whereas mud density suction with depth has a
strong correlation of 0.574443.

• Choosing the best machine-learning algorithm that fits the AI Project. The MW did
not work with ANN and SVM, while estimating the ECD had a good result by using
ANN and SVM models; however, real-time MW prediction worked successfully with
the DT.
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• The coefficient of determination (R2), mean squared error (MSE), and mean absolute
error (MAE) statistical metrics were used to evaluate ML prediction performance in
this work.

Data Analysis and Feature Selection

The study found that mud density suction has a positive correlation of 0.864299 with
GPM for MW prediction. This indicates that, as the mud density suction increases, the GPM
also increases, resulting in a higher mud weight. Similarly, for ECD prediction, the study
found that ECD-PWD (PCF) has the strongest positive correlation of 0.951726 with GPM.
This indicates that, as the GPM increases, the ECD-PWD (PCF) also increases, resulting
in a higher equivalent circulating density. The features selected for MW prediction are
GPM, ROP, PV, YP, and LSYP, and the target variable is MW. The features selected for ECD
prediction are GPM, ROP (ft/h), SPP (psi), MW (PCF), PV, YP, and LSYP, and the target
variable is ECD-PWD (PCF). Figure 4 shows that the ANN diagram for ECD represents a
distributed processing system consisting of neurons that are connected nodes that receive
input, process the data, and provide an output.

The Sklearn library [57] has been used for the decision tree regression model by
applying MW prediction and hyperparameters, including tuning the max depth to 7 to
return the maximum depth of the tree and setting the criterion to the squared error for the
mean squared error, and is used to measure the quality of a split by minimizing the L2 loss
using the mean of each terminal node. The coefficient of determination (R2) value is 0.94,
and the accuracy MW is 94%. The MSE value is 0.08.

ANN model

The TensorFlow library [58] has been used for ANNs with hyperparameters consisting
of one input layer with seven neurons and a rectified linear unit (ReLU) activation, one
hidden layer with fourteen neurons and a ReLU activation, and one output layer with one
neuron. The Adam algorithm has been implemented for the optimizer to update network
weights during training. The accuracy of the ANN model is 99.47%.

Support vector machinemodel

The Sklearn library [57] has been used for SVM, with hyperparameter tuning to rbf
kernel, C to 100.0, and epsilon to 1. The R2 value is 0.99, and the MSE value is 2.02. The
prediction of the ECD-PWD (PCF) plot is precise and reaches 99.2% accuracy.

Qc & QA

The best model is selected by testing the dataset and applying different models.
Hyperparameters have been tuned, and the models have been tested many times to ensure
the models’ accuracy. Its correctness has been checked by measuring the correlation
between the calculated and real data [59].

2.6. Mathematical Development of the Model for the ECDeffc.m and MWeffc.m

The two novel developed models MWe f f .m and ECDe f f .M were obtained starting from
the effective mud weight (MW e f f ) calculated using Equation (1) [60], where MW is the
static drilling fluid density (lb/cf) and CCA(CCAAPI) is the cuttings concentration in an
annulus as defined by Equation (2) [2,61].

MWe f f = MW·CCAAPI + MW (1)

CCAAPI =
ROP·OH2

1471·GPM·TR
(2)

where ROP denotes the rate of penetration (ft/h), OH is the diameter of the hole (inch),
1471 is the conversion factor to convert a GPM into gallons per minute, GPM is the flow rate
of the mud pump (gal/min), and TR is the transport ratio, which can be substituted with
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0.55 in accordance with [61]. Furthermore, the ECD is determined based on the MWe f f in
real time (PCF). To be precise, Equation (3) can be utilized to calculate the ECD [60].

ECD = MWe f f +

((
0.085

OH − ODpipe

)
·
(

YP +
PV Vann

300
(
OH − ODpipe

)))·7.481 (3)

where OD is the outer diameter of the drill pipe (inch), PV is the plastic viscosity
(PV = R600 − R300) (CP), YP is the yield point (YP = R300 − PV) (lb/100 sqft), and
Vann is the annular velocity of the drilling fluid (ft/min) as defined by Equation (4).

Equation (6) is used to determine the Vann [62]:

Vann =
24.5GPM

OH2 − ODpipe
2 = Vcr + Vsc (4)

where Vcr is the cutting rise velocity (ft/min) and Vsc is the cutting slip velocity with the
effect of the rate of penetration (ft/min).

