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Abstract. A mathematical model of an adaptive optics system was described in the article. The 

model included two main components: the model of an adaptive mirror and model of beam 

propagation under conditions of thermal blooming. Results of numerical simulation of adaptive 

optics systems were compared with data of laboratory experiments. High reliability of the 

model was shown. 

1.  Introduction 

Adaptive optics systems are extensively used nowadays to correct distortions of laser beams 

propagating on atmospheric paths [1]. A schematic diagram of such system is shown in Figure 1. As is 

well known, beam propagating in the atmosphere suffers from random variations of the index of 

refraction and from thermal distortions induced by heating of the medium. As a result, in the plane of 

observations the amplitude profile of the beam is severely distorted. In adaptive systems the 

information about distortions transmitted by the loop to the active element which forms a phase profile 

of the beam according the algorithm of correction. Effectiveness of compensation for distortions 

depends on the precision of beam parameter registration, on the control algorithm of the system, on the 

rate of control, and on the quality of the phase profile formed by the active element. A flexible mirror 

with continuous reflecting surface is used usually as an active element of adaptive systems [2]. 

 
 

Figure 1. A schematic diagram of an adaptive optics system 

 

In the current paper a model of the flexible mirror is presented along with a model of beam 

propagation in a medium. The results of numerical simulation are compared with the data of the 
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laboratory experiment, and the possibility of using a developed model in investigations of beam 

correction effectiveness is assessed. 

2.  A model of an adaptive optics system 

The whole model of an adaptive system, as it follows from the diagram shown above (Figure 1), 

should include a model of a mirror, a model of beam propagation in a medium, and an algorithm of 

beam control. The model of the mirror used in our investigations was built on the basis of techniques 

developed by S. Chesnokov [3, 4]. Theauthorassumedthatan adaptive mirror can be represented as a 

thin plate controlled by forces applied at discrete points. After that the finite element method was 

applied to calculate deformations of the plate [4]. Application of the model in problems of adaptive 

optics was demonstrates in the numeric experiment simulating the multidither system of thermal 

blooming correction [5]. 

Following the papers by S. Chesnokov we extended the model. In the first publications on the 

subject we described the model with an increased number of actuators (from 4 to 20, Figure 2) and 

assessed its application in the phase conjugation algorithm [6, 7]. Along with the advanced technology 

of modern computers the limits on calculation grid dimensions were shifted, and control of the mirror 

surface was realised at 500 points. Also we developed a model of the adaptive corrector controlled by 

forces and by moments of forces which was used in simulation of the laboratory experiment of 

correction for thermal blooming [8]. 

 

                         

 

 
(a)                                                            (b) 

Figure 2. A model of the mirror controlled by forces applied at discrete points: a) top view, b) side 

view 
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(a)                                                            (b) 

 

Figure 3. Model of the mirror controlled by moments of forces: a) top view;b) side view:1-a 

stepper motor, 2 -a reflective surface 
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One more model developed for adaptive optics applications wasa model of a dynamic mirror taking 

into account oscillations of the reflecting surface due to deformation of the plate [9]. In corresponding 

equations the mass and inertia of the plate were allowed for and transient processes were calculated 

[10]. Hence it follows that mathematical models of the listed above correctors are presented. 

Inapproximationofathin plate static deformations W(x,y) of the corrector can be described by the 

following equation [10]: 
4 4 4

2 2 2 2
2 ( , )

W W W
D f x y

x x y y
. 

 

(1) 

Herexandyare Cartesian coordinates in the plane of the mirror, 
3 2(12(1 ))D Eh is cylindrical 

rigidness,  is the Poisson coefficient, Eis Young's modulus, h is thickness of the plate, and  f(x, y) 

are a load applied normally to the plate. 

If the plate is controlled by a system of discrete forces jP , the load can be represented in the form:  

 

1

( , ) ( , )j j j j

j

f x y P x x y y S , 
 

(2) 

jx and jy  – arecoordinatesofactuators, jS is its area, and  is the number of actuators.  

Border conditions should be written for all points of plate contour L. Conditions characterizing free 

edges of the plate can be formulated as: 

2 2 2 2

2 2 2 2
0, (2 ) 0
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W W W W
D D

nn n
. 

Here n and  are normal and tangential partial derivatives correspondingly.  

If normal force jP  and moment jT are applied to points jL on the perimeter of the plate, the border 

conditions should be changed to the form: 

2 2

2 2

,j j j
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where jx and jy are coordinates of the point where the force is applied, and jl is a distance between 

points. 

Conditions corresponding to the points inside the contour of the plate can be written in the same 

way, for example, if a point fixed rigidly: 

(0,0) (0,0)
(0,0) 0

W W
W

x y
. 

Solution to Eq. 1 with the border conditions given above is difficult to obtain analytically, so 

numerical models of the mirror were developed on the basis of the finite element method [4]. 

According to the method, all surface of plate W(x,y) is divided into small sections  (finite elements), 

and in each section a local coordinate system with axes O , O  is set up. So instead of calculation of 

the whole plate deformation, we determine only deformation of each finite element ( , )W . Elements 

should be joined by cinematic and dynamic border conditions, so the total set of finite elements forms 

the model of the whole plate. 
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Consecutively, the shape of finite element surface ( , )W  is approximated by a linear form of 

base functions ( , )Ш : 

( , ) ( , )TW Ш a q . 
(3) 

Here ( , )T
Ш is a vector of base functions, and superscript ‘T’ signifies the operation of a vector 

transposing. a is a matrix of coordinates transformation and q is a vector of generalized coordinates. 

As generalized coordinates shifts Wr and tilts r , r in nodes of the calculation grid are taken usually as 

[3, 4], so in each node (the number of nodes is R) the model is characterized by three variables. 

