ОЦЕНКА VaR ВАЛЮТНОГО ПОРТФЕЛЯ НА ОСНОВЕ ФАКТОРНОЙ МОДЕЛИ ЕГО КОМПОНЕНТ

И.В. Загуменнова

Научный руководитель: доцент, к. ф.-м. н. М.Л. Шинкеев Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: zagumennovaiv@mail.ru

EVALUATION OF VaR MONETARY PORTFOLIO BASED ON THE FACTOR MODEL OF ITS COMPONENT

I.V.Zagumennova

Scientific Supervisor: Assoc. prof., Ph.D M.L. Shinkeev Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

E-mail: zagumennovaiv@mail.ru

Abstract. On the basis of the factor model, the distribution of density and function of the portfolio return are found. One-day VaR portfolio is defined. VaR estimates for a 10-day time horizon are made.

Введение. В ходе факторного анализа распреледения совокупности валютных пар в статье [1] показано, что совокупность относительных приращений котировок валютных пар может быть представлена в виде двухфакторной модели, распределение компонент которой достаточно хорошо описывается распределением Лапласа [2] . На основе этой модели можно получить аналитическое представление как для плотностей распределений относительных приращений всех котировок, входящих в совокупность, так и оценить распределения величин, являющихся производными от исходных компонент. В данной работе на основе модели, описанной в статье [1], рассматривается оценка VaR портфеля, состоящего из валютных пар.

Материалы и методы исследования. Пусть
$$r = \sum_{j=1}^m w_j r_j$$
 - доходность портфеля за период

времени t, состоящего из m активов (валютных пар) с доходностями r_j и долями w_j , причем для компонент портфеля справедлива следующая факторная модель:

$$r_j - \overline{r_j} = \alpha_{1j} \xi_1 + \alpha_{2j} \xi_2 + \varepsilon_j, \quad j = \overline{1, m},$$
 (1)

где: \overline{r}_i , $j = \overline{1,m}$ - средние значения доходностей валютных пар;

$$\xi_1,\xi_2$$
 - обобщенные факторы, $M(\xi_1)=M(\xi_2)=0$, $D(\xi_1)=D(\xi_2)=1$;

$$\alpha_1, \alpha_2$$
 - векторы факторных нагрузок, $\operatorname{cov}(r_i, r_j) = \sum_{s=1}^2 \alpha_{si} \alpha_{sj}, \quad i = \overline{1, m}, \quad j = \overline{1, m}, \quad i \neq j$;

$$\varepsilon_1, \varepsilon_2, \dots, \varepsilon_m$$
 - характерные факторы, $M(\varepsilon_i) = 0$, $D(\varepsilon_i) = D(r_i) - \sum_{s=1}^2 \left(\alpha_{si}\right)^2$, $i = \overline{1,m}$.

Предполагается также, что обобщенные и характерные факторы независимы в совокупности. Тогда для доходности r портфеля будет справедливо:

$$r = \sum_{j=1}^{m} w_{j} r_{j} = \sum_{j=1}^{m} w_{j} \bar{r}_{j} + \sum_{j=1}^{m} w_{j} (\alpha_{1j} \xi_{1} + \alpha_{2j} \xi_{2} + \varepsilon_{j}) =$$

$$= \bar{r} + \sum_{j=1}^{m} w_{j} (\alpha_{1j} \xi_{1} + \alpha_{2j} \xi_{2} + \varepsilon_{j})$$

$$(2)$$

где: \overline{r} - средняя доходность портфеля.

Соответственно для величины $\eta=r-\overline{r}=\sum\limits_{j=1}^m w_j(\alpha_{1j}\zeta_1+\alpha_{2j}\zeta_2+\varepsilon_j)$ можем записать:

$$\eta = r - \overline{r} = \sum_{j=1}^m w_j (\alpha_{1j} \xi_1 + \alpha_{2j} \xi_2 + \varepsilon_j) = \sum_{i=1}^2 \gamma_i \xi_i + \sum_{j=1}^m w_j \varepsilon_j \;,$$

где:
$$\gamma_i = \sum_{j=1}^m \alpha_{ij} w_j$$
 $i = \overline{1,2}$.