The LSYP is a crucial parameter that indicates the minimum force required to initiate
fluid movement in the wellbore, which equals LSYP = 2R3 − R6 [5]. It is vital to ensure
that the drilling fluid can effectively suspend and transport cuttings out of the wellbore.
Consequently, it is essential to take LSYP into account along with PV and YP to ensure
that the drilling fluid system is optimized for efficient and safe drilling operations. This
will help prevent operational challenges and ensure that the drilling process is carried out
smoothly and effectively. From Equation (3), ECD can be modified as follows based on PV
and YP (Equations (5) and (6)) [63]:

PVm = (R600 − LSYP)− (R300 − LSYP) (5)

YPm = 2(R300 − LSYP)− (R600 − LSYP) (6)

where R600 represents the Fann reading viscometer at 600 RPM, and R300 represents the
Fann reading viscometer at 300 RPM. More importantly, the consistency factor (cP) and the
flow behavior index, represented by k and n, respectively, are of utmost importance. These
values need to be optimized for specific drilling conditions to ensure that the borehole is
cleaned efficiently. If the values of k and n are not carefully monitored, the drilling fluid
may struggle to suspend and transport cuttings out of the wellbore, leading to significant
operational challenges. It is therefore crucial to keep a close watch and adjust the values of
k and n to ensure that the drilling fluid system is functioning optimally. Therefore, the km
and nm factors can be modified and obtained from Equations (7) and (8) to consider the
viscometer reading at 600 RPM, 300 RPM, 6 RPM, and 3 RPM of PVm, YPm, and LSYP [5].

k = ((PV + YP))(510)1−n = km = ((PVm + YPm)− (LSYP ))(510)−nm (7)

n = 3.32log
(
(2PV + YP)
(PV + YP)

)
= nm = 3.32log

(
(2PVm + YPm)− (2R3 − R6)
(PVm + YPm)− (2R3 − R6)

)
(8)

where R6 represents the reading viscometer at 6 RPM, and R3 represents the reading viscome-
ter at 3 RPM. The Vann in Equation (4) represents the original annular mud velocity applied in
the vertical hole section alone; Vann is given as a function of GPM, OH, and OD. The modified
annular velocity (Vann.m), as defined in Equation (9), depends on the weight and flow rate of
the drilling fluid, the size of the drilled hole, the outer diameter of the drill pipe, the rate of
penetration, the rotation of the drill string, the plastic viscosity, the yield point, the viscometer
readings at 600, 300, 3, and 6 rpm, the wellbore inclination, and the azimuthal directions [63].
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Vann.m =

(
24.5·GPM

OH2−ODpipe
2 cos(α)

+

 60(
1−
(

ODpipe
OH

)2
)
(0.64+ 18.2

ROP )
+

ROP(OH2)
60(OH2−ODpipe

2)

 sin(β)


−

175(dcm)

(
Wc

7.481−
MWeff
7.481

)2nm

(MWeff /7.481)
nm
(

2.4·Vann.dp
OH−ODpipe

( 2nm+1
3nm )

(
200Km(OH−ODpipe )

Vann.dp

)nm

(9)

where Wc is the cutting density, which can be obtained as Wc =
(

MWe f f CCA + MWe f f

)
+

(1 − CCA)MWe f f according to [47,64]; α is the borehole angle (degrees); β is the azimuth
angle (degrees); dcm is the modified cutting diameter, which can be obtained as follows:
dcm = 0.2· ROP

RPM+xGPM , in accordance with [60], where the specification of the mud motor, such
as the revolution per gallon ratio (x) and GPM of the mud pump flow rate, can be calculated
while determining dcm; and Vann.dp is the annular velocity across the drill pipe and can be

calculated as follows: Vann.dp = 24.5(GPM)

OH2−ODpipe
2 , in accordance with [5,8,60].

More importantly, Newit developed a more precise model for steady-state lifting of
materials in a vertical tube by utilizing Equation (2), which can be referenced in Equa-
tion (10) [61]. Mitchell presented evidence that an annular concentration model can be
developed by considering both the circulation that occurs after drilling has stopped but
before a connection is made and the circulation that occurs after a connection but before
drilling resumes. The period referred to as preconnection circulation is also known as
later circulation. Equation (11) describes the Mitchell’s cutting concentration in an annulus
(CCA 2) [60,61].

