

Рис. 2. Формы корродированных кристаллов циркона

Выводы. Изучение акцессорного циркона верхнепалеозойских гранитоидных комплексов выявило следующие его типоморфные признаки. 1. Количества циркона отчётливо индивидуализируют породы разных комплексов. 2. Кристалломорфологические особенности, включающие типизацию габитусных форм и статистический анализ вариаций величин удлинения. 3. Степень коррозии кристаллов отражает различную интенсивность воздействия постмагматических растворов в разновозрастных гранитоидах.

Литература

- 1. Леммлейн Г.Г. Морфология и генезис кристаллов. М.: Наука, 1973. 328 с.
- Минералы. Справочник. Силикаты с одиночными и сдвоенными кремнекислородными тетраэдрами / под ред. акад. Ф.В. Чухрова. – М.: Наука, 1972. – Т. III. – Вып. 1. – С. 98 – 127.
- 3. Туркин Ю.А., Новоселов К.Л. Петролого-геохимические особенности девонских гранитоидов северозападной части Рудного Алтая // Известия Томского политехнического университета. 2012. – Т. 321. – № 1 – С. 5 – 15.(процент частоты встречаемости удлинений)

ОСОБЕННОСТИ ХИМИЧЕСКОГО СОСТАВА АКЦЕССОРНОГО ЦИРКОНА ВЕРХНЕПАЛЕОЗОЙСКИХ ГРАНИТОИДОВ СЕВЕРО-ЗАПАДНОЙ ЧАСТИ РУДНОГО АЛТАЯ С.Г. Ефимова

Научный руководитель доцент К.Л. Новоселов Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В работе изучен химический состав акцессорного циркона в гранитоидах главных фаз трёх верхнепалеозойских полифазных магматических комплексов: алейско-змеиногорского (D₂₋₃az), волчихинского (C₂₋₃v) и синюшинского (P₂-T₁s). Наряду с исследованиями кристалломорфологических и физических свойств акцессорного циркона из разновозрастных гранитоидных комплексов изучен его химический состав. На анализ отбирались кристаллы циркона, наименее подвергнутые постмагматической коррозии. Аналитические работы выполнены в лаборатории кафедры Геологии и разведки полезных ископаемых на электронном сканирующем микроскопе TESCAN VEGA З SBU с приставкой EDS Oxford X–Max 50 (аналитик канд. геол.-минер. наук Рудмин М.А.) при участии автора.

В составе циркона разновозрастных гранитоидов постоянной примесью является Hf; примеси Al, Ca и Fe эпизодически фиксируются в цирконах волчихинского комплекса.

Гафний, как известно, является типоморфным элементом и кристаллохимическим близнецом циркония, входит в структуру циркона по схеме изовалентного изоморфизма ($Zr^{4+} \leftrightarrow Hf^{4+}$) [2]. В цирконах разновозрастных гранитоидов Hf фиксируется постоянно, однако его распределение несколько индивидуализировано (табл.). В цирконах девонских гранитоидов ($D_{2-3}az$) содержания Hf наиболее низкие и изменяются незначительно (Xcp = 1,38 мас. %); в цирконах каменноугольных и пермо-триасовых комплексов концентрации Hf заметно возрастают, составляя в среднем соответственно 1,79 и 1,73 мас. %. Весьма показательным для разновозрастных гранитоидов служит коэффициент цирконий-гафниевого отношения – наиболее высокими значениями ZrO_2/HfO_2 характеризуются цирконы девонских плагиогранитов и тоналитов и цирконы пермо-триасовых порфировидных гранитов, в которых отношение ZrO_3/HfO_2 составляет соответственно 38,16 и 41,66.

Химический состав циркона лейкогранитов (С₂₋₃v) несколько обособляется эпизодическим появлением примесей Al, Ca, Fe, образующих структурную примесь по схеме гетеровалентного несовершенного изоморфизма [2]. Вычисленные кристаллохимические формулы цирконов с изоморфными замещениями [1] близки к теоретическим (табл.).

Выводы. Наряду с кристалломорфологическими свойствами циркона надёжным индикаторным признаком разновозрастных верхнепалеозойских гранитоидов северо-западной части Рудного Алтая служит ZrO₂/HfO₂ отношение.

