ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 296

1976

ИЗМЕРЕНИЕ ФАЗОВОЙ НЕОДНОРОДНОСТИ МАГНИТНОГО ПОЛЯ

А. П. ГРИГОРЬЕВ, И. И. КРИМКЕР, В. Е. ОГАРКОВ

(Представлена научным семинаром научно-исследовательского института электронной интроскопии)

Теоретические и экспериментальные исследования компенсационного метода и устройства, применяемого до сих пор при измерении фазовой неоднородности магнитных полей бетатронов, показали [1], что точность и производительность процесса измерения не удовлетворяют возросшим требованиям бетатроностроения, поэтому целесообразна разработка новых, более точных методов измерения, позволяющих автоматизировать процессы измерения.

Указанные рекомендации были выполнены в предложенных нами устройствах [2, 3], позволяющих одновременно измерять величину и знак сдвига фаз между магнитными потоками на различных азимутах и производить автоматическую запись результатов измерений на ленте самопишущего прибора.

Ниже приводится описание нового варианта устройства, предназначенного для измерения фазовой неоднородности, имеющего ряд преимуществ по сравнению с известным [3].

Из рис. 1 видно, что по принципу построения измеритель представляет собой типичный двухканальный фазометр, в котором осуществляется преобразование фазового сдвига во временной интервал с последующим измерением пропорционального этому интервалу среднего тока [4, 5].

Существенное упрощение известных схем фазометров и возможность одновременного измерения величины и знака сдвига фаз между магнитными потоками без каких-либо дополнительных операций сравнения и переключения оказалось возможным благодаря весьма ценному свойству симметричного триггера с раздельным запуском через диодные клапаны: зависимости полярности выходных импульсов каскада от порядка (очередности) следования входных запускающих импульсов. Это поясняется рис. 2, на котором представлены диаграммы напряжений для случаев отставания (2, а, б) и определения (2, в, г) импульсов с измерительного датчика (подвижного) относительно импульсов с контрольного датчика; для обоих случаев приведены варианты состояния триггера 0 и 1, так как при включении схемы появление их равновероятно.

В схеме прибора на транзисторах T_1 , T_6 собраны усилители ограничители снизу, что необходимо для получения коротких импульсов из достаточно широких импульсов датчиков ($\tau_{\pi} = 10 \div 30$ мксек); на T_2 , T_5 — усилители, на T_3 , T_4 — триггер и на T_7 , T_8 — выходной балансный каскад.

Рис. 1. Принципиальная схема.

*

-

~

10

Рис. 2. Диаграммы напряжений.

Использование для запуска триггера вершин импульсов с датчиков позволяет формировать с его помощью импульсы с минимальной длительностью до 0,5 мксек. Экспериментальное исследование показало, что этот путь наиболее целесообразен, чем, например, применение ограничения сверху, с последующим дифференцированием и запуском триггера импульсами, соответствующими начальным участкам фронтов импульсов с датчиков, поскольку в последнем случае в показания прибора включается некоторая постоянная составляющая (систематическая погрешность), обусловленная разной длительностью импульсов с контрольного и измерительного датчиков

$$\Delta \tau = \frac{\mid \tau_{\rm H,I} - \tau_{\rm K,I} \mid}{2} \,. \tag{1}$$

Она может быть непосредственно определена по показаниям прибора в момент, когда датчики находятся на одном азимуте, и учитывается при измерениях следующим образом: если $\tau_{\rm Kg} > \tau_{\rm ug}$, то при отставании импульса с измерительного датчика нужно добавлять величину $\Delta \tau$ к показаниям прибора, а при опережении — вычитать; и соответственно наоборот для случая $\tau_{\rm Kg} < \tau_{\rm ug}$.

Тот же эффект, что и при использовании ограничения снизу, получается в случае, когда импульс с датчиков с начала дифференцируется, а затем ограничивается и усиливается.

Для автоматизации процесса измерения на выходе балансного каскада вместо стрелочного прибора (M265M) включается самописец, а измерительному диску с помощью привода придается равномерное вращение.

Таким образом, видно, что, используя предлагаемый измеритель, можно существенно повысить точность измерений, так как большая часть погрешностей компенсационного метода, перечисленных в [1], либо существенно уменьшается по величине, либо вовсе устраняется. В частности, устранятся погрешности из-за неточности установки измерительного диска, погрешности из-за наведенной в датчиках ЭДС и токов подпитки, погрешности градуировки датчиков, надобность в которой практически отпадает; замена осциллографа, используемого при компенсационном методе, прямопоказывающим прибором также позволяет уменьшить погрешность измерений почти на порядок. При градуировке измерителя с помощью генератора калиброванных по длительности импульсов было найдено, что погрешность измерения составляет 0,2÷0,3 мксек на шкале 20 мксек, т. е. составляет 1— 1,5% (без учета методологических погрешностей). Проверка экспериментальных образцов прибора показала, что он легко настраивается и градуируется (шкала прибора линейная), а эксплуатация его на различных типах бетатронов показала высокую надежность и удобство в работе. Шкала прибора проградуирована в мксек, однако при необходимости она может быть проградуирована в единицах индукции магнитного поля, при этом шкала остается линейной вследствие малости измеряемых сдвигов фаз (<1°).

Габариты прибора 170×160×130, вес 0,75 кг, питание от промышленной сети, потребляемая мощность 1 вт.

ЛИТЕРАТУРА

1. Л. М. Ананьев, С. Ф. Василевский. Анализ погрешности и производительности компенсационного фазомагнетометра. Известия ТПИ, т. 180, Томск, Изд-во ТГУ, 1970.

2. А. П. Григорьев, В. Е. Огарков. Фазометр для измерения фазовой неоднородности магнитного поля. Авторское свидетельство № 312399 от 28 мая 1970.

3. А. П. Григорьев, В. Е. Огарков. Разработка схем управления и измерительной техники для ускорителей. Тезисы доклада Всесоюзной конференции. «Разработка и практическое применение электронных ускорителей». Томск, Изд-во ТГУ, 1972.

Томск, Изд-во ТГУ, 1972. 4. Р. А. Валитов и др. Радиотехнические измерения. М., «Советское радио», 1970.

5. Фазометр Ф2-4. Описание и инструкция по эксплуатации. Киев, 1969.