УДК 628.938

Интеллектуальная система освещения на основе IoT и компьютерного зрения П.В. Шачнева

Научный руководитель: доцент, к.т.н. С.Б. Туранов Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: pvs22@tpu.ru

Intelligent lighting system based on IoT and computer vision

P.V. Shachneva

Scientific Supervisor: Ass. Prof., Ph.D. S.B. Turanov Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: pvs22@tpu.ru

Abstract. The study is devoted to the development of an adaptive lighting system based on automated data processing and control systems. A methodology for investigating the influence of the spectral composition of lighting on cognitive functions, productivity, and human fatigue has been proposed. The experiment utilized specialized tests, pulse measurement, and questionnaires to assess physiological and psychoemotional responses. The obtained results will form the basis of a database for creating personalized lighting regimes aimed at optimizing user performance and comfort Key words: lighting, biodynamics, intelligent control system, color temperature.

Введение

Современные технологии, такие как интеллектуальные системы управления и интернет вещей (IoT), открывают новые возможности для создания биодинамического освещения, которое адаптируется к естественным биологическим ритмам человека. Биодинамическое освещение предполагает изменение интенсивности, спектра и цветовой температуры света в течение дня, что способствует улучшению самочувствия, повышению продуктивности и поддержанию циркадных ритмов. В условиях роста урбанизации и увеличения времени, проводимого в помещениях, такие системы могут стать важным инструментом для обеспечения комфортной светоцветовой среды. Недостаток естественного освещения негативно влияет на циркадные ритмы, нарушая выработку ключевых гормонов, таких как мелатонин и кортизол [1]. Многочисленные исследования подтверждают, что световые воздействия также влияют на иммунную и нервную системы, метаболические процессы и другие физиологические функции [2].

Информационные технологии позволяют создать систему управления, базовая схема которой, предложена на рис. 1.

Рис. 1. Блок-схема интеллектуальной системы освещения

Первый модуль включает управляемые световые приборы с белыми светодиодами, цветовая температура которых варьируется от 2700 до 6000 К. Это позволяет регулировать интенсивность и спектральный состав освещения.

Второй модуль содержит контроллер и источник питания. Контроллер обрабатывает данные от датчиков и системы компьютерного зрения, управляя световыми приборами. Для реализации предложенной схемы можно использовать DALI контроллер, преобразователь DALI-ШИМ и источники питания с поддержкой управления по ШИМ. Это обеспечит гибкость управления параметрами освещения и сократит расходы за счет отказа от дорогостоящих источников питания поддерживающих DALI.

Третий модуль включает датчики и систему компьютерного зрения для сбора данных о пользователе и окружающей среде. Датчики фиксируют температуру, влажность и освещенность, а система компьютерного зрения анализирует состояние пользователя (диаметр зрачка, частоту морганий, выражение лица). Для связи используются ІоТ-платформы и беспроводные сети (Wi-Fi, Zigbee, Bluetooth).

Четвертый модуль представляет базу данных с оптимальными режимами освещения, разработанными на основе анализа влияния освещения на когнитивные функции, продуктивность и утомляемость. Это позволяет персонализировать освещение под индивидуальные потребности пользователя.

Экспериментальная часть

Реализация системы требует предварительного формирования фотометрических и спектральных режимов освещения, составляющих основу базы данных. Для этого необходимы экспериментальные исследования, первые результаты которых представлены в данной работе. Однако из-за различий в индивидуальном восприятии света и ограниченности методологических подходов данные исследований остаются противоречивыми. Это требует проведения экспериментов, сочетающих анализ объективных показателей (пульс, моргание, реакция зрачков) и субъективных данных (анкеты, тесты, опросы).

В исследовании приняли участие жители города Томска в возрасте от 20 до 23 лет, включая представителей обоих полов. Участники являются студентами без выявленных зрения. Эксперименты проводились с использованием разработанной исследовательской установки [3]. Средняя продолжительность одной серии экспериментов составляла 45 минут. Серия предполагала проведение измерений при различных уровнях цветовой температуры освещения, а именно: 2700 К, 4000 К, 5000 К и 6000 К.

Физиологические реакции участников регистрировались с использованием нагрудного пульсометра. Пример регистрации измерений представлен в табл. 1. Наблюдатель регистрировал время прохождения каждого этапа с точностью до секунд.

Таблица 1 Результаты измерений пульса и общего времени одной серии экспериментов

Номер	Пол	Возраст	Минимальный	Максимальный	Средний пульс	Продолжительность
эксперимента			пульс	пульс		эксперимента
1	Ж	22	73	103	82	228
2			70	89	77	248
3			66	90	77	229
4			70	87	77	209

Для оценки когнитивных функций применялся комплекс из пяти тестов: поиск пути (А и Б), символьная расшифровка, поиск ошибок и различение цветов. Данные методики направлены на анализ таких аспектов когнитивной деятельности, как скорость обработки информации, пространственно-зрительная реакция, уровень концентрации внимания и другие параметры.

Результаты

Когнитивные функции оценивались по результатам тестов 1–5. Время их выполнения при четырех режимах освещения показано на рис. 2. Хотя влияние цветовой температуры требует статистического анализа, уже на примере одного испытуемого видно, что при 6000 К тесты выполняются быстрее, чем при других режимах. Однако при этой температуре отмечалась повышенная усталость глаз.

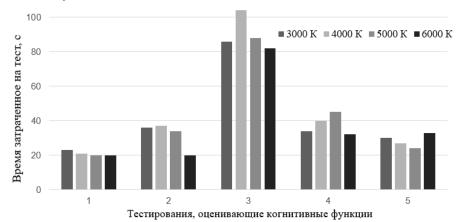


Рис. 2. Зависимость времени прохождения теста от цветовой температуры освещения

Эксперименты выявили влияние цветовой температуры освещения на когнитивные функции и физиологические реакции. Полученные данные подчеркивают необходимость дальнейшего изучения и внедрения адаптивных систем освещения. Важно систематически расширять базу данных, включая новые зависимости между реакциями пользователей и параметрами освещения.

Заключение

Предложенная схема адаптивной системы освещения интегрирует компьютерное зрение и датчики для мониторинга окружающей среды и физиологических реакций пользователей. Это позволяет в реальном времени регулировать цветовую температуру и уровень освещённости на основе собранных данных. Такой подход повышает продуктивность и когнитивные способности, делая систему универсальной и персонализированной. Персонализированные режимы освещения, учитывающие индивидуальные реакции, создают комфортную и здоровую среду, что особенно важно в условиях урбанизации. Внедрение таких технологий улучшает качество жизни и повышает энергоэффективность, делая их актуальными для современных городов и зданий.

Исследование выполнено за счет гранта Российского научного фонда № 25-28-20162, https://rscf.ru/project/25-28-20162/.

Список литературы

- 1. Chen S., Wei M., Dai Q., Huang Y. Estimation of possible suppression of melatonin production caused by exterior lighting in commercial business districts in metropolises // LEUKOS. -2020 Vol. 16, No 2, P. 137–44.
- 2. Houser, K.W.; Boyce, P.R.; Zeitzer, J.M.; Herf, M. Human-Centric Lighting: Myth, Magic or Metaphor? // Light. Res. Technol. 2021. Vol. 53. P. 97–118.
- 3. Шачнева П.В., Колесникова В.А. Осветительная установка для улучшения условий труда работников офиса // Наука. Технологии. Инновации: сборник научных трудов: в 8 ч. / под ред. Е.В. Захаровой. Новосибирск: Изд-во НГТУ, 2025. Ч. 3. С. 111.