УДК: 538.9

Исследование пьезо- и магнитоэлектрического отклика наночастиц структуры ядро-оболочка на основе MnFe₂O₄ и Ba_{0.85}Ca_{0.15}Zr_{0.1}Ti_{0.9}O₃

Д.А. Копцев, Р.В. Чернозём, М.А. Сурменева Научный руководитель: профессор, д.т.н. Р.А. Сурменев Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: rsurmeney@mail.ru

Study of the piezoelectric and magnetoelectric response of core-shell nanoparticles based on MnFe₂O₄ and Ba_{0.85}Ca_{0.15}Zr_{0.1}Ti_{0.9}O₃

D.A. Koptsev R.V. Chernozem, M.A. Surmeneva Scientific Supervisor: Prof., Dr. R.A. Surmenev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: rsurmeney@mail.ru

Abstract. Herein, the ferroelectric (FE), piezoelectric (PE) and magnetoelectric (ME) behavior of core-shell ME nanoparticles (NP) were studied using piezoresponse force microscopy. These NPs based on a magnetostrictive $MnFe_2O_4$ (MFO) core and a ferroelectric $Ba_{0.85}Ca_{0.15}Zr_{0.1}Ti_{0.9}O_3$ (BCZT) shell were fabricated via microwave hydrothermal synthesis. The observed switching of the polarization confirmed the presence of FE properties in MFO@BCZT NPs. The PE response of MFO@BCZT NPs was 9.95 ± 1.36 pm/V, whereas the ME response was $81\cdot10^4$ mV·cm⁻¹·Oe⁻¹. The obtained values are comparable to those of potentially toxic analogues. Thus, these MFO@BCZT NPs can be considered as a new promising platform for non-invasive electrotherapy of neurological disorders and neurotrauma.

Key words: ferroelectrics, piezoelectrics, magnetoelectrics, core-shell nanoparticles.

Введение

В условиях увеличения распространённости заболеваний нервной системы, современная медицина активно сосредоточена на поиске новых стратегий для лечения нейродегенеративных патологий. Одним из перспективных направлений в данной области является адресная доставка лекарств, которая позволяет не только существенно повысить эффективность лечения, но и минимизировать негативное воздействие препаратов на организм [1]. В настоящее время для адресной доставки широко применяются различные виды наночастиц (НЧ), включая магнитные. Однако, данный тип НЧ не способен обеспечить контролируемое высвобождение препаратов.

Преодоление этого ограничения возможно с использованием магнитоэлектрических (МЭ) НЧ, которые способны конвертировать энергию магнитного поля в электрическую (прямой МЭ эффект). Как правило, МЭ НЧ представляют наноструктуры типа «ядрооболочка», где ядро является магнитострикционной фазой, а оболочка сегнетоэлектрической. Среди разработанных на данный момент МЭ НЧ, особый интерес представляют частицы, состоящие ИЗ магнитострикционного ядра MnFe₂O₄ (MFO) И биосовместимой сегнетоэлектрической оболочки $Ba_{0.85}Ca_{0.15}Zr_{0.1}Ti_{0.9}O_3$ (BCZT) [2]. Помимо наличия рентгеноконтрастных свойств, МГО также является биосовместимым материалом [3]. В то же время, биосовместимый сегнетоэлектрик ВСZТ имеет в несколько раз более высокий пьезоэлектрический (ПЭ) отклик, чем широко известный чистый титаната бария [4]. Для синтеза МЭ НЧ перспективным методом является микроволновый гидротермальный (МГТ) синтез, который, в сравнении со стандартным гидротермальным синтезом позволяет получать наноструктуры в несколько раз быстрее. Электрофизические свойства MFO@BCZT НЧ, полученных с помощью МГТ синтеза, в настоящее время не были детально изучены. При этом, они напрямую влияют на механизмы взаимодействия НЧ с биологическими системами и эффективность доставки биоактивных молекул.

Таким образом, цель работы заключается в исследовании магнитных, сегнето-, ПЭ и МЭ свойств MFO@BCZT НЧ, полученных МГТ методом.

Экспериментальная часть

Магнитные НЧ MFO были получены MГТ методом с помощью автоклавирования водного раствора, содержащего 17,5 мМ MnCl₂·4H₂O и 35 мМ FeCl₃·6H₂O, при температуре 175 C° в течение 30 мин. Формирование сегнетоэлектрической оболочки BCZT на поверхности ядер MFO осуществлялось также с помощью MГT синтеза при 225 C° в течение 3 часов из водного раствора солей BaCl₂·2H₂O (17,7 мМ), CaCl₂ (3,2 мМ), ZrOCl₂·8H₂O (2,1 мМ) и TiCl₄ (19,0 мМ). Полученные НЧ были функционализированы биосовместимой гидрофильной лимонной кислотой при температуре 80 C° в течение 1 часа с целью предотвращения их агломерации. Структура и фазовый состав НЧ были изучены с помощью метода рентгенофазового анализа (РФА). Сегнетоэлектрические свойства, ПЭ и МЭ отклики МГО@ВСZТ НЧ были исследованы с помощью пьезосиловой микроскопии (ПСМ) на сканирующем зондовом микроскопе Ntegra II (NT-MDT SI) с применением кантилевера HA_HR/W2C+. Для оценки МЭ отклика использовался встроенный в систему микроскопа генератор внешнего магнитного поля с датчиком Холла, при этом измерение амплитудного отклика проводилось сначала в отсутствие магнитного поля, а затем в поле с напряжённостью 1000 Э. При проведении измерений ПЭ отклика, на зонд подавалось переменное напряжение от $-10~\mathrm{B}$ до $10~\mathrm{B}$. Значения ПЭ отклика (d_{33}) были рассчитаны на основании значений амплитудного смещения зонда.

