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ABSTRACT 

 The master thesis contains 84 pages, 37 figures, 20 tables and 33 references.  

Key words: Nanofluids, Natural convection, Vertical flat plate, Single-phase 

model, Buongiorno’s model, Full Navier–Stokes equations, Numerical method. 

 Steady state natural convection heat transfer from an isothermal vertical wall 

embedded in a water-based nanofluid is studied numerically using single-phase 

model (Tiwari and Das model) and double-phase model proposed by Buongiorno.  

 The Buongiorno's model takes into account two important slip mechanisms 

in nanofluids including Brownian motion and thermophoresis. The study is 

formulated in terms of the dimensionless stream function, temperature and 

nanoparticles volume fraction. The governing equations in the case of single-phase 

model and double-phase model were formulated using boundary layer approach 

and were transformed to the set of ordinary differential equations using similarity 

method. Numerical analysis of the ordinary differential equations with 

corresponding boundary conditions has been performed using an in-house 

computational code (Runge–Kutta method with shooting technique) and also using 

function BVP4C in Matlab system. In the case of full Navier–Stokes equations, 

simulation on the basis of a single-phase model has been conducted using also an 

in-house computational code in dimensionless stream function, vorticity and 

temperature. These partial differential equations with corresponding boundary 

equations have been solved by finite difference method of the second-order 

accuracy. Efforts have been focused on the effects of key parameters such as 

nanoparticles volume fraction, material of nanoparticles, shape of nanoparticles, 

Lewis number, buoyancy-ratio parameter, Brownian motion parameter and 

thermophoresis parameter on the velocity profile, temperature profile and profile of 

nanoparticles volume fraction. Reduced Nusselt number and skin friction number 

are presented. It is found that the solutions for velocity and temperature in the case 

of single-phase model is the same as the solutions in the case double-phase model 

at certain values of key parameters. 
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1. INTRODUCTION 

 Starting in the 1980’s, we have gradually become familiar with 

nanotechnology. Definitions, phrases about nanotechnology are no longer strange 

with human life, obviously, nanotechnology is changing the life around us thanks 

to human’s influence on nanoscale. In this size, nano-materials show lots of 

promising properties. Thanks to potential users resulted from their properties, 

nanoparticles have been in the focus of many researchers. We can find out 

common applications such as: biomedicine, magnetic resonance imaging, data 

storage, environment remediation, heat transfer enhancement, etc. In recent years, 

one of nano-materials, which has attracted considerable attention, is nanofluid. 

Nanofluid is a suspension of nanoparticles in a base “conventional” fluid such as 

water, oil, ethylene glycols. The nanoparticles can be made of metals, oxides or 

carbon nanotubes. Nanofluids perform enhanced thermal conductivity and 

convective heat transfer coefficient as compared to the clear fluids. This new 

material provides an expectation that the present level of cooling technology can 

be improved significantly by creating fluids that are more conducting. Nanofluids 

were found to be very stable due to the small size of the particles and the small 

volume fraction of the particles needed for heat transfer enhancement. The 

discovery of nanofluid brought to our world a new brand of research including not 

only theoretical but also experimental works. Several thousands of publications in 

well-known journals have been carried out by researchers for nearly twenty years. 

In Fig. 1 we can see the exponentially increasing number of publications 

concerning nanofluids from Journal published in Web of Science data base. More 

attention to nanofluids can also be seen in the number of research groups in the 

most prestigious institutions worldwide such as Massachusetts Institute of 

Technology (MIT) and Royal Institute of Technology (Sweden). Moreover, 

research groups concerning nanofluids are being established in different industries 

such as electronic devices, heat exchangers, biomedicine. Nanofluid technology 

will thus be an emerging and exciting technology of the twenty-first century. With 

the continued miniaturization of technologies in many fields, nanofluids with a 

http://en.wikipedia.org/wiki/Biomedicine
http://en.wikipedia.org/wiki/Magnetic_resonance_imaging


capability of cooling high heat fluxes would be extremely important in the 

advancement of all high technology. 

 

 

Fig. 1. Annual number of publications in ISI journals 

from Web of Science database 

 

 The concept of nanofluids originated from the higher thermal conductivity of 

metals in solid form as compared to thermal conductivity of traditional heat 

transfer fluids such as water, ethylene glycol, engine oils. As a result, investigators 

go to a new idea that the thermal conductivities of conventional heat transfer fluids 

could be significantly increased by dispersing nanoparticles with high thermal 

conductivities to the base fluids. The thermal conductivities of different materials 

at room temperature (25 
o
C) are shown in Table 1. 

 

Table 1. Thermal conductivity at 25 
o
C of various materials 

Material Thermal Conductivity (W/mK) 

Air 0.024 

Aluminum 205 

Aluminum Oxide 30 



Copper 401 

Diamond 1000 

Engine Oil 0.15 

Ethylene Glycol 0.25 

Water 0.613 

Carbon Nanotubes 3000 

Iron 80 

Iron Oxide 0.58 

Silver 429 

 

 Nanofluids come to our world and address two problems of conventional 

approach: the rapid settling of millimeter or micrometer-sized particles in fluids 

and the low conductivities of suspensions with low particle concentrations. In 

addition, such kind of nanofluids can help to avoid clogging in very small devices. 

In 1995, being aware of the superior properties of nanoparticles, Stephen U.S. 

Choi, who is a member of American Society of Mechanical Engineers, proposed 

an idea of dispersing nanometer-sized particles with typical length scales from 1 to 

100 nm in base fluids. The obtained fluids in his research exhibited a heat transfer 

coefficient of two times higher than traditional fluids. The much greater thermal 

conductivity of nanofluids can be explained by the higher surface/volume ratio of 

nanoparticles, because heat transfer appears mainly on the surface of particles. We 

can also adjust the thermal conductivity and suspension stability of nanoparticles 

by changing their sizes. 