CCA1 = −1
2

(
Vann.m

Vsa
− 1
)
+

(
1
4

(
Vann.m

Vsa
− 1
)2

+
Vann.m

Vsa

Vc
GPM
7.48

)0.5

(10)

CCA2 =
1

1 +
(

1 − OD
OH

)(
Vann.m−Vsa

30

)(
1800

1+ROP + Vsa
Vann.dc−Vsa

·TPC

) (11)

where Vann.m is the annular modified velocity of the drilling fluid (ft/min) (Equation (9));
Vann.dc is the annular velocity across the drill collar (ft/min), which can be obtained as
Vann.dc = 24.5(GPM)

OH2−ODc
2 ; TPC is the preconnection circulation time, which indicates the time

needed to circulate the cuttings to a height that will prevent them from settling to the
bottom of the hole during that connection, which equals TPC = Vsa

Vann.m−Vsa
·TC; TC refers

to the time for making a connection (min); Vc is the volumetric rate of cutting entering
the annulus, which equals Vc = ROP·OH2

1100 (fpm); and Vsa is the average slip velocity of
drilling cutting (ft/min), which can be obtained from (12) [60,61]. Moreover, the Vsa can
be calculated by considering the axial and radial cutting slip velocities with the influence
of inclination and azimuth, as mentioned by Azar [65,66] and Robello [67]; therefore,
Vsa= Vsaa cos(α) +Vsar sin(β), where Vsar is the redial cuttings slip velocity (ft/min) and
Vsaa is the axial cutting slip velocity (ft/min).

Vsa = Vsaacos(α)+Vsar sin(β) =
Vs.m + Vsc

2
(12)

where Vs.m is the average drill cutting slip velocity (ft/min).
Vsc can be obtained from Equation (13). The Vs.m can be calculated from Equation (16),

which can be modified to present the influence of mud weight and is measured in ft/min
and other factors. Moreover, Vs.m contains the cutting velocities calculated based on
the weight cutting, drilling fluid’s effective viscosity, and rate of penetration [62,68–70].
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Furthermore, Hopkin demonstrated that the mud weight (Fm) can affect the slip velocity
and developed Equation (16) [71]. Therefore, Vs.m can be obtained from Equation (17)
by considering the influence of mud weight (Vs.mn). Furthermore, Equation (17) shows
that Vs1 and Vs2 represent the velocities that are determined by taking into account the
effective viscosity, apparent viscosity, weight, and diameter of the cuttings, which are also
considered in Equations (14) and (15) (ft/min) [60].

Vsc =
24.5 GPM

OH2 − ODpipe
2 − 60(

1 −
(ODpipe

OH

)2
)(

0.64 + 18.16
ROP

) (13)

Vs1 = 0.45

 Me f f(MWe f f
7.481 dcm

)
 36, 800

MWe f f
7.481 dcm

3
(

Wc
7.481 − MWe f f

7.481

)
Me f f

2

+ 1

0.5

− 1) (14)

Vs2 =

175(dcm)
(

Wc
7.481 − MWe f f

7.481

)0.667

(MWe f f
7.481

)0.333
Mapp0.333

 (15)

Vs.m = Vsc·Fm = Vsc·
(

2.117 − 0.1648MWeff
7.481

+ 0.003681
(

MWeff
7.481

)2
)

(16)

Vs.m =
Vs1 + Vs2 + Vsc

3
= Vs.mn =

(
Vs1 + Vs2 + Vsc

3

)
·
(

2.117 −
0.1648MWe f f

7.481
+ 0.003681

(MWe f f

7.481

)2
)

(17)

where Me f f is the drilling fluid’s effective viscosity, which can be calculated as
Me f f = PVm + 300YPm· dcm

Vann.m
and Mapp is the apparent viscosity, which can be calculated

as follows: Mapp =
(( 2.4·Vann.dp

OH−OD

(
2nm+1

3nm

)(
200Km(OH−OD)

Vann.dp

))nm
, in accordance with [60]. From

Equations (2), (10), and (11), the average CCAam can be obtained as shown in Equation (18).
Additionally, the new Vs.mn can be added to Equations (10) and (11) to obtain a more precise
average CCAam, which contains all the affect parameters and the velocity annular cutting for
the drill collar, the drill pipe, and connection time, as follows, in Equation (18) [61].