Результаты

РФА (рис. 1, A) выявил отсутствие примесей и наличие типичных пиков шпинели MFO (COD #96-152-8317) и перовскита (COD #96-210-0859) [2]. Содержание данных фаз составило 9,4 % и 90,6 % соответственно. На рис. 1Б представлена топография MFO@BCZT HЧ. Анализ результатов ПСМ-измерений, выявил наличие сегнето- и ПЭ свойств в разработанных MFO@BCZT НЧ. Среднее значение d_{33} данных НЧ составило 9,95 ± 1,36 пм·В⁻¹, что указывает на выраженный ПЭ отклик, сопоставимый с аналогами на основе магнетита и кобальта [5, 6].

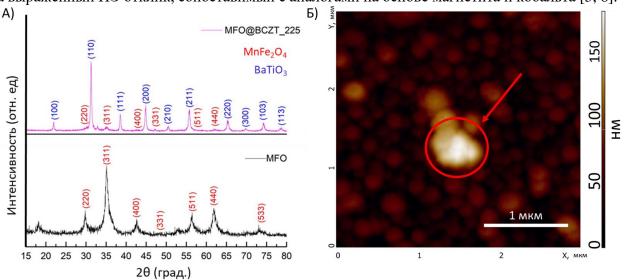


Рис. 1. Дифрактограммы ядер MFO и HY MFO@BCZT (A). Топография HY MFO@BCZT. Стрелкой отмечена область ПСМ-измерения в контакте (Б)

ПСМ-измерения с магнитным полем выявили асимметричный сдвиг коэрцитивного напряжения MFO@BCZT HЧ. В частности, величина напряжения в области отрицательных

значений сместилась с -1,1 В (без поля) до -0,3 В (в поле), в то время как положительная осталось неизменной -0,7 В. Данное наблюдение указывает на факт передачи магнитострикционной деформации от ядра МГО к оболочке, что в свою очередь приводит к возникновению внутренних электрических полей вследствие появления напряжений, что приводит к сдвигам коэрцитивных напряжений. На основании данных изменений напряжений, МЭ коэффициент (α_{ME}) может быть рассчитан по формуле (1):

$$\alpha_{ME} = \frac{\Delta E}{\Delta H} = \frac{\Delta V/t}{\Delta H} \left[B \cdot c M^{-1} \cdot \Im^{-1} \right], \tag{1}$$

где t — толщина пьезооболочки, ΔE — изменение электрического поля, ΔH — изменение напряжённости магнитного поля.

Величина МЭ отклика MFO@BCZT НЧ составила $81 \cdot 10^4$ мВ · см⁻¹· Э⁻¹. Данный результат соответствует значениям потенциально токсичных аналогов на основе феррита кобальта [5, 7], но при этом превышает значения для биосовместимых НЧ на основе магнетита и чистого титаната бария [8].

Заключение

В результате проведенных исследований подтверждено успешное формирование сегнетоэлектрической перовскитной оболочки BCZT на поверхности шпинельных HЧ MFO. Установлено наличие высоких значений Π 3 (9,95 \pm 1,36 $\text{mm} \cdot \text{B}^{-1}$) и M3 свойств (81 \cdot 10⁴ мВ \cdot см⁻¹ \cdot 3⁻¹) MFO@BCZT HЧ. Полученные значения сопоставимы с потенциально токсичными аналогами. Таким образом, разработанные МЭ НЧ на основе биосовместимых материалов являются перспективными для лечения нейродегенеративных заболеваний.

Авторы выражают благодарность Лисицину С.А. и Сухорукову Г.Б. за ПСМ-измерения, а также Ураковой А.О. и Чернозём П.В. за помощь в получении образцов.

Исследование выполнено при финансовой поддержке гранта РНФ № 24-43-00171.

Список литературы

- 1. Agnieszka Z. et al. // Nanoparticles as drug delivery systems // Pharmacological Reports 2012. Vol. 64. P. 1020–1037.
- 2. Chernozem R.V. et al. // Novel Biocompatible Magnetoelectric $MnFe_2O_4$ Core@BCZT Shell Nano-Hetero-Structures with Efficient Catalytic Performance // Small. 2023. Vol. 19, Iss $42.-P.\ e2302808$.
- 3. Polina V. Chernozem et al. // Ultrafast in situ microwave-assisted hydrothermal synthesis of nanorods and soft magnetic colloidal nanoparticles based on $MnFe_2O_4$ // Ceramics International. 2024. Vol. 50. P. 17380-17392.
- 4. Bai W.F. et al. // Phase transition behavior and enhanced electromechanical properties in (Ba_{0.85}Ca_{0.15})(ZrxTi1-x)O₃ lead-free piezoceramics // Ceram. Int. 2016 Vol. 42 P. 3598–3608.
- 5. Mushtaq F. et al. // Magnetoelectric 3D scaffolds for enhanced bone cell proliferation // Applied Materials Today. $-2019.-Vol.\ 16-P.\ 290-300.$
- 6. Urakova A. et al. // Sub-20-nm magnetite-based core-shell nanoparticles with strong magnetic, magnetoelectric, and nanocatalytic properties // Ceramics International. 2025. Vol. 51, Iss. 16 (A). P. 21702–21713.
- 7. Song H. et al. // Multi-target cell therapy using a magnetoelectric microscale biorobot for targeted delivery and selective differentiation of SH-SY5Y cells via magnetically driven cell stamping // Materials Horizons. 2022. Vol. 9. P. 3031–3038.
- 8. Zhang Y. et al. // Magnetoelectric nanoparticles incorporated biomimetic matrix for wireless electrical stimulation and nerve regeneration // Advanced Healthcare Materials. 2021. Vol. 10, Iss 4. P. 2100695.