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Abstract: One of the most promising applications of high entropy ceramics is their use as high
temperature protective materials. Due to the additional entropic stabilization of the crystal structure,
four- and five-element high entropy ceramics exhibit enhanced thermal and mechanical properties.
For these applications, one of the most promising high entropy protective oxides are ZrO2- and
HfO2-based protective HEOs. In this article, we study the HfO2–ZrO2–Y2O3–CeO2 equimolar system
with the addition of MgO as a fifth component. We found that the HfZrCeY(Mg)O system maintains
a single FCC crystalline structure up to the MgO concentration = 31.9 mol.%. Additionally, we
determined that an addition of MgO at the close-to-equimolar HfZrCeY(Mg)O composition enhances
the thermal properties of HEO, but reduces the mechanical properties such as hardness and resistance
to crack formation. The minimum weight loss at the heating from RT up to 1450 ◦C was measured
for the close-to-equimolar HfZrCeY(Mg)O composition at 18.4 mol.% MgO. The hardness of such
composition was around 18 GPa. Due to the combination of these properties, the synthesized coating
can be used as a protective material for high temperature applications, such as the protection of
turbine parts.

Keywords: high entropy oxide; magnetron sputtering; thermal properties; mechanical properties

1. Introduction

High entropy ceramic materials are gradually gaining more and more use in the
industry [1,2]. One of the most promising applications of these materials are in the field
of high temperature protection [3]. Due to the additional entropic stabilization of the
crystal structure, they show superior property combination [4]. Four- and five-element
high entropy ceramics exhibited enhanced thermal [5,6] and mechanical [7,8] properties, in
addition to phase structure stability [9], in comparison with traditional high temperature
ceramics (UHTC). Identical effects of characteristic enhancement were reported for high-
entropy boride [5,6], carbide [10], nitride [7,8] and oxide [11] structures. Oxide-based
high entropy ceramics (HEO) is one of the most promising materials among the variety
of high-entropy ceramics [12], especially for ZrO2- and HfO2-based protective HEOs [13].
Considering a melting point of >2000 ◦C, there is a limited number of oxides that can be
used for the UHTC applications [14]. Excluding of the radioactive ThO2 and UO2 and
toxic BeO, only ZrO2 and HfO2 in a combination with rare-earth oxides, MgO or Al2O3,
can be used. However, ZrO2- and HfO2-based HEO described in the literature are often
“high-entropy” rather than “entropy-stabilized” systems. Usually, these systems exhibit a
zero-mixing enthalpy ∆Hmix = 0, meaning an ideal solid solution formation without any
additional stabilization. A typical example here are HfO2–CeO2 or ZrO2–CeO2 systems,
where yttrium and cerium act as cubic FCC lattice stabilizers themselves [15,16]. The
same situation occurs for the ZrO2–Y2O3 or HfO2–Y2O3 systems [16]. There are several
reports for the high-entropy HfO2–ZrO2–Y2O3–CeO2 system, which crystallizes into a
solid solution with a simple FCC cubic fluorite structure [11,13]. However, the thermal
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properties of this system have not yet been studied. Additionally, there is no investigation
on whether this system is an entropy-stabilized one. Therefore, in this article, we added
MgO to the HfO2–ZrO2–Y2O3–CeO2 in order to investigate this effect. At normal conditions,
MgO crystallizes itself into the rock salt structure, in comparison with HfO2 and ZrO2
(baddeleyite-like structure), Y2O3 (corundum-like structure) and CeO2 (fluorite structure),
as shown in Figure 1. Therefore, its crystallization in a fluorite structure solid solution
would mean an entropy stabilization of the five-component HfZrCeY(Mg)O system. In
addition, we tried to determine the possible deviation (window) of a molar concentration
of MgO at which this stabilization will be maintained.
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Figure 1. Structure of the constituent binary oxides at normal conditions.

2. Materials and Methods

For the measurements, we used several substrates as follows:
A monocrystalline Si (100) with the size of 15 mm × 15 mm × 0.38 mm for XRD, SEM,

TEM and mechanical property measurements;
A monocrystalline Si (100) with the size of 35 mm × 5 mm × 0.38 mm for the stress

measurements;
A Cu with the size of 40 mm × 40 mm × 1 mm as an etchable substrate for the

DSC-TGA measurements.
Before placing them into the vacuum chamber, Si substrates were cleaned in the HNO3

(30%) for 5 min, then ultrasonically cleaned in acetone + isopropyl alcohol and finally in
deionized water. HEO films were sputtered using two round unbalanced magnetrons
equipped with HfZr (50/50 at.%) and CeY (33/66 at.%) targets, as shown in Figure 2. Mg
concentration was controlled by the addition of Mg discs into the erosion zone of the CeY
magnetron. Target diameter was 100 mm. Mg disc diameter was 16 mm. Purity of all used
materials was 99.95%.
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Figure 2. A scheme of the experiment. Mg concentration in the HfO2–ZrO2–Y2O3–CeO2 system was
controlled by the number of the Mg discs in the erosion zone of the CeY magnetron.