CCAam =
CCAAPI + CCA1 + CCA2

3
(18)

More importantly, the hole geometry factor, αm, is a crucial parameter because it
enables the simulation and evaluation of various types of well profiles with different hole
sizes and liner diameters (see Equation (19)). This is achieved by utilizing CCAam, which
can be generated while drilling on the wall of the hole size and is referred to as αm.c. By
modifying αm, it is possible to optimize well design and drilling operations to achieve the
desired outcomes. Different well profiles and hole sizes can affect the flow and transport of
fluids and cuttings, and, hence, it is important to consider the impact of these factors on the
drilling process. The hole geometry factor enables engineers and researchers to evaluate
and compare different well profiles and drilling scenarios, thereby enabling the selection of
the optimal design and drilling parameters for a specific application [72].

αm.c = αm + CCAam (19)

Furthermore, we consider the ratios of annular areas of the actual hole size and
evaluate ECD across all the annular areas. The ratios easily show how the cuttings move
through all hole sizes and profiles (see Equation (20)). Moreover, according to [62], to
consider the ECD evaluation through different annular area geometries between hole size,
casing inner (IDcsg), liner inner diameter (LineID) size, drill collar (ODc), and drill pipe,
Equation (20) shows that all these different diameters influence the ECD (see Figure 5).
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Additionally, the circulation and rotation influence on the annulus of the hole section (CRF)
was considered according to [73]. The CRF is a measure of the efficiency of the drilling
fluid in transporting cuttings out of the wellbore and preventing accumulation of cuttings
based on circulation and rotation influence [73].

1
αm

=

(
OH2 − ODc2

OH2

)
+

(
LineID

2 − OD2

OH2

)
+

(
ID2

csg − OD2

OH2

)
+

(
OH2 − OD2

OH2

)
(20)

CRF =
((1 + GPM)− (1 + RPM))

((1 + GPM) + (1 + RPM))
(21)
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Equations (19)–(21) can be utilized and added to Equation (1) to obtain the modi-
fied mud weight effective MWe f f c.m (see Equation (22)). Ideally, according to [72], αm.c
was added to ECDe f f c.m and multiplied only by Vann.m. Accordingly, the final modified
ECDe f f c.m can be obtained from Equation (23).

MWe f f c.m =
(

MW·CCAam·
( αm.c

CRF

)
+ MW

)
(22)

ECDe f f c.m = MWe f f c.m

+
((

0.1
OH−ODpipe

)
(YPm

+ PVm(αm.c)(Vann.m)

300(OH−ODpipe)

)
)7.481) ( SPPx

SPP1
)(

Depth1
Depthx

))

(23)

where SPPx is the current real-time measurement of stand pipe pressure (SPP) (psi), SPP1 is
the first SPP when ROP > 1 or the reading of SPP on the last casing shoe depth (psi), Depth1
is the start measured hole depth (ft), and Depthx is the current measured hole depth (ft).
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Ideally, ECDe f f c.m takes into account the additional friction pressure loss and incre-
mental depth in directional wells in the annulus and provides a more accurate measure
of the pressure and depth exerted on the wellbore and the formation (see Equation (23)).
MWe f f c.m takes into account the hydrostatic pressure exerted by the mud on the wellbore
and the formation and provides a more accurate measure of the mud weight required to
maintain wellbore stability and prevent formation damage (see Equation (22)). The two
equations were developed as a novel model that can be used for real-time evaluations
and applied in various profiles, such as deviated and horizontal wells, and included other
important parameters, such as LSYP, to evaluate the hole-cleaning efficiency in deviated,
highly deviated, and horizontal laterals while drilling.

3. Results and Discussions

In order to maximize drilling efficiency in field applications, this section permits real-
time prediction of the above two novel models for ECDeffc.m and MWeffc.m while drilling,
combining AI and the suggested drilling control automation. The method offers precise
and timely forecasts, enabling the best changes to be made while drilling operations are
being conducted. With the help of this technology, drilling teams may increase operational
effectiveness and decrease downtime, which will, ultimately, result in cost savings and
enhanced drilling performance.

