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We explore the Gravitational Waves (GW) phenomenology of a simple class of supergravity models
that can explain and unify inflation and Primordial Black Holes (PBH) as Dark Matter (DM). Our
(modified) supergravity models naturally lead to a two-field attractor-type double inflation, whose first
stage is driven by Starobinsky scalaron and the second stage is driven by another scalar belonging to
a supergravity multiplet. The PBHs formation in our supergravity models is efficient, compatible with

all observational constraints, and predicts a stochastic GW background. We compute the PBH-induced
GW power spectrum and show that GW signals can be detected within the sensitivity curves of the
future space-based GW interferometers such as LISA, DECIGO, TAIJI and TianQin projects, thus showing
predictive power of supergravity in GW physics and their compatibility.
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1. Introduction

Negative results in experimental searches of thermally pro-
duced Weakly Interacting Massive Particles (WIMP) motivated new
DM candidates. The idea that DM can be composed of (non-
particle) PBH is very attractive, being sustainable by theoretical
high energy physics, cosmological and astrophysical considerations,
see e.g., [1-3] and references therein. Should PBH account for a
large part (or the whole) DM, there will be a high chance to detect
induced GW signals in future experiments [4-6]. PBH can be effi-
ciently produced in the double inflation scenarios, where inflation
is sourced by two dynamical scalars [1,7]. The models of double
inflation in the literature usually rely on particular interactions in-
cluding scalar potentials and parameter spaces in the context of
General Relativity (GR). Therefore, it is of considerable interest to
study a theoretical origin of PBH formation at a more fundamental
level than GR. Supersymmetry and supergravity are good candi-
dates for new fundamental physics beyond the Standard Models of
particle physics and cosmology, being theoretically well motivated.
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Moreover, supergravity severely restricts possible interactions and
free parameters.

We assume Starobinsky inflation in the context of modified
gravity (see e.g., [8] for a recent review), because it is universal
and robust for slow roll inflation, and is in perfect agreement with
current cosmological data. Starobinsky inflation is driven by a new
scalar degree of freedom, called scalaron. However, scalaron is not
enough for catalyzing an efficient production of PBH. Therefore, we
consider Starobinsky inflation in modified supergravity providing
new tools for PBH production, as our desiderata. As was already
demonstrated in [9], the Starobinsky (modified) supergravity is a
powerful framework for double inflation and PBH as DM. However,
an open question remains whether the Starobinsky supergravity
can be tested in specific phenomenological channels.

In this Letter, we study a class of supergravity models explain-
ing the origin of inflation and PBH as DM, in agreement with all
cosmological bounds, which can be probed in GW experiments. We
show that supergravity naturally leads to co-production of PBH as
DM and a GW stochastic background that can be tested in the fu-
ture GW space-based interferometers such as LISA, DECIGO, TAIJI
and TianQin projects. The GW power spectrum is sensitive to the
PBH mass spectrum and the double inflation parameters, which
are closely related to each other in supergravity. In particular, we
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estimate the energy density spectrum of the second-order GW ra-
diation induced by the enhanced scalar power spectrum during
the process of PBH formation. We compare the second-order GW
power spectrum with the sensitivity curves of future GW experi-
ments and conclude that the predicted GW spectrum can be tested
by the next GW space-based interferometers in a large part of the
parameter space.

2. Starobinsky supergravity with PBH as DM

Our approach is based on the modified (old-minimal) super-
gravity described by the Lagrangian [10,11]

L= / d’@2¢ [-%(T)Z —8R)N(R,R) + ]-'(R)] +h.c. (1)

with two arbitrary functions N(R, R) (real) and F(R) (holomor-
phic), where R is the chiral scalar curvature superfield (we use
the standard notation of supergravity in curved superspace [12]).
The Lagrangian (1) is a generic (locally) supersymmetric extension
of (R + R?) gravity with four real scalars (including scalaron), all
belonging to a single (off-shell) supergravity multiplet.

Let us consider the following ansatz (as a few leading terms in
Taylor expansion) for the functions N and F [9]:

768

12 72
N=W|R|2—W4|R|4—Wy|m6, (2)
346
F=—3R+ 7‘/—5722 , 3)

where M is the scalaron mass, with the parameters ¢, y, and § fix-
ing the form of the scalar potential. Actually, the M? enters as an
overall factor in the scalar potential and thus does not change its
shape. The standard Einstein supergravity corresponds to the spe-
cial case N=0 and F = —3R [12]. In the case of { =y =8 =0,
we get the simplest supersymmetric extension of R + R? gravity.
However, that model has a tachyonic instability along the infla-
tionary trajectory and the scalar potential is unbounded from be-
low. As was shown in [13,14], those problems can be resolved by
introducing an extra term ¢|R|* term as in (2), whose parame-
ter has a lower bound (¢ > 1/54 in our notation). The model (1)
with ¥ =8 =0 (and a non-zero ¢) is known as the simplest phe-
nomenologically viable extension of Starobinsky inflation in (old-
minimal) supergravity [8].