The vector of generalized nodal forces 

P

Q N

T

 

 

(4) 

is conjugated with coordinate vector q.  In Eq. 4 P is a vector of normal forces and vectors N and T are 

vector of force moments relatively axes and . 

The principle of virtual displacements is possible to apply in order to obtain equation relating 

vectors q and Q [3]: 

 

0m f QU A A A . (5) 

 

In Eq. 5 U is variation of the element potential energy, mA is the virtual work of inertia forces, fA

is virtual work of applied load, and 
T

QA q Q  is the work of forces of interactions. 

To obtain the equation describing deformation of the whole model we should, firstly, take into 

account continuity of the generalized coordinates in the nodes of the calculation grid and, secondly, 

equilibrium of forces in these nodes. As a result,  

( , ) ( , ) ( , ) fx y x y x yM W G W K W Q  . (6) 

 

Matrices M , G , and K have the same meaning as those described earlier, but now they are 

written for the whole model. fQ is a vector of external forces applied to the plate. A solution to Eq. 

6 is possible to find with application of numeric methods, and in this particular problem Runge-Kutta 

method was used [11]. 

Calculation of static deformations allows one to simplify Eq. 6 and obtain the formula: 

( , ) fx yK W Q , (7) 

so the shape of the plate can be found as 

( , ) fx yW L Q , (8) 

here
1

L K is a matrix inverse relatively to K . 

Another model required in numerical experiments is a model of beam propagation in an 

atmosphere. Propagation of a beam in the randomly inhomogeneous absorbing medium is 

characterized by the wave equation written in the approximation of quasioptics: 

 
2 2 2

nl2 2
0

2
E E E k

ik n n E
z nx y

 , 

 

(9) 

 

MEACS2015 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 124 (2016) 012063 doi:10.1088/1757-899X/124/1/012063

4



 

 

 

 

 

 

where , , ,E E x y z t  is the complex amplitude of the field,  2k  is a wave number,  is a wave 

length. Variables in the problem were normalized as follows: in the direction of the laser beam 

propagation (Z-axis) on the diffraction length 
2

0dZ ka  ( / dZ Z Z ), and in the direction 

perpendicular to the path on the initial radius of the beam 0a   ( 0/x x a , 0/y y a ). In Eq. 9 n is 

random fluctuations of the refractive index induced by turbulence (not taken into account), and nln is 

variations induced by heating of the medium. The influence of heating on the laser beam form is called 

the effect of thermal blooming. Eq. 8 was solved with the use of the splitting method. 

3.  Comparison of experimental results with results of numerical simulation 

To validate the developed model of an adaptive system the results of numerical experiments were 

compared with the data found in references. Particularly, variables characterizing the model were put 

in correspondence to parameters of the mirror built at the Institute of Optics and Electronics, Chinese 

Academy of Sciences [12]. The parameters of the mirror were the following: the diameter was 20 mm; 

the maximum shift of the reflecting surface – 1.0 m, and the resonance frequency – 30 kHz. The 

mirror was controlled by 19 actuators attached to the plate at discrete points. Calculation of actuator 

response functions demonstrated a 10% deviation of numerical results from the published 

characteristic of the mirror. High precision of the model was assumed. 

One more opportunity to compare theoretical and experimental data emerged after publication of 

the experimental results of correction for thermal blooming [13]. In the optical system employed in the 

investigations the phase profile of radiation was formed by the flexible mirror controlled by moments 

of forces. Schematically the mirror is shown in Figure 3. Distortions of the beam were developed as a 

result of propagation in a cell filled by semitransparent liquid. The flux of the medium was simulated 

by rotation of the cell. The amplitude distribution of the beam was registered by a video camera, and 

the main characteristics of the radiation, such as shifts Cx and Cy of the beam centroid in Cartesian 

coordinate system, radii x and y , as well as maximum intensity mI are calculated by a specially 

developed software. The information obtained as a result of calculations was used for generation of 

mirror control signals. Adaptive correction was realized with the use of the multidither algorithm. The 

vector characterizing amplitude distribution of the beam was chosen as a goal function of correction. 

Vector J had the following components: 
2 2

1 0 2 0 3 0

2 2 2 2
4 5 6

; ; ;

; ; .

C C

x y xx x y

J x x J y y J

J J J
 

Here 0 is the radius fan undistorted beam. 

A qualitative comparison of results was made with the use of photographs of laser beam amplitude 

profiles taken before and after correction (Figure 4). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Comparison of experimental and theoretical results. The beam amplitude profile 

registered experimentally before (a) and after correction (b). Corresponding results obtained in 

numerical experiment (c and d) 
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In the same picture the profiles registered in numerical experiments were presented. As one can 

see,the beam shape and its changes are practically the same in both cases. 

A comparison of results in absolute units was impossible so we introduced a relative criterion 

characterizing the effectiveness of correction: 

0

0

100%
opt

J

J J

J
, 

here optJ is some parameter of the beam (radius, maximum intensity, oracentroid shift) obtained as 

result of correction and 0J is the same parameter registered before application of adaptive control. 

Experimentally obtained criteria Im, ,x y describing changes of radii ,x y  and maximum 

intensity of the beam mI  are presented in Table 1. In the same table the results of numerical simulation 

are shown. 

 

Table 1.Experimental and theoretical results 

 
x  y  

Im  

Laboratory experiment  -24 -55 107 

Numerical experiment -26 -50 344 

 

As one can see the larges discrepancy was registered for maximum intensity of the beam mI , but 

this variable is a local characteristic of the beam measured with less precision as compared to its 

integral characteristics x and y . 

4.  Conclusions 

The experimental data and results of numerical investigations presented here have demonstrated high 

reliability of the developed model. The model can be used in simulation of real experiments in 

adaptive optics. 
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