 There are two ways to produce nanofluids: one-step and two-step production 

methods. The two-step method first makes nanoparticles and then disperses them 

in host fluids. In the one-step method, we have to make and disperse nanoparticles 

into base fluids simultaneously.  

 The two-step technique is applied for nanofluids containing oxide 

nanoparticles and carbon nanotubes. Nanofluids manufactured by two-step method 

have to face some disadvantages: individual particles quickly agglomerate before 



dispersion, and the settling of nanoparticle agglomerates in the liquids. As a result 

of poor quality of dispersion, the significantly enhanced thermal conductivity can 

not be achieved. 

 The one-step method can be divided into physical method and chemical 

method. The physical method can be used for creating non-agglomerating 

nanoparticles by condensing nano-phase powder from the vapor phase directly into 

a flowing low-vapor-pressure fluid. This physical method can produce stable and 

well-dispersed nanofluids with a great enhancement of thermal conductivity. The 

one-step chemical method developed by Zhu et al. [1] is faster and cheaper than 

physical method. 

 

1.1. Experimental works 

 Many experimental works have discovered some distinctive features of 

nanofluids such as strong temperature-dependent thermal conductivity, strong size-

dependent thermal conductivity. It can be found in some experiments on 

nanofluids that the laminar convection heat transfer coefficient increases by two 

times and critical heat flux increases by three times. Those superior properties of 

nanofluids can promise a revolution in heat removal technology. Copper nanofluid 

in the experiment by Eastman et al. [2] showed a 40% increase in the thermal 

conductivity at the volume fraction of only 0.3%. This experiment has 

demonstrated that metallic nanofluids with much lower concentration can be stable 

and possess much higher conductivity than nanofluids of oxides. Various other 

researches confirmed the non-linear relationship between thermal conductivity and 

concentration. Multi-Walled Carbon Nanotubes (MWCNTs) nanofluid in the 

experiment by Choi et al. [3] showed a 150% increases in the conductivity with 

only 1 vol% nanotubes. This experimental result is in contrast to theoretical 

predictions which exhibited a linear relationship. Hong et al. [4] also discovered 

the nonlinear relationship in the case of Fe-ethylene glycol nanofluids. It has been 

found that the Al70Cu30 nanofluids in the experimental work by Chopkar et al. [5] 

possess 200% enhancement in thermal conductivity at 2.0 vol% Al70Cu30 particles.  



 Das et al. [6] claimed that the temperature-dependent conductivity of 

nanofluids is much stronger than conventional fluids. In this experiment on Al2O3 

and CuO water-based nanofluids, the thermal conductivity increases by 2 to 4 

times with temperature change between 20 to 50 
o
C. In addition, the strongly size-

dependent thermal conductivity of nanofluids is confirmed in the discovery by 

Chon et al. [7]. One year later, Chopkar et al. [5] measured the effect of particle 

size on the thermal conductivity of Al70Cu30 ethylene glycol-based nanofluids.  

 Nanofluids have been found to possess not only enhanced thermal 

conductivity but also better convective heat transfer coefficients. The laminar heat 

transfer coefficient can increase by 2 to 3.5 times for nanofluids. In 2004, Ding and 

Wen [8] studied a nanofluid containing 0.5 wt% of carbon nanotubes and they 

discovered that the convection heat transfer coefficient enhanced by 350% at 

Re = 800. Moreover, Xuan and Li [9] also showed their results in the significant 

increase of turbulent heat transfer coefficient of nanofluids. However, we see a 

different picture in the case of natural convection heat transfer coefficient. A study 

on natural convection of nanofluids was performed for the first time by Putra et al. 

[10]. This experiment performed that the decrease in natural convection heat 

transfer coefficient increases with concentration of nanoparticles. 

 Many researchers have studied boiling heat transfer in nanofluids. Some 

researchers claimed out the deterioration of pool boiling in nanofluids, but others 

also showed their results with increase of boiling heat transfer coefficient. In the 

case of critical heat flux (CHF), all investigators come to a conclusion that 

nanofluids possess the enhancement of CHF. This enhancement in CHF promises 

applications in many different industries such as reactors, lasers. 

 

1.2. Theoretical works 

 Conventional models for heat conduction, convection, or boiling can not 

explain thermal properties of nanofluids. Therefore, a lot of studies are focusing on 

new physical concepts, mechanisms and new models for the enhanced thermal 

conductivity, critical heat flux, and the convection heat transfer coefficient of 



nanofluids. Wang et al. [11] for the first time explained the enhanced thermal 

transport in nanofluids by particle motion, surface action and suggested the size-

dependent thermal conductivity of nanofluids. Xuan and Li [12] introduced the 

increased surface area of nanoparticles, particle-particle collisions, the dispersion 

of nanoparticles. Keblinski et al. [13] recommended four microscopic mechanisms 

for the significantly increasing of thermal transport of nanofluids including: 

Brownian motion of the particles, molecular-level layering of the liquid at the 

liquid-particle interface, the ballistic rather than diffusive nature of heat conduction 

in the nanoparticles, and the effects of nanoparticle clustering. Yu and Choi [14] 

developed a renovated Maxwell model for the effective thermal conductivity of 

solid-liquid suspensions and then they renovated Hamilton-Crosser model. 

However, these models can not explain the nonlinear behavior of nanofluid 

thermal conductivity. On the basis of liquid layering mechanism and the average 

polarization theory, Xue [15] introduced a structure model, which was able to 

predict the nonlinear behavior of nanofluid thermal conductivity. Xie et al. [16] 

suggested the effect of the shape (spherical and cylindrical) of nanoparticles on 

enhancement of nanofluid thermal conductivity. The strongly pH-dependent 

thermal conductivity was reported by Lee et al. [17]. Yu and Choi [14] were first to 

suggest the nonlinear dependence on the particle-volume fraction of the thermal 

conductivity of nanofluids containing spherical nanoparticles.   