Пусть как обобщенные, так и характерные факторы независимы и имеют распределение Лапласа с параметрами a_1, a_2 и $\theta_1 \div \theta_m$ соответственно. Характеристическая функция распределения Лапласа с параметром a имеет вид: $g(t) = \frac{a^2}{a^2 + t^2}$. Используя свойства характеристической функции [3], получим следующую характеристическую функцию величины η :

$$g_{\eta}(t) = \prod_{i=1}^{2} \frac{a_{i}^{2}}{a_{i}^{2} + \gamma_{i}^{2} t^{2}} \cdot \prod_{j=1}^{m} \frac{\theta_{j}^{2}}{\theta_{j}^{2} + w_{j}^{2} t^{2}} = \prod_{j=1}^{m+2} \frac{\delta_{j}^{2}}{\delta_{j}^{2} + t^{2}},$$
(3)

где: $\delta_j = a_j/\gamma_j$ для $j = \overline{1,2}$; $\delta_j = \theta_j/w_j$ для $j = \overline{3,m+2}$.

Выполнив обратное преобразование Фурье [4] найдем плотность распределения величины 11:

$$f_{\eta}(x) = \frac{1}{2} \sum_{j=1}^{m+2} \left[\delta_{j} \prod_{i=1, i \neq j}^{m+2} \left[\frac{\delta_{i}^{2}}{\delta_{i}^{2} - \delta_{j}^{2}} \right] e^{-\delta_{j}|x|} \right]. \tag{4}$$

Соответственно искомые плотность и функция распределения доходности портфеля будут иметь вид:

$$f_{r}(x) = \frac{1}{2} \sum_{j=1}^{m+2} \left[\delta_{j} \prod_{i=1, i \neq j}^{m+2} \left[\frac{\delta_{i}^{2}}{\delta_{i}^{2} - \delta_{j}^{2}} \right] e^{-\delta_{j}|x - \overline{r}|} \right], \qquad F_{r}(x) = \int_{-\infty}^{x} f_{r}(z) dz.$$
 (5)

Для заданного уровня значимости α , найдем значение τ , для которого $F_r(\tau) = \alpha$. С вероятностью $\beta = 1 - \alpha$ доходность портфеля на временном горизонте t не опустится ниже величины

au. Соответственно, VaR портфеля на временном горизонте t будет равен: $VaR_t = P(1+\tau)$, где P - начальная стоимость портфеля. Для того, чтобы получить VaR портфеля на временном горизонте $T = k \cdot t, \quad k \in \mathbb{N}$, можно воспользоваться, например, методом Монте-Карло.

Результаты. В качестве примера был рассмотрен портфель из 5 валютных пар (BYR/RUB; CNY/RUB; EUR/RUB; GBP/RUB; USD/RUB) взятых с равными долями, построенный на основе данных за период с 12 января 2015 года по 13 октября 2015 года.

Параметры факторной модели приведены в таб. 1, 2. Уровень значимости модели p=0,314.

Таблица 1 Координаты векторов факторных нагрузок

α1	-0,0118	-0,0125	-0,0158	-0,0102	-0,0127
α2	-0,0155	-0,0040	0,0024	-0,0013	0,0018

Таблица 2 Оценки параметра а распределения Лапласа и уровень значимости р критерия хи-квадрат проверки гипотезы о распределении по закону Лапласа для обобщенных и характерных факторов

Фактор	ξ1	ξ2	E 1	E 2	E3	E 4	E 5
Оценка параметра <i>а</i>	1,30	1,39	580	134	478	89	156
Уровень значимости <i>р</i>	0,99	0,13	0,78	0,09	0,37	0,36	0,28

Вывод. На основе данной факторной модели по формулам (5) была найдены плотность и функция распределения доходности портфеля, а также определены однодневные VaR портфеля, соответствующие вероятностям 0,95 и 0,99. Моделируя доходности портфеля с законом (5) были получены и соответствующие оценки VaR для 10 дневного временного горизонта.

СПИСОК ЛИТЕРАТУРЫ

- 1. Zagumennova I.V. Investigation of the distribution of currency pairs using methods of factor analysis // XIII Международной конференции студентов, аспирантов и молодых ученых.. Томск, 2016. Т. С. 54-56.
- 2. Лукасевич И. Я. Финансовый менеджмент. –М.:Бизнес-портал "Бизнес-Учебники.РФ", 2014 2015 [Электронный ресурс]. Режим доступа: http://bizbook.online/finance.html.
- 3. Вентцель Е.С. Теория вероятностей: Учеб. для вузов. 6-е изд. стер. М.: Высш. шк., 1999.
- 4. Крицкий О.Л. Теория вероятностей и математическая статистика для технических университетов: учебное пособие // Национальный исследовательский Томский политехнический университет Томск, 2014 г.