ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 130

1964

К ВЫБОРУ ОПТИМАЛЬНОГО ЗАЗОРА В ДРОССЕЛЯХ СГЛАЖИВАЮЩИХ ФИЛЬТРОВ*)

Аспирант Е. И. ГОЛЬДШТЕЙН

Для современных марок электротехнических сталей, в частности для Э-310, суммарная длина оптимального зазора опт может быть определена по формуле из [1 стр. 107]:

$$OUT = 1,6 \cdot 10^{-4} I_0 W \frac{Q_3}{Q_c} \qquad [CM], \qquad (1)$$

I₀ — постоянная составляющая выпрямленного тока;

W — число витков обмотки дросселя;

Q₃ — «уширенная» площадь поперечного сечения зазора;

Q_с — площадь поперечного сечения стали сердечника.

В практике инженерных расчетов, в связи с трудностью определения величины Q_3 , пренебрегают «выпучиванием» и рассеянием магнитного потока [1 фор. (4, 5)]:

$$S_{OIIT} = 1.6 \cdot 10^{-4} I_0 W \qquad [CM] \qquad (2)$$

Но использование формулы (2) приводит к заметным погрешностям, особенно при $I_0 W > 1000 as$, поэтому в большинстве случаев величину оптимального зазора приходится уточнять экспериментально. Задачей настоящей работы является получение графических зависимостей, пригодных для выбора оптимального зазора с учетом как «выпучивания» так и рассеяния магнитного потока.

Для связи между «уширенным» и истинным(Q_0) сечениями зазора используем выражение (3):

$$Q_3 = Q_0 k_{\phi} \quad , \tag{3}$$

где коэффициент фиктивного зазора \mathcal{K}_{ϕ} связывает реальный зазор σ с зазором σ_{ϕ} фиктивного дросселя, имеющего те же геометрические размеры и проводимость основного зазора G_0 , равную полной проводимости G_{μ} магнитной системы рассматриваемого дросселя, т. е.

$$K_{\Phi} = \frac{\delta}{\delta_{\Phi}} = \frac{G_{\pi}}{G_{O}} \tag{4}$$

*) Работа выполнена под руководством доктора технических наук, профессора И. Д. Кутявина. Связь Q₀ с Q_C определяется выражением (5):

$$Q_{\rm C} = Q_0 \ K_{\rm C} \ , \tag{5}$$

где К_с — коэффициент заполнения сталью сердечника. Из (1) с учетом (3) и (5) получим:

$$\delta_{OTT} = 1.6 \cdot 10^{-4} I_0 W \frac{K_{\Phi}}{K_C}$$
 (6)

Перейдем к относительному воздушному зазору б' и удельным ампервитком aw_0 :

$$\delta' = \frac{\delta}{l_{\rm C}} , \qquad (7)$$

$$a\omega_0 = \frac{I_0 W}{l_c} , \qquad (8)$$

где $l_{\rm C}$ — длина силовой линии по стали. Из (6), (7) и (8) получим:

$$\frac{\delta'_{\rm OIIT}}{K_{\Phi}} = 1,6 \cdot 10^{-4} a w_0 \frac{1}{K_{\rm C}}$$
 (9)

Для определения оптимального зазора по выражению (9) необходимо иметь зависимость $\delta'/k_{\Phi} = f(\sigma')$.

В [2] дана методика получения зависимости коэффициента выпучивания $K_{\rm B}$ от относительного зазора. Аналогично можно получить зависимости для коэффициента рассеяния $K_{\rm P}$ и коэффициента фиктивного зазора $K_{\rm \Phi}$, учитывая что: $K_{\rm \Phi} = K_{\rm B} + K_{\rm P} = -0.5$. (10)

На рис. 1 и рис. 2 показаны П-образная схема и ее схема замещения. В таблице 1 приведены основные параметры геометрии, а также координаты полей выпучивания и рассеяния, используемые при определении отдельных проводимостей.

Таблица 1.

	Осн размо	овные еры мл		П	арамет	ры рии	Координаты полей				
a ·	в	с	h	x	у	z	ν' _B	θ″ _в	θ_a	Ө га	
20	24	30	80	1,2	1,5	4	0,5c	a	a	a	

Коэффициент выпучивания определяется по выражению (11):

$$K_{\rm B} = 0.5 \left(1 + g_{\rm \Pi P} \frac{\delta}{ax} \right) , \qquad (11)$$

0,5 — коэффициент, учитывающий наличие двух зазоров; $g_{\Pi P}$ — приведенная проводимость.

$$g_{\Pi P} = g_a + x(g'_B + 0.5g''_B) .$$
 (12)

Удельная проводимость g_a определяется как сумма удельных проводимостей с грани «а» (g_{ra}) и «ребер» торцевой поверхности (g_{pra}).

$$g_a = g_{ra} + g_{pra}. \tag{13}$$

Рис. 2.

