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Abstract. The paper presents modified cathode assemblies, including their main 

characteristics, for plasma electron sources based on a constricted low-pressure arc initiated by 

a discharge in crossed electric and magnetic fields. One of the modified cathode assemblies 

allows the electrode system of the auxiliary discharge to operate at a pressure of ≈ 0.3 Pa, as 

against ≈ 10 Pa before the modification, provides a larger diameter constriction of the pulsed 

(up to  = 250 μs) arc, and thus extends the range of operating currents for the plasma-cathode 

discharge system up to Id = 300 A. The other modified assembly operates at widely varying 

discharge currents Id = 5–100 A, provides lesser amounts of cathode microdroplets at the 

discharge electrodes, and allows the arc to operate at comparatively low voltages. The use of 

cathode assemblies adapted for specific discharge systems extends the capabilities of plasma-

emitter electron sources as well as the range of their applications in scientific and technological 

fields. 

1. Introduction 

Low-pressure arc discharges are widely used in plasma-cathode electron sources [1,2]. This type of 

discharge allows generation of emission plasma in a wide pressure range and provides discharge 

currents of hundred amperes with a single cathode and of several kiloamperes with multicathode 

discharge systems. Due to the low arc operating voltage (tens of volts), the discharge system requires 

low power to operate. In a discharge system of this type, depending on the method of cathode spot 

initiation, an open arc can be used or the discharge current can take the path through a constriction 

channel. This channel provides a pressure difference between the cathode and anode regions of the 

discharge system and hence assists the initiation of an arc. It is known that during the operation of a 

cathode spot at the cathode surface, the cathode is severely sputtered [3]. Separation of the cathode 

and anode regions of an arc discharge impedes the penetration of the sputtered cathode material into 

the anode region. Also, the positioning of cathode assemblies crosswise the electron extraction axis in 

a plasma emitter allows an increase in the dielectric strength of the high-voltage acceleration gap [4]. 

Likely, the increase is also due to lesser amounts of cathode microdroplets formed at the emission grid 

and in the region of the high-voltage acceleration gap during the cathode spot operation. 

The paper presents modified cathode assemblies for two types of plasma-cathode electron sources 

with a grid-stabilized plasma emission boundary. The characteristics of the discharge systems before 

and after modification of its cathode assemblies are compared. 
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2. Cathode assembly for a wide-aperture pulsed electron source 

The cathode assembly was developed for a modified DUET wide-aperture (≥  10
3
 cm

2
) pulsed 

electron source with a grid plasma cathode [5]. The proposed cathode assembly (figure 1), which 

replaces the unit of cathode spot initiation by a dielectric flashover [6,7], is such that the hollow anode 

and the emission grid are screened from the cathode spot (from its line of sight) and the penetration of 

the cathode material into the anode region of the discharge is thus decreased. The cathode spot in the 

hollow cathode is initiated by a low-pressure gas breakdown at a point on the left branch of the 

Paschen curve close to its minimum. The use of hollow electrodes (cathode and trigger electrode) at 

fixed gas flow rates makes it possible to decrease the voltage for a discharge to arise and transform 

into an arc. At an applied voltage of amplitude ≈  10 kV, a glow gas discharge is ignited between 

hollow cathode 4 and trigger electrode 1 with subsequent initiation of a cathode spot and glow-to-arc 

discharge transition. The gas breakdown obviates the necessity of using a dielectric which, being 

contaminated by the cathode material, decreases the lifetime of the cathode assembly [6,7]. 

For easier ignition of the discharge and its stabilization at low gas pressures, when the discharge 

operates mostly in vapors of cathode material 4 (figure 1), the cathode is made of magnesium whose 

ionization potential and melting temperature are rather low [8].  

The use of permanent ring magnet 3 (figure 1) provides a magnetic field distribution with a 

maximum field strength in the expanded region of trigger electrode 1, and this lengthens the paths of 

electrons and increases their interactions with the gas supplied to the discharge system. At the same 

time, due to the ability of a cathode spot to shift toward the acute angle the magnetic field lines make 

with the cathode, the spot is confined at the cathode surface by the magnetic field [9]. Therefore, in 

this magnetic field geometry, the cathode spot is held at the inner face of hollow cathode 4 facing 

trigger electrode 1 and provides stable operation of the discharge with decreasing minimum arc 

current. If the cathode spot leaves the working face of the cathode for its lateral surface, the discharge 

continues to operate because the magnetic field returns the cathode spot back to the cathode face. 