By extending the model further, either via N (with y # 0,
8§ =0) or via F (with y =0, § #0), it is possible to achieve an
enhancement of the inflationary scalar power spectrum at a scale
much smaller the inflationary scale, which is necessary to produce
seeds of PBHs after inflation [9]. Focusing on the effective dynam-
ics of two real scalars (when the two others are stabilized), we
found that the enhancement in the power spectrum is produced
due to an inflection point in the two-field scalar potential, which
creates a period of the “Ultra-Slow-Roll” (USR) inflation following
the standard Slow-Roll (SR) evolution (actually, during USR, infla-
ton rolls faster than during SR [15]). The USR regime leads to a
violation of the slow-roll conditions. The SR stage in our models is
driven (mainly) by scalaron, whereas the USR stage is driven by a
combination of both scalars.

We call the model with ¥ # 0 and § =0 as the y-extension,
and the model with § #£ 0 and y =0 as the §-extension. Accord-
ing to [9], the y-extension exhibits attractor behavior, in the sense
that the shape of the scalar potential becomes less sensitive to
changes in y as we increase the value of y. The enhancement of
the power spectrum can be achieved when y > O(1) and ¢ satis-
fies an equation for (near-)inflection points. The value of ¢ can be
tuned around its inflection point value to control the duration of
USR stage AN, — the longer it lasts, the larger the power spectrum
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peak grows. As for the §-extension, we do not find the aforemen-
tioned attractor behavior, though a desired power spectrum peak
is still possible in the two parameter regions - the one is around
8 = 0.1, and another one is around § = 0.6, while the parameter ¢
controls the duration of the USR stage here as well.

The relevant part of the Lagrangian is calculable by parametriz-
ing the leading field component of the curvature superfield as

Rlo=0= le_mﬁ (4)
B 24

and setting b, = a = 0, where by, is the real vector of an old-

minimal supergravity multiplet, and the real scalars o and a are

the radial and angular modes of R/|, respectively. After using the

standard Legendre-Weyl transform to eliminate the R?-term, the

bosonic part of the Lagrangian in Einstein frame reads

1 1 3IM2 _ 2
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where ¢ is the scalaron, and the functions A = A(o), B = B(0),
U =U(o) are given by

A(U):l —80’-’-%0’2_%(04_%)/06’
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The Kdhler potential and the superpotential of the matter-
coupled Einstein supergravity dual to the modified supergravity
defined by (2) and (3) are given by

K=-3log[T+T —iN(S.9)], (7)
W =3MST + F(S) (8)

where T and S are chiral (super)fields, and the functions
NS, S) =3 (1 - 3¢IsI* — 4v1sI°) . (9
F(s)=3ms (Y5 - 1), (10)

are obtained'from (2) and (3) by replacing R = MS/2. Then (4)
gives S = e %5 //6. The scalaron ¢ in this dual picture is given
by

2 _ _
e\/;‘p:T-l-T—%N(S,S). (11)

Setting ImT = a = 0 gives the Lagrangian (5).

Here we take the specific examples used in [9] to estimate
the PBH-to-DM density fractions: the one in the y-extension and
the two others in the §-extension. The two examples of the §-
extension are explained by the existence of the two suitable pa-
rameter regions, where § >~ 0.1 and § ~ 0.6 yield different shapes
of the power spectrum (broad and narrow, respectively). The pa-
rameter sets of those three examples are given in Table 1, and the
corresponding power spectra P; and PBH density fractions f(M)
(both numerically computed in [9]) are shown in Fig. 1. We used
the normalization of the wavenumber keyir = 0.05 Mpc~!, where
kexit is the scale that leaves the horizon around 54 e-folds before
the end of inflation (this corresponds to the standard assumption
of the reheating temperature ~ 10° GeV). The parameter ¢ is fixed
by a choice of AN; (at given y and §). In the cases I, II and III, we
find ¢ as —2.374, 0.032, and 0.102, respectively.
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Fig. 1. (a) The power spectra in the examples of Table 1, where PBHs constitute the whole dark matter. Here k, represents the end of SR and the beginning of USR. (b) The
respective PBH density fractions (the background observational constraints on PBHs are taken from Refs. [2,3]). In both plots, the case I is denoted by a solid line, the case II

by a dashed line, and the case III by a dotted line.

Table 1

The parameters used to estimate the PBH density fraction shown in Fig. 1b. The ng
and r are computed at AN = 54 e-folds before the end of inflation (including the
USR e-folds AN>).

% 8 AN, 8 ns r
Case | 15 0 20 0.4 0.942 0.009
Case II 0 0.09 19 0.47 0.946 0.008
Case Il 0 0.61 20 0.4 0.946 0.007
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Fig. 2. The evolution of the slow-roll parameters €y and |ny| in the case Il around
the start of the USR regime with respect to the normalized time f.

To demonstrate the end of SR and the beginning of USR, Fig. 2
shows the evolution of the SR parameters €y and ny in the case
II. The SR parameters are defined by

H €y
€= » NMH= Hey . (12)
The SR end can be defined by the local maximum of €y (or, al-
ternatively, by ny = 1), and it is shown in Fig. 2 by the dashed
vertical line. The behavior of ny during USR is discussed e.g., in
Ref. [16].