57

Аналогично:

$$g'_{\rm B} = g'_{\rm \Gamma B} + g'_{\rm PTB},$$
 (14)

$$g''_{\rm B} = g''_{\rm TB} + g''_{\rm PTB}. \tag{15}$$

Удельные проводимости с грани и «ребер» определяются по экспериментальным кривым, полученным Б. К. Булем [3, фиг. 6, 8, 9]. Использование указанных кривых позволяет учесть влияние на величину удельной проводимости размера полюса в направлении, перпендикулярном рассматриваемой грани (размер Ω). Для определения коэффициента рассеяния необходимо подсчитать полную проводимость рассеяния $G_{\rm p}$:

$$G_{\rm p} = G_{\rm T} = 2\,G_{\rm pra} + 2\,G_{\rm ppa} \tag{16}$$

Проводимость между гранями «в»

$$G_{\rm T} = \mu_{\rm O} \, \frac{b}{c} \, l'_{\rm P} \,, \qquad (17)$$

где расчетная длина поля рассеяния $l'_{\rm P}$ определяется по соответствующей координате поля выпучивания

$$l'_{\rm P} = h - \theta'_{\rm B} . \tag{18}$$

Проводимость между гранями «а» G_{рга} определяем, в соответствии с рекомендациями, по кривым Кремп и Кольдервуда [3, фиг. 13]:

$$G_{\rm pra} = 0.5\mu_{\rm O} g_{\rm pra} l''_{\rm P} , \qquad (19)$$

причем расчетная длина этого поля рассеяния:

$$l''_{\rm P} = h - \theta_{\rm a} \ . \tag{20}$$

Аналогично определяется и проводимость между «ребрами» граней «а»:

$$G_{\rm ppa} = 0.5 \,\mu_{\rm O} \,g_{\rm ppa} l''_{\rm P} \,. \tag{21}$$

Здесь удельная проводимость, при использовании кривой Кремп и Кольдервуда:

$$g_{ppa} = 0, 1.$$
 (22)

Из выражений (16)+(22), учитывая связь геометрических размеров с параметрами геометрии сердечника, получим:

$$K_{\rm P} = 0,5 + 0,333 \frac{\delta}{a} \left[\frac{1}{y} \left(z - \frac{\theta'_{\rm B}}{a} \right) + \frac{1}{x} \left(z - \frac{\theta_{\rm a}}{a} \right) \left(g_{\rm pra} + 0,1 \right) \right]$$
(23)

Необходимо отметить, что выражение (23) получено для коэффициента рассеяния по числу потокосцеплений, т. е. для магнитной системы переменного тока при следующей связи между приведенной ($G'_{\rm P}$) и геометрической ($G_{\rm P}$) проводимостями рассеяния [4]

$$G'_{\rm P} = 0.333 G_{\rm P}$$
 (24).

В таблице 2 приведены основные этапы вычислений, необходимых для получения зависимости $\frac{\delta'}{K_{\Phi}} = f(\delta')$, построенной на рис. 3. На

этом же рисунке приведена зависимость $K_{\Phi} = f(\delta')$ и показаны результаты ее экспериментальной проверки, проведенной при двух. -значениях относительного зазора.

Рис. 3.

Сопоставление расчетных и экспериментальных данных для оптимального воздушного зазора сделано в таблице 3; причем необходимо обратить внимание, что кривые рис. 3 приведены к одному зазору, поэтому и расчетный σ' — на один зазор П—образной системы.

Таблица 2.

$\frac{\Omega}{\Delta} = \frac{a}{\delta}$	2,5	3	4	6	10	15-	Примечание
$\frac{\nu'_{B}}{\Delta}$	1,88	2,25	3	4,5	7,5	11,3	$\Delta = \delta$
$\frac{\theta'_{\rm B}}{\Delta}$	0,7	0,8	1,2	2,4	4,7	7,7	$\Omega = a$
g'rb .	0,74	0,68	0,86	1,18	1,5	1,71	

Таблица 2.