 Most of dynamic models consider nanoparticle motion as the main reason 

for enhanced thermal transport in nanofluids. Nanoparticle motion is also the 

reason for the strongly temperature-dependent thermal conductivity of nanofluids. 

A lot of investigators studied Brownian motion of nanofluids and they tend to 

conclude that Brownian movement of nanoparticles is primarily responsible for the 

enhanced thermal conductivity of nanofluids.  

 The significant enhancement of convective heat transfer of nanofluids as 

compared to base fluids has inspired some researchers to propose new models of 

enhanced convection heat transfer coefficient under both laminar and turbulent 

flow. Xuan and Li [12], Xuan and Roetzel [18], Khaled and Vafai [19] suggested 



models, which considered thermal dispersion as a possible explanation for 

enhanced convection heat transfer in nanofluids. Buongiorno [20] studied seven 

mechanisms during the convection of nanofluids and reported that Brownian 

motion and thermophoresis are the most important mechanisms in laminar flow 

and in the viscous sub-layer of turbulent flow, but are negligible in the turbulent 

region. Kim et al. [21] analyzed the Soret effects on heat transfer of nanofluids. 

Theoretical works are continuing to be necessary for accurate models of 

nanofluids. Mechanisms and models may not be perfect, but we will move it closer 

to reality by developing our models step by step every day. 

 Thermal properties of nanofluids and their stability are very promising for 

applications such as biomedicine, cancer treatment, microelectronics cooling, but 

there are still technical barriers we have to face before achieving cost-effective, 

high-volume production of nanofluids. In the two-step method, nanofluids can be 

produced at low prices, but there are still some issues like aggregates and high-

volume fraction needed for thermal conductivity enhancement. Investigators have 

proposed some innovative ways to improve the two-step method. The one-step 

method can produce well-dispersed nanofluids but it can provide only small 

quantities of nanofluids in laboratories. Therefore, researchers are trying to 

improve the one-step methods and scale up to commercial production. 

 Nanofluids are desirable for efficient use of energy in general or cooling 

technology in particular. However, some nanofluids can have negative impacts on 

environment and health. Therefore, it is vital for engineers and scientist to develop 

green nanofluids by choosing environment-friendly nanoparticles; for example: 

biodegradabe nanoparticles in biomedicine applications.  

 In this thesis work, we investigate the natural convection of nanofluid from 

an isothermal vertical flat plate using numerical method. Both single phase model 

and double phase models have been used for mathematical simulation and then a 

comparison between two models is carried out for the first time ever. In the present 

research, the full Navier-Stokes equations for the problem were also solved by 

using finite different method. Natural convection flows have various engineering 



and industrial applications such as geothermal systems, heat exchangers, computer 

chips, nuclear waste, chemical reactors. 



2. MATHEMATICAL MODEL 

 In the present chapter we will formulate a boundary-value problem for free 

convection of nanofluid from the vertical isothermal flat plate presented in Fig. 2. 

 It is assumed that an isothermal vertical plate is located within a nanofluid. 

Initial temperature of nanofluid T is less then the plate temperature Tw. Therefore, 

due to the temperature difference one can find a formation of convective flow in 

the form of ascending flow near the plate.  

 

 

Fig. 2. Physical model 

 

 For mathematical description of this phenomenon we will use two models 

such as a single-phase model and double-phase model (Buongiorno model). 

Firstly, these models will be formulated in boundary-layer approach and solved 

using similarity technique. After that full Navier–Stokes equations will be solved 

in the case of isothermal vertical plate in an open cavity. Obtained models will be 

compared as a final analysis. 

 

 

 



2.1. Boundary-layer approach 

2.1.1. Single-phase model 

 For mathematical analysis we utilized partial differential equations on the 

basis of the boundary-layer approach taking into account the domain of ineterst 

presented in Fig. 1. These equations have been formulated using the conservation 

laws for mass, momentum and energy [22–24]: 
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The following boundary conditions have been added to the formulated governing 

equations: 
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where Tw is the temperature of vertical wall and T is the temperature of ambient 

fluid. 

 For solution to the formulated boundary-value problem the author has used 

the similarity method with the following non-dimensional variables [22, 23]: 
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Taking into account these new variables we can recalculate the velocity 

components: 
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Then we can obtain derivatives of velocities and temperature as following: 
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 Velocities and temperature in Eqs. (1)–(3) can be replaced by non-

dimensional variables then we get: 

Eq. (2) can be written as follows: 
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Eq. (3) can be written as follows: 
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 After taking into account the dimensionless variables, the governing 

equations can be written as a system of two ordinary differential equations: 
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 The effective dynamic viscosity nf  and thermal conductivity nfk  of 

nanofluid have been defined on the basis of the Brinkman’s law and Maxwell’s 

model, respectively. Brinkman’s law for the viscosity of nanofluid is 
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, where  is the nanoparticles volume fraction. Maxwell’s model for 

thermal conductivity of nanofluid is 
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, where 

kp and kf are the thermal conductivities of nanoparticles and base fluid. 



 At the same time kinematic viscosity of nanofluid can be defined as 
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 Some other parameters of nanofluid are given by following formulas: 
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Here also we have the following boundary conditions: 

0:   0,  ' 0,  1,

:   ' 0,  0.
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 The formulated boundary-value problem (4) and (5) has been solved using 

an in-house computational code (Runge–Kutta method of the fourth order with 

shooting technique [25, 26]) and also using the Matlab software (function BVP4C) 

[26]. 