The magnetrons were powered by pulsed DC power supply with a frequency of
40 kHz (Applied Electronics, Tomsk, Russia). Before the deposition, substrates were
cleaned using the Ar+ ion source with the accelerating voltage 3500 V. The base pressure p0
in the evacuated chamber was 8 × 10−4 Pa. The HEO films were deposited on substrate
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under the following conditions: discharge voltage Ud = 300–400 V, unheated substrate,
substrate-to-target distance ds-t = 100 mm, argon pressure pAr = 0.3 Pa and CO2 pressure
pCO2 = 0.5 Pa. Molar concentration in the growing films was controlled by the power
ratio on the magnetron targets. A coating’s cross-sectional morphology and elemental
composition were studied using the transmission electron microscope (TEM, JEM-2100F,
JEOL, Tokyo, Japan) equipped with the EDS spectrometer. Structural characteristics of
the coatings were studied using X-ray diffraction (Shimadzu XRD 6000) instrument with
Cu Kα (λ = 0.154 nm) radiation. Mechanical properties of the films were measured using
Nanoindenter G200 (MTS-Agilent, Santa Clara, USA). Substrate’s curvature was measured
using the optical profilometer (Micro Measure 3D Station, STIL, France) and film stress
was calculated from the curvature measurements by using the Stoney formula. DSC-TGA
analysis was performed by using thermal analyzer (Netzsch STA 449, Selb, Germany) in air
atmosphere with a heating and cooling rate of 5 ◦C/min up to 1450 ◦C in alumina crucibles.
For thermal analysis, we used a self-supporting HfZrCeY(Mg)O film produced by etching
of the Cu substrate.

3. Results and Discussion

Table 1 shows the magnetron sputtering conditions and the corresponding molar com-
positions of the HfZrCeY(Mg)O films. MgO concentration strongly depends on the number
of Mg discs in the erosion zone, while relative concentrations of other components are close
to the equimolar composition with a deviation of less than 3 mol.%. The combination of the
number of Mg discs in the CeY target with the variation of ICeYMg allows for the smooth
tune of the elemental composition of HfZrCeY(Mg)O film.

Table 1. Deposition conditions and the resulting compositions of the HfZrCeY(Mg)O films.

Film № UHfZr
[V]

IHfZr
[A]

UCeYMg
[V]

ICeYMg
[A]

Number
of

Mg Discs
HfO2

[mol.%]
ZrO2

[mol.%]
CeO2

[mol.%]
Y2O3

[mol.%]
MgO

[mol.%]

1 380 2 320 2 1 23.1 25.8 24.1 23.8 3.2

2 370 2 315 2 3 19.2 22.0 21.3 19.1 18.4

3 380 2 300 2 6 18.2 21.7 12.5 15.7 31.9

4 375 2 330 3 6 15.2 17.9 14.8 17.6 34.5

3.1. Structure

XRD measurements of the synthesized films are presented in Figure 3. The
HfZrCeY(Mg)O film with the low MgO concentration of 3.2 mol.% have the same structure
as pure HfZrCeYO [10]. It is characterized by the simple cubic Fm-3m structure with four
characteristic XRD peaks at 2θ = 29.28◦, 34.42◦, 49.08◦ and 58.92◦ attributed to (111), (200),
(220) and (311) crystal orientations, respectively, as seen in the red line in Figure 3.

Further increasing of the MgO concentration up to 18.4 mol.% leads to the continuous
elimination of the (200) peak without any changes at the mutual intensities of other peaks
(Figure 3, blue line). At the higher MgO concentration (31.9 mol.%), one can detect the
asymmetry of the (111), which can be given by the residual (200) crystallites or by the
segregation of the hex-MgO (10-10) from the single crystal structure (Figure 3, yellow line).
At the 34.5 mol.% of MgO, only a broad peak at 2θ = 31.02◦ attributed to the hex-MgO
(10-10) can be detected (Figure 3, green line). With an additional elimination of the (220)
and (311) peaks, this can be a result of the film amorphization. For all the synthesized films,
no other peaks attributed to ternary oxide structures (such as Ce2Hf2O7 or Y2Zr2O7) can
be detected.

For a deeper understanding of the MgO concentration effect, we used TEM measure-
ments. Figures 4 and 5 show the constituent element distribution for the low (3.2 mol.%)
and the high (31.9 mol.%) concentration of the MgO, respectively. The films exhibited a
homogeneous element distribution without any grain segregation for the whole range of
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the MgO concentrations. The TEM images of the HfZrCeY(Mg)O with a 3.2 mol.% MgO
exhibited a nanocrystalline structure with a grain size of less than 50 nm (Figure 4).
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The SAED patterns were acquired in the center of the HEO film to compare the phase
structure with the XRD. The SAED and DF TEM measurements confirm the dominance of
the (111) crystallites which are homogeneously distributed in the film thickness (Figure 4b,c).
The crystallites with (200), (220) and (311) crystal orientations are also evenly distributed in
the film thickness but have significantly lower crystallite size in comparison with (111). At
the HRTEM image, one can detect a highly crystalline structure of HfZrCeY(Mg)O without
a specific phase segregation or amorphous phase formation, which corresponds to the
results of the X-ray diffraction analysis. The calculated interplanar spacing is 3.1 Å.

