

Рис. 1. Изменение цвета АБСК от содержания ЛАБ в несульфируемом остатке

Сравнивая состав остатков между собой за разное время, можно отметить, что преимущественными соединениями являются ЛАБ (C<sub>12</sub>H<sub>25</sub> и C<sub>13</sub>H<sub>27</sub>). Сравнивая по сырью ЛАБ, можно заключить, что чем выше содержание целевых компонентов в ЛАБ, (например, июнь 2016), тем меньше неиндефицированных соединений в несульфируемом остатке будет.

Несульфируемый остаток, полученный из самой светлой АБСК, преимущественно состоит из непревращенных ЛАБ и сероорганических соединений (сульфонов). АБСК в процессе «старения» приобретает более темный цвет (и продолжает темнеть), при этом количество ЛАБ уменьшается, превращаясь в сульфоны и нелинейные изомеры.

## Литература

- 1. Олонцев И.Ф., Ветошкин Ю.С. Тенденцииразвития производства и рынка СМС и товаров бытовой химии в России в XX1 веке. «Бытовая Химия». 2005. №20. 4-8 с.
- 2. Баннов П.Г. Процессы переработки нефти. М.: ЦНИИТЭ-нефтехим. 2011. 429 с.
- 3. Color stabilization of alkylarenesulfonic acids. Pat. US2880235. MonsantoChemicals. 2011

# РАСЧЕТ СТАДИИ ОКИСЛИТЕЛЬНОЙ РЕГЕНЕРАЦИИ ЦЕОЛИТСОДЕРЖАЩЕГО КАТАЛИЗАТОРА КРЕКИНГА НЕФТЯНОГО СЫРЬЯ Т.А. Шафран, Г.Ю. Назарова, В.И. Стебенева Научный руководитель профессор Е.Н. Ивашкина

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

К числу перспективных процессов глубокой переработки нефтяного сырья относится каталитический крекинг, являющийся одним из основных крупнотоннажных процессов современного нефтеперерабатывающего комплекса. Назначением процесса каталитического крекинга наряду с производством высокооктанового бензина является получение пропан-пропиленовой и бутан-бутиленовой фракций, являющихся ценным сырьем для нефтехимии.

В технологии каталитического крекинга используется микросферический цеолитсодержащий катализатор. Состав катализатора во многом определяет состав и выход целевых продуктов крекинга. В работе [1], посвященной исследованию превращений углеводородов вакуумного газойля в условиях каталитического крекинга, было показано, что активность и селективность цеолитсодержащего катализатора определяется составом, кислотностью, размером и формой пор каналов катализатора. При этом на селективность процесса, состав и выход целевых продуктов крекинга наряду с типом цеолитсодержащего катализатора оказывают влияние и условия осуществления крекинга. Среди основных технологических параметров реакторно-регенераторного блока процесса каталитического крекинга являются расход и температура сырья и водяного пара, кратность циркуляции катализатора, расход воздуха на регенерацию, температура регенерации и катализаторного потока после регенерации.

С повышением температуры процесса значительно увеличивается скорость вторичных реакций крекинга с образованием высокого выхода бензина и газообразных продуктов, а также кокса, отлагающегося на поверхности цеолитсодержащего катализатора.

Целью данной работы является определение количества окисленного кокса в процессе регенерации цеолитсодержащего катализатора крекинга и степени его аморфности.

Объектом исследования является микросферический цеолитсодержащий катализатор крекинга, который содержит в своем составе ультрастабильный цеолит Y в декатионированной форме, цеолит ZSM-5 в H-форме

и матрицу. Содержание кокса на катализаторе до регенерации составляет 0,40 -0,70 % мас., после регенерации – 0,01-0,06 % мас. Объем пор катализатора составляет не более 0,550 см<sup>3</sup>/г, насыпная плотность 700-840 кг/м<sup>3</sup>.

Методом исследования образца закоксованного катализатора крекинга является синхронный термогравиметрический анализ, выполненный с применением термоанализатора с масс-спектрометром SDT Q600 V20.9 Build 20. В среде воздуха со скоростью нагрева 10°C в минуту проводилось окисление кокса до температуры 1000 °C.



Рис. Результаты термогравиметрического анализа образца закоксованного катализатора

Результаты термогравиметрического анализа (рис. 1) показали, что при окислении кокса масса катализатора снижается с 30,29 до 28,95 мг, что составляет 4,42 % от первоначальной массы закоксованного катализатора. Кривые изменения теплового эффекта и массы проходят через три пика. Первый пик наблюдается в интервале температур 30,0-110,5 °C (температура пика – 63,2 °C), что связано с эндотермическим процессом испарения свободной влаги и десорбции углеводородов, накопленных в порах катализатора после зоны десорбции и лифтреактора. Потеря массы образца составила 0,28 мг, что соответствует 0,90 % от массы катализатора.