 

2.1.2. Double-phase model 

 In this part of thesis, we used the mathematical nanofluid model proposed by 

Buongiorno [20] to study the problem of natural convection of nanofluid from an 

isothermal vertical flat plate. On the basis of scale analysis, the standard boundary-

layer approximation was taken into account and then we obtained the following 

governing equations: 
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 The next step of our research is to transform the partial differential 

governing equations into non-dimensional ordinary differential governing 

equations using four similarity variables given by: 
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 The derivatives of velocities and temperature are then derived from the 

above similarity variables as following: 
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 Substituting all of the above terms to governing equations (6)–(9) we will 

obtain the following equations: 

– PDE (7) becomes an ODE: 
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Taking into account that f f    and 0  , then we obtain: 
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– PDE (8) becomes: 
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 Then we obtain the system of ODEs: 
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Boundary conditions can be written as follows: 
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f f S

f S

     

    
            (11) 



It should be noted that this formulated boundary-value problem (10) and (11) has 

been solved using the Matlab software (function BVP4C) [26]. 

 

2.2. Full Navier-Stokes equations (single-phase model) 

 Within this part we have a system of partial differential equations for 

nanofluid near the vertical isothermal plate taking into account the single-phase 

model [22–24]: 
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 The next step is to reduce the system of four equations to a system of three 

equations by introducing two new variables (, ). These new functions  and  

are given by the following formula: 
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Consequently, u and v in Eqs. (12)–(15) are replaced by  and . We obtain a 

system of three equations as following [24]: 
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 Then the system of three equations is reduced to non-dimensional form by 

using the following relations: 
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Therefore, non-dimensional equations for our problem are given by [24]: 
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 In order to exclude the effect of boundary conditions these equations have 

been solved in the following domain of interest (see Fig. 3): 

 

Fig. 3. Physical model for full Navier–Stokes equations 

 

with the following boundary conditions 
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0
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 at outlet (Y = 5). 

 In order to solve the formulated boundary-value problem for governing 

equations (20)–(22) we use the finite difference method of the second order 

accuracy. To approximate differential equations by FDM, we introduce a space-

time grid with coordinates: ,  ,  i j nx i h y j l n        , where h, l are the grid 

steps along x, y coordinates, respectively;  is the time step; 

0, ; =0, ;  0,i M j N n K   

 We introduce the following notation: ,( , , ) n

i jih jl n   . 

 Taking into account the approximations of derivatives with respect to spatial 

and time variables, the equations (20)–(22) then become using the locally one-

dimensional Samarskiy scheme [24]: 
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 The difference Poisson’s equation (23) has been solved by successive over 

relaxation method [24]. The difference equations for  and  have been solved by 

Thomas algorithm [24]. 



3. VALIDATION AND VERIFICATION 

3.1. Free convection of clear fluid near vertical isothermal wall 

 For the first benchmark problem we analyzed natural convection of clear 

fluid from an isothermal vertical flat plate. To verify our results, we make a 

comparison between Jaluria’s results [22] and data of Crepeau and Clarksean [27]. 

We calculated the dimensionless velocity profiles of clear fluid at different values 

of Prandtl number ranging from 0.01 to 1000. Velocity increases sharply at the 

areas near to the wall and reach maximum value within the boundary layer, then it 

gradually deceases to zero. 

 

 

Fig. 4 . Velocity profiles for clear fluids with different Prandtl numbers [22] 



 

Fig. 5. Obtained velocity profiles for clear fluids with various Prandtl numbers 

 

 An increase of velocity near the wall can be explained by convective heat 

transfer of fluid from the hot wall. In Figs. 4 and 5 we can see a very good 

agreement between the present results and results calculated by Jaluria [22].  

 Table 2 shows good comparison for temperature gradients with data of 

Crepeau and Clarksean [27]. 

 

Table 2. Comparison with results by Crepeau and Clarksean [27] 

Pr   at η = 0 [27] 
  at η = 0 

(present results) 

0.001 -0.0264 -0.0278 

0.01 -0.08059 -0.0809 

0.1 -0.2302 -0.2305 

1 -0.5671 -0.5671 

10 -1.169 -1.169 

100 -2.191 -2.1895 

 

 



3.2. Free convection of nanofluid near vertical isothermal wall 

 The next benchmark problem was natural convective heat transfer of 

nanofluid near the vertical isothermal wall using the double-phase model [28, 29]. 

Fig. 6 shows comparison of the velocity profiles at Pr = 10, Le = 10, 

Nr = Nb = Nt =0.5 with data of Kuznetsov and Nield [28]. It is clear that the 

velocity profiles are the same in both cases. In addition, a velocity comparison 

between the present results and results conducted by Ibrahim and Makinde [29] has 

been carried out in Fig. 7 (at Nr = 0.3) and Fig. 8 (at Nr = 0.6). The difference 

between two researchs is that Ibrahim and Makinde [29] take into account the 

stratification constants (1 = 2 = 0.2), meanwhile we do not consider stratification 

constants, namely, in our analysis 1 = 2 = 0.0. It can be seen in Figs. 7 and 8 that 

the velocity profiles of present result are significantly higher than the velocity 

profiles in the case of research by Ibrahim and Makinde [29]. Therefore, this leads 

to a conclusion that velocity magnitude decreases with stratification constants. 

 

 

Fig. 6. Comparison of velocity profiles between Kuznetsov and Nield [28] and 

present results for Pr = 10, Le = 10, Nr = Nb = Nt =0.5 

 



 

Fig. 7. Comparison of velocity profiles between present result and Ibrahim and 

Makinde data [29] for Pr = 10, Le = 2, Nr = 0.3, Nb = Nt =0.5 

 

 

 

Fig. 8. Comparison of velocity profiles between present result and Ibrahim and 

Makinde data [29] for Pr = 10, Le = 2, Nr = 0.6, Nb = Nt =0.5 

 

 

 

 

 



3.3. Natural convection of nanofluid within differentially heated cavity 

 The third benchmark problem is a natural convection of nanofluid in a 

differentially heated cavity [30, 31].We compare our results with experimental [31] 

and numerical [30] studies of other authors. Table 3 gives the average Nusselt 

number for different nanoparticles volume concentration. It can be clearly seen that 

the results obtained using an in-house computational code agree well, which 

demonstrates the accuracy of the present code for nanofluid simulation. 