The HfZrCeY(Mg)O with a 31.9 mol.% MgO is also characterized by a nanocrystalline
structure. Contrary to the XRD measurements, the selective area diffraction clearly shows
a presence of the (200) orientation (Figure 5b). This result confirms the suggestion that
an asymmetry of the (111) peak at XRD is given by the superposition of the (111) and
(200) crystallite orientations rather than the MgO or ternary oxide separation. A distri-
bution of crystallites with different orientations is noticeably higher in comparison with
HfZrCeY(Mg)O with a low MgO content. The grain size for this composition is less than
20 nm. However, the HRTEM measurements still show the high crystallinity without an
amorphous phase formation. The calculated interplanar for this composition spacing is
2.9 Å. A homogeneous elemental distribution confirms the fact of the Mg incorporation in
an FCC structure of the high-entropy HfZrCeY(Mg)O.

3.2. Thermal Properties

The thermal properties of the HfZrCeY(Mg)O films were measured via the TGA and
DSC analysis from the RT up to 1450 ◦C. All the HfZrCeY(Mg)O films are characterized
by an intensive mass loss from RT to ≈250 ◦C, as shown in Figure 6, and attributed to the
water vapor loss due to the MgO and CeO2 hygroscopy [17].
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A subsequent weight loss nonlinearly correlates with a MgO molar concentration.
The maximum weight loss ≈11.53% occurs for HfZrCeY(Mg)O with 3.2 mol.% MgO. The
corresponding DSC curve shows the exponentially increasing exothermic characteristic
(Figure 7, green line). At the high MgO concentration (Figures 6 and 7, blue line), the
weight loss, excluding losses due to water desorption, is ≈9.5%. The HfZrCeY(Mg)O
film is characterized by the less slope exponential exothermic characteristic in comparison
with a HfZrCeY(Mg)O with 3.2 mol.% MgO. This composition shows the maximum water
desorption, which correlates with a high MgO concentration. The minimum weight loss
was measured for the close-to-equimolar HfZrCeY(Mg)O composition at 18.4 mol.% MgO
(Figure 6, red line). This film is characterized by the lowest water desorption and the
lowest weight loss ≈4.9% among all studied HfZrCeY(Mg)O compositions. Contrary to
the non-equimolar films with high and low MgO concentrations, the HfZrCeY(Mg)O with
18.4 mol.% MgO exhibits close to zero heat flow at the range of RT—1000 ◦C and the
endothermic characteristic at the range of 1000–1450 ◦C (Figure 7, red line).
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3.3. Mechanical Properties

The mechanical properties of the HfZrCeY(Mg)O films are summarized in Table 2.
The hardness H and effective Young’s modulus E* of HfZrCeY(Mg)O are proportionally
decreased with an increase in MgO concentration. The maximum value of H = 20.4 GPa
is close to the hardness of pure HfZrCeYO [13]. The hardness of the HfZrCeY(Mg)O
equimolar composition (18.4 mol.% MgO) is about 25% lower in comparison with the
equimolar HfZrCeYO [13]. The addition of Mg also reduces the resistance to crack forma-
tion of HfZrCeY(Mg)O due to the decrease in the H/E* ratio < 0.1 and elastic recovery
We < 60% [18]. All of the synthesized HfZrCeY(Mg)O films exhibit relatively low compres-
sive stress σ < −1.2 GPa, possibly due to the nanocrystalline structure.

Table 2. Mechanical properties of the HfZrCeY(Mg)O films in dependence on the MgO content. Here,
H is hardness, E* is effective Young’s modulus, We is elastic recovery and σ is film stress.

Film № MgO
[mol.%]

H
[GPa]

E*
[GPa] H/E* We

[%]
σ

[GPa]

1 3.2 20.4 198.7 0.103 65 −1.2
2 18.4 18.2 193.4 0.094 62 −0.8
3 31.9 16.7 185.7 0.09 57 −0.9
4 34.5 12.9 176.2 0.073 55 −0.5

4. Conclusions

Based on the measured data, we can conclude the following:

(1) The HfZrCeY(Mg)O system forms a solid solution with the simple cubic (Fm-3m)
structure without the formation of binary oxides and the absence of the phase separation.

(2) The HfZrCeY(Mg)O system maintains a single FCC crystalline structure up to the
MgO concentration = 31.9 mol.% if other constituent oxides are taken in close to the
equimolar composition.

(3) The minimum weight loss at the heating from RT up to 1450 ◦C was measured for the
close-to-equimolar HfZrCeY(Mg)O composition at 18.4 mol.% MgO.

(4) The addition of MgO at the close-to-equimolar HfZrCeY(Mg)O composition en-
hances the thermal properties of HEO, but reduces the mechanical properties such as
hardness and resistance to crack formation. The hardness of the close-to-equimolar
HfZrCeY(Mg)O was 18.2 GPa.

(5) The mechanical properties of the HfZrCeY(Mg)O proportionally decrease with the
MgO concentration.
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