$\frac{\Omega}{\Delta} = \frac{a}{\delta}$	2,5	3	4	6	10	15	Примечание
g′ _{рт в}	0,35	0,34	0,33	0,31	0,29	0,28	
g'B	1,09	1,02	1,19	1,49	1,79	1,99	
$\frac{\Omega}{\Delta}$	2,5	3	4	6	10	15	$\Omega = a$
<u>a</u> <u>d</u>	1,25	1,5	2	3	5	7,5	$\Lambda=0,5\delta$
$\frac{\theta''_{\rm B}}{\Delta}$	2,5	3	4	6	10	15	
g″ _{гв}	1,6	1,66	1,75	1,93	2,16	2,33	
<u>g"ртв</u>	0,35	0,34	0,33	0,31	0,29	0,28	
<i>g</i> ″в	1,95	2,0	2,08	2,24	2,45	2,61	
$\frac{\Omega}{\Delta}$	2,5	3	4	6	10	15	$\Omega = ax$
$\frac{a}{\delta}$	1,04	1,25	1,67	2,5	4,18	6,25	$\Delta = 0,5\delta$
$\frac{\theta_a}{\Delta}$	2,08	2,5	3,34	5,0	8,36	12,5	2x = 2,4
gra	1,46	1,5	1,6	1,75	1,98	2,13	
g рта	0,35	0,34	0,33	0,31	0,29	0,28	
<i>g</i> a	1,81	1,84	1,93	2,06	2,27	2,41	
a · · ·	2,5	. 3	4	6	10	15	
ga	2,06	2,14	2,26	2,4	2,63	2,80	and the second states
$x(g'_{B} + 0,5 g''_{B})$	2,62	2,56	2,84	3,31	3,81	4,21	
gпр	4,68	4,70	5,10	5,71	6,44	7,01	State and the
• Кв	1,28	1,15	1,03	0,89	0,77	0,69	
$\frac{\theta'^{B}}{\delta}$	0,7	0,8	1,2	2,4	4,7	7,7	and the test
$\frac{\theta'_{\rm B}}{\alpha}$	0,28	0,27	0,3	0,4	0,47	0,51	
$\frac{1}{y}\left(z-\frac{\theta'_{\rm B}}{a}\right)$	2,48	2,49	2,47	2,4	2,36	2,33	ora a a
$\frac{1}{x}\left(z-\frac{\theta'_{a}}{a}\right)\left(g_{pra}+0,1\right)$	2,1	2,7	2,7	2,7	2,7	2,7	$\overline{\Delta} = \overline{0,75a};$
Kp	1,69	1,58	1,43	1,28	1,17	1,11	$g_{pra} = 0,98;$
Κφ	1,97	1,73	1,46	1,17	0,94	0,8	$l_{\rm C} = 14, 14a$
0 %	2,82	2,35	1,77	1,18	0,71	0,47	100
$\frac{\circ}{K_{\Phi}}$ %	1,43	1,36	1,21	1,0	0,75	0,59	$\delta' = \frac{1}{a/\delta \cdot 14, 14}$

При определении оптимального зазора было использовано выражение (25):

$$\frac{\delta'_{\rm O}\,\Pi\,T}{K_{\Phi}} = \frac{K_{\delta}}{K_{C}} \,a\,\omega_{0} \,\,, \tag{25}$$

где K_{δ} из выражения (9) равен 1,6·10⁻⁴.

Многочисленные эксперименты, проведенные автором на П и Ш — образных сердечниках, показали, что наилучшее совпадение расчетных и экспериментальных данных получается при коэффициенте K_{δ} равном 1,56·10⁻⁴, что дает при K_{C} =0,9 (для стали Э-310):

$$\frac{K_{\delta}}{K_{\rm C}} = 1, 4.10^{-4} \tag{26}$$

Данные таблицы 3 подтверждают высказанные соображения.

Таблица З.

	льта пери 2нта W	ты 1- оопт <i>ММ</i>	aw ₀ a CM	$\frac{K\delta}{K_{\rm C}} = \frac{\delta'}{\delta'}$	азульта при 1,78 · б' %	аты ра 1С-4 ^б опт <i>ММ</i>	$\frac{K_{\delta}}{K_{C}} = \frac{\delta'}{K_{\Phi}}$	о выр при = 1,4 · д'%	10-4 δ'опт 	ю по выра- жению (2) допт сум. <i>MM</i>	Приме- чание
1 2 [1,6 2 1,8	800 800 800 200 600	0,9 2,0 1,5 5,0 8,3	28,3 56,6 45,2 85 102	0,005 0,010 0,008	0,37 1,2 0,77	1,05 3,4 2,2 	0,004 0,008 0,0064 0,012 0,0142	0,3 0,77 0,51 1,72 2,70	0,85 2,2 1,44 4,86 7,56	1,28 2,56 2,05 3,84 4,6	$l_{\rm C} =$ = 28,3 cm $K_{\rm C} =$ 0 ,9

выводы

1. Предлагаемая методика позволяет получить удобные для инженерных расчетов зависимости $\mathcal{K}_{\Phi} = f(\delta')$ и $\frac{\delta'}{K_{\Phi}} = f(\delta')$ при x = const.

2. Погрешности при использовании полученных зависимостей не превышают 10% в диапазоне 0,4 ≤ δ'% ≤ 3,0

3. Представляется целесообразным получение указанных зависимостей для нормализованных сердечников (z = const, y = const) при нескольких значениях x, перекрывающих возможный диапазон изменения этого параметра.

4. Для определения оптимального зазора при стали Э-310 следует использовать выражение (27):

 $\frac{\delta'}{K_{\Phi}} = 1, 4.10^{-3} \, a \omega_0 \tag{27}$

ЛИТЕРАТУРА

- 1. Бамдас А. М., Савиновский Ю. А., «Дроссели фильтров радиоаппаратуры изд. «Советское Радио», 1962.
- 2. Гольдштейн Е. И., «К учету выпучивания поля при расчете трансформаторов и дросселей с воздушными зазорами», Сборник трудов Томского филиала ВНИИЭМ, 1963.
- 3. Буль Б. К., «Расчет магнитных проводимостей воздушных зазоров для круглых и прямоугольных полюсов». ВЗЭИ 1961.
- 4. Ступель Ф. А., «Электромеханические реле». Изд. Харьковского университета, 1956.