3.1. Field Applications Using the Novel Models ECDeffc.m and MWeffc.m

The application of the novel models ECDeffc.m and MWeffc.m in maximizing drilling
efficiency has been proven in field applications. These models allow drilling crews to make
knowledgeable judgements and modify their drilling operations in real time because they
provide precise and fast estimates of ECDeffc.m and MWeffc.m. The end effect is greater
safety, less downtime, and higher efficiency, which, ultimately, boosts oil and gas drilling
and production performance and lowers costs. The effective use of these models in the field
demonstrates their potential as useful tools for increasing drilling operations’ efficiency
and the sector as a whole. Figure 6a demonstrates that the ECDeffc.m model projected an
ECD of 69.8 PCF in Well-A at a depth of X3000 ft, but the ECD-PWD was actually measured
at 68 PCF. However, the model showed remarkable accuracy in forecasting the ECD at
depths ranging from X3296 to X4200 ft. Similar ECD values were predicted by the ECDeffc.m
model in Figure 6b,c, further proving its applicability and accuracy. These findings shed
important light on the effectiveness of the innovative ECDeffc.m model and its potential to
raise the precision of ECD forecasts made during drilling operations.
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Figure 7 shows the application of the novel model MWeffc.m in three wells with
different profiles and drilling fluids. Figure 7a illustrates that the novel model for MWeffc.m
produced similar results, except for depths ranging from X3400 to X3669 ft and X3931
to X3996 ft, which showed less accuracy. However, for wells B and C, the MWeffc.m
model demonstrated almost identical results (Figure 7b,c). These findings suggest that the
MWeffc.m model can be a valuable tool for predicting MW in real-time drilling operations,
improving efficiency and safety while reducing downtime and costs. Further research and
refinement of the model could lead to even greater accuracy and precision in predicting
MW, ultimately enhancing performance in the oil and gas industry.
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Figure 8a and Table 4 show that the average accuracy statistical measures for the novel
model ECDeff.m were 0.06% and 0.29% for the MAE and MSE, respectively. Moreover, as
seen in Table 4 and Figure 8b, the average accuracy statistical measures for the novel model
MWeffc.m were 0.11% and 0.08% for MAE and MSE, respectively.
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Table 4. The accuracy statistical measures for the novel models MWeffc.m and ECDeffc.m.

Well Hole
Section Size

Hole Section
Type Mud Type MAE (MWeff.m)

(%)
MSE (MWeff.m)

(%)
MAE (ECDeff.m)

(%)
MSE (ECDeff.m)

(%)

A 12 Deviated OBM 0.09 0.04 0.05 0.09
B 12 Deviated OBM 0.18 0.15 0.07 0.50
C 8 1/2 Horizontal OBM 0.06 0.04 0.06 0.27

AVE 0.11 0.08 0.06 0.29

3.2. AI Applications Using the Novel Models ECDeffc.m and MWeffc.m

The subsection presented in this paper allowed for real-time prediction of MWeffc
and ECDeffc while drilling by using AI with the proposed drilling controlling automation
for maximizing drilling efficiency. Figure 9 shows how the AI ANN and SVM models for
predicting ECD-PWD (PCF) versus depth compare to one another. The findings show that
the predicted values and actual measurements match well together, proving the correctness
and potency of both models. This comparison offers insightful information about the
performance of the two models that may be applied to drilling operations optimization
and improved oil and gas production efficiency. Moreover, in Figure 10a–c, the accuracy
of the ECD-PWD (PCF) prediction using three different models, namely, ANN, SVM, and
ANN and SVM together, is presented. The results showed that the accuracy of the ANN
model was 99.47%, while the SVM model achieved an accuracy of 99.15%. The ANN and
SVM models had the highest accuracy at 99.63%. These findings suggest that the ANN and
SVM model may be the most effective approach for predicting ECD-PWD (PCF) with a
high degree of accuracy.
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For the MW-PWD in Figure 11, the results proved a good fit between the predicted
values and the actual measurements, demonstrating the accuracy and effectiveness of the
DT model.
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Figure 11 displays the outcomes of the DT-prediction-model-based MW-PWD. An
excellent match may be shown when comparing projected values to actual data, proving
the DT model’s accuracy and potency. This result is important because it offers insightful
information on the DT model’s performance, which can be utilized to optimize drilling
operations and boost the effectiveness of oil and gas drilling performance. Figure 12 shows
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that the DT model was accurate in predicting mud weight with R2 values of 0.94. The bias
and accuracy of the mud weight prediction model were found to be 99.86%.
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3.3. Comparison of Field Applications with AI Applications Using the Novel Models ECDeffc.m
and MWeffc.m