Таблица

ZrO ₂	SiO ₂	Al ₂ O ₃	CaO	FeO*	HfO ₂	Сумма	ZrO ₂ / HfO ₂	Кристаллохимическая формула
Плагиограниты и тоналиты (D ₂₋₃ az)								
66,96	32,07	_	_	_	1,22	100,25	54,89	$(Zr_{1,0}Hf_{0,01})_{1,01}[Si_{0,99}O_4]$
67,09	32,04	_	_	_	1,3	100,43	51,61	$(Zr_{1,0}Hf_{0,01})_{1,01}[Si_{0,98}O_4]$
66,79	31,51	_	_	_	1,21	99,51	55,20	$(\mathrm{Zr}_{1,0}\mathrm{Hf}_{0,01})_{1,01}[\mathrm{Si}_{0,98}\mathrm{O}_4]$
66,72	32,08	_	_	_	1,66	100,46	40,19	$(Zr_{1,0}Hf_{0,01})_{1,01}[Si_{0,99}O_4]$
66,25	32,76	_	_	_	1,49	100,5	44,46	$(Zr_{0,99}Hf_{0,01})_{1,0}[Si_{1,0}O_4]$
66,76	32,09	-	-	-	1,38	100,23	49,27	
Лейкограниты, калиевые лейкограниты (С ₂₋₃ v)								
65,91	32,06	_	0,46	0,48	2,28	101,19	28,91	$(Zr_{0.98}Hf_{0.02}Ca_{0.02}Fe_{0.01})_{1.03}[Si_{0.98}O_4]$
66,15	31,55	0,8	0,41	_	1,81	100,72	36,55	$(Zr_{0,99}Hf_{0,02}Ca_{0,01})_{1,02}[(Si_{0,97}Al_{0,03})_{1,0}O_4]$
66,25	31,43	_	_	1,24	1,51	100,43	43,87	$(Zr_{0,99}Fe_{0,03}Hf_{0,01})_{1,03}[Si_{0,97}O_4]$
67,04	31,86	_	_	_	1,48	100,38	45,30	$(Zr_{1,01}Hf_{0,01})_{1,02}[Si_{0,98}O_4]$
64,44	30,93	_	_	_	1,94	97,31	33,22	$(\mathrm{Zr}_{0,99}\mathrm{Hf}_{0,02})_{1,01}[\mathrm{Si}_{0,98}\mathrm{O}_4]$
65,02	32,27	0,58	_	0,48	2,16	100,51	30,10	$(Zr_{0,97}Hf_{0,02}Fe_{0,01})_{1,0}[(Si_{0,99}Al_{0,02})_{1,01}O_4]$
67,86	32,01	_	_	-	1,38	101,25	49,17	$(Zr_{1,01}Hf_{0,01})_{1,02}[Si_{0,98}O_4]$
66,01	31,73	-	-	-	1,79	100,25	38,16	
Порфировидные граниты (P ₂ –T ₁ s)								
67,52	32,06	_	_	_	1,27	100,85	53,17	$(Zr_{1,02}Hf_{0,01})_{1,03}[Si_{0,97}O_4]$
66,67	31,95	_	_	_	1,42	100,04	46,95	$(Zr_{1,03}Hf_{0,01})_{1,04}[Si_{0,99}O_4]$
66,19	31,58	_	_	_	1,77	99,54	37,40	$(Zr_{1,0}Hf_{0,02})_{1,02}[Si_{0,98}O_4]$
66,71	31,2	-	_	_	1,26	99,17	52,94	$(Zr_{1,02}Hf_{0,01})_{1,03}[Si_{0,97}O_4]$
66,31	31,76	-	_	-	1,33	99,4	49,86	$(Zr_{1,03}Hf_{0,01})_{1,04}[Si_{0,99}O_4]$
65,17	31,78	_	_	_	2,64	99,59	24,69	$(Zr_{0,99}Hf_{0,02})_{1,01}[Si_{0,99}O_4]$
64,09	30,79	_	_	_	2,41	97,29	26,59	$(Zr_{0,99}Hf_{0,02})_{1,01}[Si_{0,98}O_4]$
66,09	31,59	-	_	-	1,73	99,41	41,66	

Химический состав циркона гранитоидов верхнепалеозойских комплексов, мас. %

Примечание: 1) FeO* приведено как Fe₂O₃+FeO; 2) Жирным шрифтом выделены средние содержания; 3) прочерк – элемент не установлен

Литература

- 1. Булах А.Г. Руководство и таблицы для расчёта формул минералов. М.: Недра, 1967. 144 с.
- 2. Макаров Е.С. Изоморфизм атомов в кристаллах. М.: Атомиздат, 1973. 288 с.