It should be noted that in cathode assemblies based on a Penning cell [10], the arc discharge is 

constricted in the hole of one of the electrodes which, as a rule, is placed at floating potential, and this 

increases the discharge operating voltage. A plasma bunch surrounded by the electric double layer of 

the space charge, which provides electron acceleration and focusing, is normally formed from the 

cathode side of the constriction channel [11]. The typical voltage across the layer is 50–80 V and this 

provides a high ionizing capacity of electrons accelerated in the layer. The constriction channel 

produces an additional pressure difference between the plasma generation region and the high-voltage 

acceleration gap, thus allowing an increase in the dielectric strength of the latter. However, a decrease 

in gas flow rate or an increase in discharge current results in arc current cutoffs in the constriction 

channel, making possible the initiation and stable operation of a cascade arc at a comparatively high 

voltage but widely varying discharge current amplitudes and durations [10]. 

The constriction hole in the new cathode assembly is 4 mm in diameter which provides 

comparatively high discharge current densities at fixed durations with no arc current cutoffs, as 

opposed to cathode assemblies based on a Penning cell [10,12]. If we compare the current-voltage 

characteristics (figure 2) for low-pressure arc discharges with cathode assemblies based on a Penning 

cell [13] (curve 1), open arc [16] (curves 3,4), and arc produced in the proposed design (curves 2,5), it 

can be seen that the discharge operating voltage in the latter case is lower. The lower discharge 

operating voltage is due to the absence of external magnetic field effects on the main discharge, which 

actually decrease the anode area for the discharge current to take path through (compared to curve 1), 

and to the processes occurring in the cathode region of the discharge (compared to curves 3,4). In the 

new cathode assembly, the effect of the external magnetic field on the current of the main discharge is 

eliminated by using ferromagnetic insert 6 (figure 1) which precludes the magnetic flux from the 

permanent magnet in the hollow anode region of the main discharge.  

With an external magnetic field, the ionization processes occurring in the cathode assembly, 

namely the enhanced interaction of primary magnetized electrons with atoms of the working and 

residual gas at a constant electron free path, lead to a decrease in the voltage across the near-cathode 

layer compared to the cathode assembly based on an open arc [6,7]. With no external magnetic field in 

the new cathode assembly, the discharge operating voltage increases (figure 2, curve 2) because the 
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number of interaction events between the primary electrons and the working gas at the same electron 

free path length decreases. The chosen hole diameter (4 mm) in the proposed cathode assembly allows 

a decrease in the amount of microdroplets from the cathode to the plasma emitter and acceleration gap 

with no constriction-induced cutoffs of the discharge current at a low discharge operating voltage. 

Life tests of the new cathode assembly show that compared to the cathode assembly with cathode 

spot initiation by a dielectric flashover, the increased mass of the cathode with its re-sputtering due to 

the hollow design and the absence of a dielectric insert on which the cathode material is deposited 

have made it possible to decrease the wear of the cathode and lengthen the time of stable operation of 

the cathode assembly to ≈  10
7 
pulses. 

 

3. Cathode assembly for an intense pulsed electron source 

The cathode assembly was developed for a SOLO electron source [14–16]. The source is based on an 

arc discharge with a grid plasma cathode; the discharge current is Id=20–300 A, the pulse duration is 

up to  = 200 μs, the initial beam diameter is 40–60 mm. The cathode assembly is similar in its basic 

design and principle of operation to that shown in figure 1. Its modification brings the auxiliary 

discharge system closer to a reflex discharge (figure 3). Ring electrode 2 serves as the anode of the 

reflex discharge. Resistor Rc provides the formation of a cathode spot at main magnesium cathode 1 

without its formation at auxiliary cathode 5. After the initiation of the cathode spot, the main arc 

discharge takes the path from cathode 1 through constriction channel 4 to an emission grid anode (not 

shown in the figure). 

The change in the electrode configuration allowed us to decrease the pressure required for auxiliary 

discharge initiation from 5–10 to 0.2–0.3 Pa. The decreased requirements on the pressure difference in 

the discharge system made it possible to increase the diameter of 12-mm constriction channel 4 from 6 

to 10–11 mm with a simultaneous decrease in the auxiliary discharge initiating voltage (figure 4). Till 
the instant at which the auxiliary discharge was ignited, the rate of voltage rise was 0.8 kV/μs. The 

discharge initiating voltage was fixed at the point of a steep voltage drop. Noteworthy is the effect of 

the anode geometry in the reflex discharge on its initiating voltage. In experiments, the anode width 

was 6 and 23 mm. The anode of larger size made it possible to decrease the auxiliary discharge 

initiating voltage at low gas (Ar) pressures but somewhat impaired the conditions for discharge 

ignition in the operating pressure range of the electron source (p = 25–100 mPa). 

