УДК 004

РАЗЛОЖЕНИЕ КАРДИОСИГНАЛА НА ОРТОГОНАЛЬНЫЕ СОСТАВЛЯЮЩИЕ

Вылегжанин О.Н., Демидова О.О., Марченко К.А. Научный руководитель: Вылегжанин О.Н.

Национальный Исследовательский Томский политехнический университет, 634050, Россия, г. Томск, пр. Ленина, 30 E-mail: ok_demidova@mail.ru kopia.kopii@gmail.com

Method of decomposition cardio signal was described. Original cardio record was divided at separate cardio signals with duration of 0.82s. Each cardio signal was written as a column of matrix. Singular decomposition was fulfilled for matrix. Results of proposed method application to analysis of real cardio record was discussed.

Key words: *High-resolution electrocardiography, decomposition at orthogonal parts, principal components analysis, singular expansion of matrix.*

Ключевые слова: Кардиография высокого разрешения, разложение кардиосигнала на составляющие, метод главных компонент, сингулярное разложение матрицы.

В настоящее время в электрокардиографии интенсивно развивается направление, связанное с регистрацией и анализом низкоуровневых составляющих кардиосигнала, так называемая электрокардиография высокого разрешения. Многими авторами показана высокая значимость диагностических признаков, получаемых в рамках данного направления [1–3].

В настоящей работе предложена модель кардиосигнала, при которой он может быть разложен на следующие информативные составляющие [4]:

$$x(t) = a_1 s_1(t) + a_2 s_2(t) + \eta(t) ,$$

где $s_1(t)$ – регулярный процесс заряда-разряда миокарда, обусловленный только геометрическими и электрофизическими характеристиками сердца пациента, $s_2(t)$ – регулярный сигнал, вызванный возмущениями процесса заряда-разряда миокарда, обусловленными патологическими процессами, $\eta(t)$ – случайная помеха.

Совокупность зарегистрированных кардиосигналов представлялась в виде матрицы, в *i*-м столбце которой записан *i*-й зарегистрированный кардиосигнал. При этом все сигналы согласованы относительно положения максимума *R*-пика.

Для этого определялось положение максимума *R*-пика каждого кардиосигнала и для *i*-го сигнала выбирался набор отсчетов кардиозаписи, во временном интервале: 0,11 с до положения максимума *R*-пика и 0,71 с после. Длительность сигнала составляла 0,82 с.

В зарегистрированной кардиозаписи в окрестности максимума *R*-пика наблюдались сильные флуктуации значений потенциала. Для их устранения было выполнено сглаживание отсчетов путем приближения их параболой вида:

$$f(x) = P_n(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n.$$

Коэффициенты полинома c_i были найдены из системы уравнений Ac=y, где c – векторстолбец, содержащий неизвестные коэффициенты c_i , y – вектор-столбец, составленный из табличных значений функции y_i , а матрица A имела вид:

$$A = \begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^n \\ 1 & x_1 & x_1^2 & \dots & x_1^n \\ \dots & \dots & \dots & \dots & \dots \\ 1 & x_n & x_n^2 & \dots & x_n^n \end{pmatrix}.$$

(1)

Были рассчитаны уточненные положения максимумов *R*-пика и построена соответствующая матрица.

Для разложения кардиосигнала использовались матрицы: исходная и уточненная. Обе эти матрицы были обработаны по одному алгоритму:

Вычислялось разложение исходной матрицы в виде [5]:

$$X = U\lambda V^T$$
.

где λ – диагональная матрица сингулярных чисел, а матрицы *U*, *V* – унитарные.

Определялось количество членов разложения из условия $\lambda_i \ge \epsilon$, где ϵ – порог.

Из выражения (1) следует, что каждый кардиосигнал может быть представлен в виде линейной комбинации из столбцов матрицы *U* левых сингулярных векторов:

$$X_{j} = \sum_{i=1}^{k} v_{ij} \cdot \lambda_{i} \cdot U_{i} ,$$

где $v_{ij} - j$ -й элемент вектора V_i .

В качестве демонстрационного примера применения вышеописанной методики приведены результаты обработки реальной кардиозаписи. На рис. 1 показаны графики исходного и сглаженного кардиосигналов.

Рис. 1. Графики исходного сигнала (1) и уточненного (2)

Рис. 2. Графики сингулярных чисел исходной матрицы (1) и уточненной (2)

На рис. 2 представлены графики сингулярных чисел, полученных при разложении исходной и уточненной матриц.

Список литературы

- 1. Иванов Г.Г., Дворников В.Е. Электрокардиография высокого разрешения. М.: Изд-во Российского университета дружбы народов, 1999.
- 2. Simson M.B. Use of signals in the terminal QRS-complex to identify patients with ventricular tachycardia after myocardial infarction // Circulation. 1981. – Vol. 64. – № 2. – P. 235–241.
- 3. Викторов И.В. Современные компьютерные системы для автоматического анализа электрокардиосигналов // Медицинская техника. – 1994. – № 1. – С. 34–35.
- 4. Авдеева Д.К., Вылегжанин О.Н., Пеньков П.Г., Кашуба И.В., Турушев Н.В. Выделение референтного импульса из зашумленной последовательности // Контроль. Диагностика. 2013. № 13. С. 107–110.
- 5. Форсайт Дж., Малькольм М., Моулер К. Машинные методы математических вычислений: пер с англ. М. Мир, 1980. 279 с.