According to Table 1, the spectral tilt ng in the case I is ruled
out by 30 due to the CMB data [17], whereas in the cases II and
Il the value of ng is within the current 30 constraints. The PBH
fraction in the case II of Fig. 1b implies that this case is more flex-
ible for accommodating slightly larger n;. It happens because the
PBH fraction in the case II peaks at the center of the allowed win-
dow, and it is still possible to move the peak further to the left,
thus lowering PBH masses. In turn, it will decrease AN and, con-

sequently, increase ns. It is also possible that more general cases
with non-zero y and §, and further corrections to the modified
supergravity functions (2) and (3) may raise the value of ns.

In the next Section we estimate the energy density of scalar-
induced GWs in the examples of Table 1.

3. Energy density of induced GW

The present-day GW density function Q¢w is given by [4,6]

Qaw k) _ i [(s2 - D - %)T

Qr s2 + d?

NIty
S —gh-
&
&|“\8

x PeeoPe(ky) (12 +12) . (13)

where the constant cg ~ 0.4 in the case of the Standard Model
(SM), and cg ~ 0.3 in the case of the Minimal Supersymmetric
Standard Model (MSSM).

The present-day value of the radiation density 2, is equal to
h%$, ~ 2.47 x 107>, according to measurements of CMB temper-
ature [18]. Here h is the reduced (present-day) Hubble parameter
that we take as h = 0.67 (ignoring the Hubble tension). The vari-
ables x, y are related to the integration variables s, d as

?(s+d), y:?(s—d), (14)

and the functions I, and I of x(s,d) and y(s,d) are [4,6]

X =

o0

IC=—4/d sinni2T (xn)T (xn)

J nsinn{2T (xn)T (xn ()
+ [Txn) +xnT' xm|[Tyn) + ynT'(ym ]} .

IS:40/dncosn{2T(xn)T(xn) a6)
+ [Txen) +xnT' x |[T(yn) + ynT'(ym ]} .

where
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Fig. 3. The density of stochastic GW induced by the power spectrum enhancement
in our supergravity models: the case I (solid black curve), the case II (dashed black
curve), and the case IIl (dotted black curve). The expected sensitivity curves for
space-based GW experiments are represented by different colors.

9 | V3. (kn kn
T = Gan2 W(ﬁ)‘(ﬁ) ’ ()

in terms of the conformal time 7.
An integration in I and Is can be performed analytically [4],

(s +d? —2)2
sP+d>-2[s2+d?> -2 |d®> -1
Is=-36 a2y [ 7@ log 7.1 ‘ +2} , (19)

where 6 is the Heaviside step function.

With these definitions, the GW density can be computed nu-
merically for a given power spectrum. It is sufficient to consider
power spectra for the cases of Table 1 where PBHs are part of dark
matter, because the cases with fi,r =1 have similar power spectra
but with slightly larger peaks. By using the power spectra of Fig. 1a
we plot the density Qcw(k) (in terms of frequency k = 2 f) in
Fig. 3, together with the expected sensitivity curves for several
space-based GW experiments. We use the power-law integrated
curves [19] and apply them to the LISA noise model [20,21] (alter-
natively, peak-integrated curves can be used [22]). The parameters
and the noise models for TianQin [23], Taiji [24], and DECIGO [25]
are used to construct the corresponding sensitivity curves.

The upcoming space-based GW experiments are expected to be
sensitive enough to detect the stochastic GW background predicted
by a large class of two-field inflationary models where PBHs ac-
count for a significant fraction (or all) of DM. Fig. 3 shows that
our supergravity models also produce GW peaking in the frequency
range 1073 — 10~ Hz expected to be accessible by LISA, TianQin,
Taiji, and DECIGO experiments.

4. Conclusion

We demonstrate for the first time that modified supergravity
can predict a copious formation of PBH after Starobinsky inflation
in a large part of the parameter space, supporting the proposal
that those PBH may account for a large part or the whole DM.
We also show that modified supergravity predicts a GW stochastic
background radiation that is sensitive to the inflationary parame-
ters and the PBH mass spectrum. Our main results are summarized
by Figs. 1b and 3, both derived in our supergravity model specified
by Egs. (1), (2) and (3). The amount of fine tuning in our models
amounts to fixing the parameter M ~ 10~>Mp as the Starobinsky
scalaron (inflaton) mass and the dimensionless parameter ¢ for
the desired duration of the USR. The obtained PBH mass spectra
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are compatible with all astrophysical and cosmological constrains,
while induced GW signals can be detected by the next space-based
gravitational interferometers. Recently, the NANOGrav Collabora-
tion reported the data [26] that hints to PBHs as DM [27], in
agreement with our results in Fig. 1b.

Supergravity is usually regarded as a high-energy extension of
gravity. We find that the new scalars of modified supergravity can
play the active role during inflation, catalyze PBH formation and
produce GW radiation. Interactions of those scalars are dictated by
local supersymmetry and are not assumed ad hoc, thus having the
predictive power to be falsified in future experiments. Therefore,
next indirect footprints of supersymmetry may be detected from
GW physics rather than high-energy colliders!
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