The comparison of field applications with AI applications using the novel models
ECDeffc.m and MWeffc.m showed the applicability in maximizing the drilling efficiency. As
seen in Figure 13a,b, the novel models ECDeffc.m and MWeffc.m provide highly accurate
results that closely match both the AI applications and field measurements (PWD). These
findings demonstrate the effectiveness of these models in real-time drilling operations,
where accurate predictions are essential for optimizing drilling efficiency and safety. The
successful implementation of these models can lead to significant cost savings and im-
proved performance in the oil and gas industry. Furthermore, the comparison between the
novel models ECDeffc.m and MWeffc.m and AI applications has shown that the former are
even more accurate. This is because AI applications require input data to predict the output,
which can be either ECD or MW. In contrast, the novel models ECDeffc.m and MWeffc.m are
designed to directly provide these outputs, eliminating the need for additional data inputs
and improving the accuracy of the results. This advantage allows these models to provide
more precise and reliable predictions, making them valuable tools for optimizing drilling
operations and improving the efficiency of oil and gas drilling performance.
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4. The Importance of Predicting the ECD in Real Time

The accuracy and efficiency of drilling operations are enhanced by real-time ECD
prediction. If the ECD goes beyond a certain threshold, it may harm the formation, induce
wellbore instability, or even result in well control problems such as kicks or blowouts.
Drilling engineers and operators can make quick judgements with the aid of real-time
ECD monitoring to avert these problems and expensive downtime. Additionally, real-time
ECD prediction can aid in improving drilling efficiency. Drilling engineers can maintain
ECD within the appropriate range by adjusting drilling parameters such as drilling fluid
flow rate and density by continuously monitoring ECD, which leads to enhanced hole-
cleaning efficiency and can lessen the chance of formation damage, shorten drilling time,
and improve drilling efficiency. As an example, the efficiency of hole cleaning can be
evaluated in real time by utilizing a novel model to predict certain parameters by [5]. This
real-time prediction can help prevent issues such as high drag, torque, and pipe sticking.
By predicting the hole-cleaning index in real time using the developed model, the efficiency
of the hole-cleaning index (HCI) can be determined in a straightforward manner [5]:

HCI =
Km·AVm·EMW

5867
(24)

where Km is the modified consistency index, EMW is the equivalent mud weight, and AVm
is the modified annulus velocity.

Figure 14 shows the automated process of utilizing field data to predict ECD by applying
AI tools for optimizing the drilling performance efficiency. As seen in Figure 14, the novel
model is able to predict a number of variables that influence drilling operations, such as
hole-cleaning effectiveness, cutting concentration, and drilling issues. Current models cannot
forecast drilling parameters in real time because they rely on laboratory data. Real-time
forecasts may be produced using the established model every second and documented with
good depth, enabling early identification and mitigation of any abnormalities. This may lower
drilling expenses and reduce the operating time. More importantly, as a result of the work, the
flowchart, which is composed of field data that consists of real-time, surface, and operational
data, shows the automated process of utilizing field data to predict ECD by applying AI tools,
thus enhancing the drilling performance efficiency.
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5. Conclusions

In this paper, the novel models ECDeffc.m and MWeffc.m were developed to consider
various real-time drilling parameters to optimize drilling performance. These models pro-
vide accurate assessments of drilling conditions, identify potential issues in real time, and
help prevent complications such as blowouts and stuck pipe incidents. The methodology
of the two novel models and the AI application used in this paper can be used to optimize
drilling operations, minimize the risks associated with drilling, and maximize drilling
efficiency. The following points can be summarized:

1. The field testing and validation of the two novel models, ECDeffc.m and MWeffc.m,
have demonstrated their effectiveness in enhancing the efficiency of drilling wells.
The results confirm that the use of these models can greatly improve drilling practices
and reduce the risk of issues caused by ineffective drilling performance. Furthermore,
the automation of these models can further enhance their accuracy and efficiency,
optimize drilling operations, and improve safety. In addition, the average accuracy
statistical measures for the novel model ECDeff.m were 0.06% and 0.29% for MAE
and MSE, respectively. For MWeffc.m, the MAE and MSE were 0.11% and 0.08%,
respectively.

2. The application of ANN and SVM allowed for the estimation of ECD with a high
correlation coefficient of 0.9947 and an average absolute percentage error of 0.23%.
Similarly, the application of DT enabled the estimation of MW, achieving a correlation
coefficient of 0.9353 and an average absolute percentage error of 1.66%. These models
can be used in well design and while drilling to select and adjust the appropriate MW
and ECD, eliminating the need for expensive downhole equipment and commercial
software and adding excessive chemical additives.