 

Table 3. Comparison of average Nusselt number for natural convection of 

nanofluid in a differentially heated square cavity 

   Average Nusselt number 

 Ra Pr 
Ho et al. 

[31] 

Present 

study 

(FDM) 

Saghir et 

al. [30] 

(FDM) 

Saghir et 

al. [30] 

(FEM) 

1 % 7.74547×10
7
 7.0659 32.2037 30.6533 30.657 31.8633 

2 % 6.6751180×10
7
 7.3593 31.0905 30.5038 30.503 31.6085 

3 % 5.6020687×10
7
 7.8353 29.0769 30.2157 30.205 28.216 

 

 

 

 

 



4. RESULTS AND DISCUSSION 

4.1. Boundary-layer approach 

4.1.1. Single-phase model 

 The results for temperature and velocity profiles are shown in Figs. 9 and 10 

respectively. Temperature of nanofluid decreases from the vertical flat plate to the 

ambient environment and reaches zero value at a distance of approximately 1.5 

from the vertical wall. This gradient of temperature is due to the difference 

between temperature of hot wall and temperature of ambient environment. 

Dimensionless velocity increases sharply near the wall and reaches the maximum 

value before going down gradually until become zero at η near to value of 4. 

 

 

Fig. 9. Temperature profile () for single-phase model 



 

Fig. 10. Velocity profile  f    for single–phase model 

 

 In Figs. 11 and 12 we showed the effect of different viscosity models on 

results of temperature and velocity profiles. In this simulation, we use following 

two viscosity models for nanofluids: 

Brinkman’s model: 
 

2.5
1

f

nf


 

 
 [32] and model A:  21 7.3 123nf f       

[33]. 

 Although, the temperature profiles are equivalent for two models, a 

significant difference between velocity of Brinkman’s model and velocity of model 

A has been observed. 



 

Fig. 11. Comparison of temperature profiles for different models of nanofluid 

viscosity 

 

 

Fig. 12. Comparison of velocity profiles for different models of nanofluid viscosity 

 

 Different models for thermal conductivity coefficient are also taken into 

account. Effective thermal conductivities can be incorporated from the following 



expressions corresponding to two types of nanoparticle shapes: spherical and 

cylindrical (nanotubes): 

spherical nanoparticles – 
 
 

2 2

2

p f f pnf

f p f f p

k k k kk

k k k k k

   


   
 and  

cylindrical nanoparticles – 
 

 
0.5 0.5

0.5

p f f pnf

f p f f p

k k k kk

k k k k k

   


   
. 

 Obviously, the profiles of velocity and temperature are unchanged regardless 

of different models for thermal conductivity as shown in Figs. 13 and 14. In the 

velocity profile, the maximum of velocity is obtained at 1  and the velocity 

boundary layer thickness is around 4 5. . In Fig. 14 it is clear that temperature is 

a decreasing function of distance  from the wall to the tested position. The 

thermal boundary layer thickness is approximately 2 . 

 

 

Fig. 13. Velocity profiles for different models for thermal conductivity 

 



 

Fig. 14. Temperature profiles for different models for thermal conductivity 

 

 The effects of nanoparticles volume fraction in the range 0–4% and types of 

nanoparticles material (Ag, Cu, Al2O3, CuO, TiO2) have been analyzed. A 

comparison between clear fluid and a nanofluid containing copper nanoparticles 

with concentration of 4% is also carried out. Profiles of dimensionless velocity and 

temperature at  = 0.04 are presented in Figs. 15 and 16 in comparison with clear 

fluid. An addition of nanoparticles inside the base fluid leads to the velocity 

reduction due to a growth of the dynamic viscosity. Meanwhile, it is clear in 

Fig. 16 that the thermal boundary layer of nanofluid increases in comparison with 

clear fluid. 

 



 

Fig. 15. Velocity profiles for clear fluid and Cu-water nanofluid at  = 0.04 

 

 

Fig. 16. Temperature profiles for clear fluid and Cu-water nanofluid at  = 0.04 

 

 Figure 17 compares velocity boundary layers of five types of nanofluids. 

Obviously, the velocity profiles vary with types of nanoparticles using for 

production of nanofluids. Firstly, the velocity decreases from Ag to TiO2, then 

after some distance from the wall, the trend reverses. 

 



 

Fig. 17. Variation in dimensionless velocity profiles of different nanofluids (Ag-

water, Cu-water, CuO-water, Al2O3-water, TiO2-water) with  = 0.04 

 

 Table 4 describes results for reduced skin friction parameter of nanofluids 

for various  in the range 0-4%. The reduced skin friction coefficient increases 

with higher value of concentration. Due to greater thermal conductivity, Cu-water 

and Ag-water nanofluids have the highest value of reduced skin friction number as 

compared to other nanofluids. 

 The reduced Nusselt numbers are performed in Table 5. With lower thermal 

conductivity of TiO2, TiO2-water nanofluid shows a smaller reduced Nusselt 

number. The higher concentrations of nanoparticles lead to a growth of the average 

Nusselt number. In the case of CuO-water nanofluid with  = 0.04, reduced 

Nusselt number increases by 7% as compared to clear water. 