 

 

 
Figure 1. Cathode assembly: 1 – trigger 

electrode with gas supply, 2 – insulator, 3 – 

ring magnet, 4 – hollow magnesium cathode, 

5 – stainless steel nut, 6 – ferromagnetic 

insert; PS1 – auxiliary discharge power 

supply, PS2 – arc discharge power supply. 

 Figure 2. Current-voltage characteristics of 

arc discharges at p = 50 mPa (Ar) for different 

cathode assemblies: 1 – cathode assembly 

based on a Penning cell [13]; 3,4 – cathode 

assembly based on an open arc with a 

tungsten and magnesium cathode, 

respectively [7]; 2,5 – new cathode assembly 

with no and with a ring magnet, respectively. 
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The increase in the diameter of channel 4 allowed us to stabilize the arc discharge at low pressures and 

to increase its maximum current, which was limited before the modification (in part of the pulses) by 

cutoffs of the discharge current at low gas flow rates and pressures in the discharge system (figure 5). 

On cutoffs of the discharge current, the rate of current rise is defined by the inductance of the isolation 

transformer in the discharge power supply; the transformer is also responsible for the voltage polarity 

reversal in the discharge gas on completion of the discharge current pulse. The amplitude of the 

discharge current with no cutoffs for the channel of diameter 11 mm is no less than Id = 300 A (figure 

6). Figure 7 presents current-voltage characteristics of the main arc discharge for the cathode assembly 

before and after the modification. The increase in the discharge operating voltage Ud with decreasing 

discharge current can be due to a decrease in the no-load voltage of the arc power supply and 

associated impairment of the discharge operating conditions. The arc discharge operating voltage Ud 

depending on the pressure p is shown in figure 8. It is seen that the pressure dependence of the voltage 

is strong. 

 

 

0,02 0,04 0,06 0,08 0,10

1

2

3

4

5

6

7

8

4

3

2

U
tr

, 
k

V

p, Pa

1

 

Figure 3. Cathode assembly with arc initiation 

by a reflex discharge. 1 – Mg cathode, 2 – 

anode, 3 – permanent magnet, 4 – constriction 

channel, 5 – auxiliary cathode. PS1 – auxiliary 

discharge power supply, PS2 – arc discharge 

power supply. 

 

 Figure 4. Auxiliary discharge initiating 
voltage Utr vs the pressure р at a constriction 

channel diameter of 6 (1), 11 (2), 10 (3), and 

11 mm (4); the width of the reflex discharge 

ring anode is increased from 6 to 23 mm. 

 

 

 

Figure 5. Typical waveforms of the discharge 

current Id (1) and voltage Ud (2) for the non-

modifed cathode assembly at p = 45 mPa. 
Scale: 100 A/div, 50 μs/div, 40 V/div. 

 Figure 6. Typical waveforms of the discharge 

current Id (1) and voltage Ud (2) for the 

modified cathode assembly at p = 45 mPa. 
Scale: 100 A/div, 50 μs/div, 40 V/div. 
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Figure 7. Current-voltage characteristics of the 

arc discharge for the cathode assemblies with a 

constriction channel diameter of 6 (1,2) and 11 
mm (3,4) at р=0.067 Pa (1,3) and р=0.11 Pa 

(2,4). 

 Figure 8. Arc discharge operating voltage Ud 
vs the pressure р at a discharge current of 

150 (1,4) and 250 A (2,3) for the cathode 

assemblies with a constriction channel 

diameter of 6 (2,4) and 11 mm (1,3). 

4. Conclusion 

Thus, the modification of the cathode assemblies of electron sources through changing the mechanism 

of cathode spot initiation (the use of a gas discharge and a reflex discharge, instead of a dielectric 

flashover) and through optimizing the constriction channel for a specific operating range of the plasma 

cathode discharge systems made it possible to greatly improve the operation of the devices. The 

operating current range of the discharge systems was extended and the time of stable operation of the 

electron sources in the mode of electron beam generation was increased. 
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