низкотемпературную область почти на $20\,^{\circ}$ С, а вязкость понижается в 1,5 раза, а предельное напряжение сдвига — почти в 4 раза.

Работа выполнена при финансовой поддержке гранта Российского научного фонда (проект 15-13-00032).

Список литературы

- 1. Романков П.Г., Курочкина М.И. Гидромеханические процессы в химической технологии.— М.: Химия, 1974.— 288с.
- 2. Автоматизация и информационное обеспе-

чение технологических процессов в нефтяной промышленности: Сб. статей / Под ред. А.К. Хорькова.— Томск: Изд-во ТГУ, 2002.—Т.2.—С.224—229.

РАЗРАБОТКА МЕТОДИКИ ОПРЕДЕЛЕНИЯ ОКТАНОВОГО ЧИСЛА УГЛЕВОДОРОДНЫХ СМЕСЕЙ

А.С. Меховникова, О.А. Чередниченко Научный руководитель – к.т.н., доцент М.А. Самборская

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30

Экспресс-определение октанового числа (ОЧ) моторных топлив важный этап контроля технологических процессов, качества топлив в хранилищах и на заправочных станциях.

Актуальной задачей является разработка надежных методов расчета ОЧ по ограниченному набору экспериментальных данных.

Целью работы было определение характеристик смеси углеводородов, влияющих на ОЧ, проверка, модификация и разработка расчетных формул.

Для нефтепродуктов, являющихся сложной смесью различных соединений, показатель преломления (n_{D20}) является важной характеристикой относительного содержания водорода в углеводородах смеси. Отношение H/C влияет на многие свойства смеси, в т.ч. плотность, среднюю молекулярную массу и ОЧ. Простота и скорость измерения показателя преломления делают эту характеристику привлекательной для экспресс-анализа.

Авторами выполнены экспериментальные исследования связи показателя преломления с ОЧ смеси углеводородов прямогонных фракций и продуктов каталитических превращений. Кроме того, проведен поиск и анализ формул расчета

показателя преломления. Выполнена модификация формулы, основанной на плотности смеси. Часть результатов представлена в табл. 1, 2.

Таблица 1. Результаты расчета ОЧМ

№ эксп.	n _{D^{20 эксн}}	ОЧМ	ОЧМ	ОТН.
		эксп.	расч.	погр. %
1	1,41	77,41	76,80	0,78
2	1,43	77,7	77,95	0,32
3	1,42	78,85	77,82	1,31
4	1,43	78,93	77,83	1,40

Таблица 2. Результаты расчета $n_{D^{20}}$

$n_{\mathrm{D}^{20\mathrm{pac}_{\mathtt{q}}}}$	$n_{D^{20 { m s}\kappa c \pi}}$	погр., отн., %
1,39	1,41	1,38
1,39	1,43	2,46
1,40	1,42	1,19
1,40	1,43	1,88

Выводы:

- 1. Показана связь показателя преломления с ОЧМ смеси углеводородов.
- 2. Предложена адекватная формула расчета показателя преломления.

Список литературы

- 1. Рябов В.Д. // Химия нефти и газа.— М.: Издательство «Техника», ТУМА ГРУПП, 2004.— 288c.
- 2. Ю.В. Иванова, Р.И. Кузьмина, И.В. Кожемякин // Химия нефти-Саратов.— Из-во «Саратовс. Ун-та», 2010.— 56с.