 

 

 

 

 

 

 



Table 4. Comparison of results for reduced skin friction number 

 
2.5 0

1

1
fC f




 
 for various  

 Cu CuO 2 3Al O  2TiO  Ag 

0.0 0.4738 0.4738 0.4738 0.4738 0.4738 

0.01 0.4757 0.4756 0.4748 0.4744 0.4762 

0.02 0.4777 0.4775 0.4756 0.475 0.4788 

0.03 0.4799 0.4795 0.4766 0.4756 0.4815 

0.04 0.4821 0.4815 0.4774 0.4762 0.4844 

 

Table 5. Comparison of results for reduced Nusselt number 
0

nf

f

k
Nu

k 
    for 

various  

 Cu CuO 2 3Al O  2TiO  Ag 

0.0 0.9777 0.9777 0.9777 0.9777 0.9777 

0.01 0.9937 0.9940 0.9939 0.9909 0.9934 

0.02 1.0095 1.0001 1.0102 1.0043 1.0093 

0.03 1.026 1.0272 1.0267 1.0177 1.0255 

0.04 1.0425 1.0441 1.0430 1.0312 1.0418 

 

4.1.2. Double-phase model 

 Numerical simulation in the case of double-phase model has been carried out 

at the following values of key parameters: Prandtl number (Pr = 7.0), Lewis 

number (2–1000), the buoyancy-ratio parameter (Nr = 0.2–2.0), the Brownian 

motion parameter (Nb = 0.2-2.0), the thermophoresis parameter (Nt = 0.1–2.0). In 

the case of double-phase model, we focus on the effects of these key parameters on 

the velocity profile, temperature profile and concentration profile of nanofluid. In 

Figs. 18–29, we can observe the effects of Nr, Le, Nb and Nt on velocity, 

temperature and concentration profiles. Figures 30–32 show us the results for 



velocity, temperature and concentration profiles at different values of Brownian 

motion parameter and thermophoresis parameter such as Nb = Nt =0.001, 

Nb = Nt =0.01, Nb = Nt =0.1 and Nb = Nt =0.5. 

 It is obvious in Fig. 18 that velocity of nanofluid decreases with Nr. The 

peak of velocity moves far away from the wall when Nr increases. The velocity 

boundary layer thickness equals to 4 5.  in all cases of Nr. Temperature 

increases with Nr (Fig. 19). It is also clear in Fig. 19 that the thermal boundary 

layer thickness increases with Nr. Concentration profile exhibits an increasing 

trend with Nr (Fig. 20). Therefore, the concentration boundary layer thickness 

increases as well. The increase of concentration boundary layer thickness can be 

explained by the motion of nanoparticles to quiescent fluid. 

 

 

Fig. 18. Effect of buoyancy-ratio parameter Nr on velocity profile 



 

Fig. 19. Effect of buoyancy-ratio parameter Nr on temperature profile 

 

 

Fig. 20. Effect of buoyancy-ratio parameter Nr on concentration profile 

 

 We can see in Fig. 21 that the velocity profile increases when Lewis number 

increases. The peak of velocity moves close to the wall when Le increases. The 

temperature profile and concentration profile both decrease with Lewis number in 



Figs. 22 and 23. Moreover, thermal boundary layer thickness and concentration 

boundary layer thickness are decreasing functions of Le. 

 

 

Fig. 21. Effect of Lewis number Le on velocity profile 

 

 

Fig. 22. Effect of Lewis number Le on temperature profile 



 

Fig. 23. Effect of Lewis number Le on concentration profile 

 

 Similarly, the temperature and velocity show a rising trend when Nt 

increases in Figs. 24 and 25. Therefore, the temperature of nanofluid increases with 

Nt. This increasing behavior of nanofluid temperature can be explained on the basis 

of thermophoresis mechanism. The thermophoresis mechanism takes into account 

the opposite motion of nanoparticles as compared to temperature gradient. The 

motion of nanoparticles to the ambient environment and greater temperature of 

nanoparticles make the greater temperature profile. It seems that the peak of 

velocity keep a constant distance from the wall regardless of different values of Nt. 

On the other hand, concentration profile increases with the change of 

thermophoresis number Nt (Fig. 26). This increase of concentration is a 

consequence of the motion of nanoparticles far away from greater temperature at 

the isothermal wall. 



 

Fig. 24. Effect of thermophoresis parameter Nt on velocity profile 

 

 

 

Fig. 25. Effect of thermophoresis parameter Nt on temperature  profile 



 

Fig. 26. Effect of thermophoresis parameter Nt on concentration profile 

 In Figs. 27–29 the effect of Brownian motion parameter Nb has been 

performed. It is clear that velocity increases, temperature remains unchanged and 

concentration shows a drop when Nb increases. The reduction of concentration 

with Nb can be explained by the motion of nanoparticles is opposite to motion of 

base fluid. Due to the decreasing trend of concentration profile with Nb, the 

concentration boundary layer thickness also decreases. The peak of velocity moves 

closely to the wall when Nb increases. The thermal boundary layer thickness is 

approximately at 2 . The concentration boundary layer thickness decreases 

significantly with Nb. This can be as a consequence of the motion of nanoparticle 

opposite to motion of base fluid in effect of Brownian motion. 

 

 



 

Fig. 27. Effect of Brownian motion parameter Nb on velocity profile 

 

 

Fig. 28. Effect of Brownian motion parameter Nb on temperature profile 



 

Fig. 29. Effect of Brownian motion parameter Nb on concentration profile 

 

 In Figs. 30–32 we study the effect of Nt and Nb in the range 0.001–0.5. The 

velocity profile increases with both Nt and Nb. The maximum of dimensionless 

velocity ranges from 0.1 to 0.12. The peak of velocity moves close to the hot wall 

when Nt and Nb increases. An increasing trend in temperature profile has been 

observed in Fig. 31. This trend is explained by the fact that temperature is an 

increasing function of both Nt and Nb as described in Figs. 25 and 28. The 

concentration profile nearly stays unchanged. This stable behavior of concentration 

is due to the fact that the increase of concentration with Nt cancels out the decrease 

of concentration with Nb. The thermal boundary layer thickness is approximately 

1 5.  and the concentration boundary layer thickness equals to 1 . 