3. The novel models ECDeffc.m and MWeffc.m have been shown to be more accurate
than AI applications in predicting ECDeffc and MWeffc. Unlike AI applications, these
models directly provide the desired outputs without the need for additional data
inputs and PWD, resulting in more precise and reliable predictions. As a result, these
models can be valuable tools in optimizing drilling operations and improving the
efficiency and safety of oil and gas drilling wells. Overall, this comparison provides
valuable insights into the performance of the novel models and their potential benefits
for the industry.
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Nomenclature

R3 3 reading revolutions per minutes, cP
R300 300 reading revolutions per minutes, cP
R6 6 reading revolutions per minutes, cP
R600 600 reading revolutions per minutes, cP
ABR-DT adaptive boosting regressor with decision tree
PSO-ANFIS adaptive neuro-fuzzy inference system optimized by coupled

simulated annealing
ANFIS adaptive neuro-fuzzy interference system
CCA2 annular concentration based on preconnection circulation period
CCA1 annular concentration based on the volumetric rate of cutting

entering the annulus
CRF circulation rate factor based on circulation and rotation influence
AFPL annular frictional pressure loss, psi
Vann annular velocity, ft/min
MApp apparent viscosity, cP
AI artificial intelligence
ANN artificial neural network
Vsa average slip velocity of drilling cutting, ft/min
α borehole angle of inclinations, degrees
β borehole azimuth, degrees
OH borehole diameter, inch
IDcsg casing inner size, inch
CCA or CCAAPI concentration of cuttings in the annulus
K consistency factor, cP
Depthx current measured hole depth, ft
SPPx current stand pipe pressure, psi
Vsc cutting slip velocity, ft/min
DT decision tree
ODpipe or OD drill pipe’s outer diameter, inch
MWeff effective mud weight, pcf
Me f f effective viscosity, cP
ECD equivalent circulating density, pcf
SPP1 first stand pipe pressure when ROP > 1, psi
n flow behavior index
FN functional network
GBDT gradient boost decision tree
HCI hole-cleaning index
HPHT high pressure and high temperature
αm hole geometry factor
αm.c hole geometry factor based on the CCA
KNN k-nearest neighbors
LSSVM least square support vector machine
LineID liner inner diameter
LWD logging while drilling
LSYP low shear yield point
MPD managed pressure drilling
MSE mean squared error
MWD measurement while drilling
Vann.m modified annular velocity, ft/min
Vsar the redial cuttings slip velocity
Vsaa the axial cutting slip velocity
km modified consistency factor, cP
dcm modified cutting diameter, inch
ECDe f f c.m modified equivalent circulating density, pcf
nm modified flow behavior index
MWe f f c.m modified mud weight effective, pcf
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PVm modified plastic viscosity, cP
YPm modified yield point, cP
Fm mud weight affecting the speed of slipping
MW mud weight, pcf
NPT nonproductive time
ODc outer diameter of drill collar, inch
PV plastic viscosity, cP
PWD pressure while drilling
GPM pump flow rate, gal/min
RBF radial basis function
RF random forest
ROP rate of penetration, ft/hr
ReLU rectified linear unit
x revolution per gallon ratio
RPM revolution per minute, rev/min
SPP stand pipe pressure, psi
Depth1 start measured hole depth, ft
SVM support vector machine
Vann.dc the annular velocity across drill collar
Vann.dp the annular velocity across drill pipe
CRF the circulation and rotation influence
R2 the coefficient of determination
L2 the label column in a dataset
MAE the mean absolute error
CCAam the modified average concentration of cuttings in the annulus
dcm the modified cutting diameter
Vs.m the average slip velocity with considering the mud weight, ft/min
Vs.mn the new average slip velocity with considering the mud weight, ft/min
Qc & QA the quality control and quality assurance
TR the transport ratio
TC time for making the connection, min
TFA total flow area, inch
Vsc velocity of cutting slip due to ROP, ft/min
Vs1 and Vs2 velocity with consideration for the effective viscosity and apparent

viscosityof a fluid, as well as the weight and diameter of the cuttings
present in the fluid, ft/min

VSP vertical seismic profile
Vc volumetric rate of cutting entering the annulus, fpm
Vc volumetric rate of cuttings entering the annulus, ft/min
Wc weigh of the cuttings, lb/cf
WOB weight on bit, KIb
YP yield point, cP
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