 



 

Fig. 30. Effect of Nt and Nb in the range 0.001–0.5 on velocity profile 

 

 

 

 

Fig. 31. Effect of Nt and Nb in the range 0.001–0.5 on temperature profile 



 

Fig. 32. Effect of Nt and Nb in the range 0.001–0.5 on concentration profile 

 

4.2. Full Navier–Stokes equations (single-phase model) 

 Boundary-value problem (20)–(22) for the problem geometry (Fig. 3) have 

been solved for Ra = 10
5
, Pr = 0.7,  = 0.02 and material nanoparticles is copper. 

 Figure 33 presents streamlines and isotherms near the isothermal vertical 

plate. One can find that due to convective heat transfer from the vertical wall, 

temperature of nanofluid near the wall is significantly higher than environmental 

temperature. It should be noted that near the heated wall the flow rises and the 

temperature is maximum. 

 

Fig. 33. Streamlines and isotherms for Ra=10
5
 



 Also the gradients of stream function near the heated plate are greater than 

gradients of stream function at the areas far away from the wall. Therefore velocity 

increases to maximum and then decrease to minimum at the ambient environment. 

This behavior of velocity totally agrees with results in the cases of single-phase 

model and double-phase model for boundary-layer approach. 

 Profiles of velocity near the hot vertical plate are presented in Fig. 34 for 

different distance along the plate. 

 

Fig. 34. Velocity profiles for different values of Y 

 

4.3. Comparison between analyzed models 

 The problem of natural convection of nanofluid from an isothermal vertical 

flat plate using single-phase and double-phase models was studied within present 

thesis. Afterwards, the comparisons between two models have been carried out 

taking into account velocity profile and temperature profile. 

 Figures 35 and 36 present the agreement of results in the case of single-

phase model and in the case of double-phase model taking into account 

Pr = Le = 10, Nr = Nb = Nt = 0.5. At the area near to isothermal wall, 

thermophoresis mechanism dominates Brownian motion; as a result, more amount 

of nanoparticles moves to a greater distance from the wall. Therefore temperature 



of double-phase case is greater than temperature of single-phase one. At the area 

farther from isothemal wall, Brownian motion's role surpasses thermophoresis's 

role, this leads to lower temperature of double phase case. 

 

Fig. 35. Velocity comparison at Pr = Le = 10, Nr = 0.5, Nt = Nb =0.5 

 

 

Fig. 36. Temperature comparison at Pr = Le = 10, Nr = 0.5, Nt = Nb =0.5 

 

 

 

 

 



7. CONCLUSIONS 

 Natural convection of nanofluid from an isothermal vertical flat plate has 

been studied numerically. Particular efforts have been focused on the effects of 

Lewis number, buoyancy-ratio parameter, Brownian motion parameter, 

thermophoresis parameter, different models of viscosity, different models of 

thermal conductivity and type of nanomaterials on velocity profile, temperature, 

nanoparticles volume fraction distributions, reduced Nusselt number and reduced 

skin friction number. It is found that the velocity profile of nanofluid is an 

increasing function of Lewis number, thermophoresis parameter and Brownian 

motion parameter, and a decreasing function of buoyancy-ratio parameter. The 

temperature profile is an increasing function of buoyancy-ratio parameter, 

thermophoresis parameter and Brownian motion parameter, and a decreasing 

function of Lewis number. Nanoparticles volume fraction distribution is an 

increasing function of buoyancy-ratio parameter and thermophoresis parameter, 

and a decreasing function of Lewis number and Brownian motion parameter. 

Reduced Nusselt number and reduced skin friction number are increasing functions 

of nanoparticles volume fraction. In addition, a comparison between single phase 

model and double phase model has been shown for the first time. At certain values 

of key parameters, the same results for two models are obtained. 

 

 

 

 

 

 

 

 

 

 



REFERENCES 

1. Zhu, H., Y. Lin, and Y. Yin. A novel one-step chemical method for 

preparation of copper nanofluids // J. Colloid Interface Sci. 2004 – Vol. 277. 

– P. 100–103. 

2. Eastman, J. A., S. U. S. Choi, S. Li, W. Yu, and L. J. Thomson. 

Anomalously increased effective thermal conductivities of ethylene glycol 

based nanofluids containing // Appl. Phys. Lett. 2001. – Vol. 78. – P. 718–

720. 

3. Choi, S. U. S., Z.G. Zhang, W. Yu, F.E. Lockwood, and E. A. Grulke. 

Anomalous thermal conductivity enhancement in nano-tube suspensions // 

Appl. Phys. Lett. 2001. – Vol. 79. – P. 2252–2254. 

4. Hong T. K., H. S. Yang and C. J. Choi. Study of the enhanced thermal 

conductivity of Fe nanofluids // J. Appl. Phys. 2005. – Vol. 97: 064311 

5. Chopkar, M, P. K. Das, and I. Manna. Synthesis and characterization of 

nanofluid for advanced heat transfer applications // Scr. Mater. 2006. – Vol. 

55. – P. 549–552. 

6. Das, S. K., N. Putra, P. Thiesen, and W. Roetzel. Temperature dependence 

of thermal conductivity enhancement for nanofluids // J. Heat Transfer. – 

2003. – Vol. 125. – P. 567–574. 

7. Chon, C. H., K. D., Kihm, S. P. Lee, and S. U. S. Choi. Empirical 

correlation finding the role of temperature and particle size for nanofluid 

(Al2O3) thermal conductivity enhancement // Appl. Phys. Lett. – 2005. – 

Vol. 87: 153107. 

8. Ding, Y., and D. Wen. Particle migration in a flow of nanoparticle 

suspensions // Powder Technol. – 2005. – Vol. 149. – P. 84–92. 

9. Xuan, Y., and Q. Li. Investigation on convective heat transfer and flow 

features of nanofluids // J. Heat Transfer. – 2003. – Vol. 125. – P. 151–155. 

10. Putra, N., W. Roetzel, and S. K. Das. Natural convection of nano-fluids // 

Heat Mass Transfer. – 2003. – Vol. 39. – P. 775–784. 



11. Wang, X., X. Xu, and S. U. S. Choi. Thermal conductivity of nanoparticle–

fluid mixture // J. Thermophys. Heat Transfer. – 1999. – Vol. 13. – P. 474–

480. 

12. Xuan, Y., and Q. Li. Heat transfer enhancement of nanofluid // Int. J. Heat 

Fluid Flow. – 2000. – Vol. 21. – P. 58–64. 

13. Keblinski, P., S. R. Phillpot, S. U. S. Choi, and J. A. Eastman. Mechanism of  

heat flow in suspensions of nano-sized particles (nanofluids) // Int. J. Heat 

and Mass Transfer. – 2002. – Vol. 45. – P. 855–863. 

14. Yu, W., and S. U. S. Choi. The role of interfacial layers in the enhanced 

thermal conductivity of nanofluids: a renovated Hamilton–Crosser model // 

J. Nanopart Res. – 2004. – Vol. 6. – P. 355–361. 

15. Xue, Q.-Z. Model for effective thermal conductivity of nanofluids // Phys. 

Lett. A. – 2003. – Vol. 307. – P. 313–317. 

16. Xie, H. Q., J. C. Wang, T. G. Xi, and Y. Liu. Thermal conductivity of 

suspensions containing nanosized SiC particles // Int. J. Thermophys. – 

2002. – Vol. 23. – P. 571–580. 

17. Lee, D., J.-W. Kim, and B. G. Kim. A new parameter to control heat 

transport in nanofluids: surface charge state of the particle in suspension // J. 

Phys. Chem. B. – 2006. – Vol. 110. – P. 4323–4328. 

18. Xuan, Y., and W. Roetzel. Conceptions for heat transfer correlation of 

nanofluids // Int. J. Heat Mass Transfer. – 2000. – Vol. 43. – P. 3701–3707. 

19. Khaled, A. R. A., and K. Vafai . Heat transfer enhancement through control 

of thermal dispersion effects // Int. J. Heat and Mass Transfer. – 2005. – Vol. 

48. – P. 2172–2185. 

20. Buongiorno, J. Convective transport in nanofluids// J. Heat Transfer. – 2006. 

– Vol. 128. – P. 240–250. 

21. Kim, J., Y. T., Kang, and C. K. Choi . Analysis of convective instability and 

heat transfer characteristics of nanofluids// Phys. Fluids. – 2004. – Vol. 16. – 

P. 2395–2401. 



22. Jaluria Y. Natural Convection Heat and Mass Transfer. U.K: Pergamon 

Press; 1980. 

23. Bejan A. Convection Heat Transfer. New York: Springer; 2013. 

24. Shenoy A, Sheremet M, Pop I. Convective Flow and Heat Transfer from 

Wavy Surfaces: Viscous Fluids, Porous Media and Nanofluids. New York: 

CRC Press; 2016. 

25. Burden L, Faires J.D. Numerical analysis. Boston: PWS Kent, 1986. 

26. Trimbitas R.T. Numerical analysis in MATLAB. Cluj-Napoca: Cluj 

University Press, 2009. 

27. .C. Crepeau, R. Clarksean Similarity solutions of natural convection with 

internal heat generation // J. Heat Transfer. – 1997. – Vol. 119. – P. 183–

185. 

28. A.V. Kuznetsov, D.A. Nield.  Natural convective boundary-layer flow of  a 

nanofluid past a vertical plate // International Journal of Thermal Sciences. – 

2010. – Vol. 49. – P. 243–247. 

29. W. Ibrahim, O.D. Makinde The effect of double stratification on boundary-

layer flow and heat transfer of nanofluid over a vertical plate // Computer & 

Fluids. – 2013. – Vol. 86. – P. 433–441. 

30. Saghir, M.Z., Ahadi, A., Mohamad, A., and Srinivasan, S. “Water aluminum 

oxide nanofluid benchmark model”// Int. J. Thermal Sciences. – 2016. – 

Vol. 109. – P. 148–158. 

31. Ho, C.J., Liu, W.K., Chang, Y.S., and Lin, C.C. “Natural convection heat 

transfer of alumina-water nanofluid in vertical square enclosures: An 

experimental study”// Int. J. Thermal Sciences. – 2010. – Vol. 49. – P. 1345–

1353. 

32. Brinkman H.C. The viscosity of concentrated suspensions and solutions//  

Journal of Chemical Physics. – 1952. – Vol. 20. – P. 571–581. 

33. Rana P., Bhargava R. Numerical study of heat transfer enhancement in 

mixed convection flow along a vertical plate with heat source/sink utilizing 



nanofluids// Commun Nonlinear Sci Numer Simulat. – 2011. – Vol. 16. – P. 

4318–4334. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX 

Runge Kutta method 4
th

 order: 

For example, a first-order differential equation is given by: 

( )
'( ) ( ( ), )

du x
u x f u x x

dx
      

Initial condition u (x0) = u0 

We will find a solution for this problem in the interval: [0;1]  (x0=0) 

First of all, we divide the interval (0,1) into N equal intervals: N *h= 1 

In which, the number of small intervals: N =  
1

h
 

We will use the following approximations for  the slopes in x₀: 

k1= f( u(x0),x0 ) 

k2= f( u(x0)+k1 
2

h  , x0 +  
2

h  ) 

k3= f( u(x0)+k2 
2

h  , x0 +  
2

h ) 

k4= f( u(x0)+k3h , x0+h ) 

Then we use the weighted sum of these slopes to get our estimate of  u (x₀ + 

h)   1 2 3 4
0 0

2 2
( )

6

k k k k
u x h u x h

  
    = u(x0) + m*h 

Continuing N times this step until x = 1, we obtain u (1) 

 

 

 

 

 

  

 

 

 

 



 

 

 

 

 