Экзотермический процесс окисления кокса наблюдается в интервале температур 110,5–642,1 °C, температура пика – 289,5 °C, потеря массы – 0,89 мг (2,92 % мас.) и 642,1 – 815,5 °C, температура пика – 655,0 °C, потеря массы – 0,17 мг (0,60 % мас.).

Согласно результатам термогравиметрического анализа, в процессе каталитического крекинга на поверхности цеолитсодержащего катализатора образуется кокс аморфной структуры, при этом условия проведения регенерации катализатора каталитического крекинга поддерживаются на уровне 630-730 °C.

В данной работе выполнены расчеты, направленные на определение количества окисленного кокса и степени его аморфности по соотношению С/Н в процессе регенерации по методике [2]. Данная методика расчета основана на результатах анализа состава дымовых газов (объемной концентрации CO, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub> и SO<sub>2</sub>) после регенерации и расходе подаваемого воздуха на регенерацию.

В расчетах принято допущение, что весь углерод превращается в диоксид углерода, поэтому реакцию горения в общем виде можно представить следующим образом:

$$CH_x + (1 + x/4) O_2 \rightarrow CO_2 + (x/2) H_2O_3$$

где x – отношение моль водорода к 1 моль углерода.

Методика расчета количества окисленного кокса заключается в определении:

1. Количества израсходованного кислорода и образовавшегося углекислого газа:

$$n_{O_2} = G_v (C_{O_2}^o - C_{O_2}) / 100 / V_m,$$

$$n_{CO_2} = G_v \cdot C_{CO_2} / 100 / V_m,$$

где пО<sub>2</sub> – количество израсходанного кислорода, кмоль/ч; Gv – расход воздуха, нм<sup>3</sup>/ч; <sup>сб</sup><sub>z</sub> – концентрация кислорода в подаваемом воздухе, % об; сО<sub>2</sub> – концентрация кислорода в отходящих газах, % об.; V<sub>m</sub> – молярный объем газа при н.у., м<sup>3</sup>/кмоль; пСО<sub>2</sub> – количество образовавшегося углекислого газа, кмоль/ч; сСО<sub>2</sub> – концентрация углекислого газа в отходящих газах (суммарное содержание СО и СО<sub>2</sub>), % об.

2. Количество атомов углерода и водорода в коксе:

$$N_H = (n_{O_2} - n_{CO_2}) \cdot 4,$$

$$N_H = (n_{O_2} - n_{CO_2}) \cdot 4$$

где  $\rm N_{c}-$  количество атомов углерода в коксе, кмоль/ч;  $\rm N_{H}-$  количество атомов водорода в коксе, кмоль/ч. 3. Масса окисленного кокса:

$$M_{\hat{e}} = N_C \cdot M_C + N_H \cdot M_H,$$

где M<sub>к</sub> – масса окисленного кокса, кг; M<sub>C</sub>, M<sub>H</sub> – молярная масса соответственно углерода и водорода, кг/кмоль. В таблице 1 представлены экспериментальные данные по составу дымовых газов и расходу воздуха, подаваемого на регенерацию.

### Таблица 1

| Эксперимент | Расход воздуха, нм <sup>3/ч</sup> | Состав дымовых газов, % об. |                 |                |                |                 |  |
|-------------|-----------------------------------|-----------------------------|-----------------|----------------|----------------|-----------------|--|
|             |                                   | СО                          | CO <sub>2</sub> | N <sub>2</sub> | O <sub>2</sub> | SO <sub>2</sub> |  |
| 1           | 155391,9                          | 0,0017                      | 14,03           | 81,29          | 4,68           | 0,0049          |  |
| 2           | 153470,5                          | 0,0025                      | 13,11           | 81,68          | 5,20           | 0,0075          |  |
| 3           | 148799,8                          | 0,0022                      | 12,56           | 81,30          | 6,13           | 0,0078          |  |

#### Состав дымовых газов и расход воздуха на стадии регенерации каталитического крекинга

В таблице 2 приведены результаты по расчету количества окисленного и остаточного кокса и его соотношение С/Н. Адекватность расчетов была оценена сравнением количества остаточного кокса на поверхности катализатора крекинга с помощью расчета и эксперимента.

#### Таблица 2

#### Результаты по определению количества окисленного кокса в технологии каталитического крекинга

| Эксперимент | Масса<br>окисленного<br>кокса, кг | Остаточное содержание<br>кокса на катализаторе, %<br>мас. | Остаточное<br>содержание кокса на<br>катализаторе, % мас. | Абсолютная<br>погрешность, % | C/H |
|-------------|-----------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------|-----|
|             |                                   | расчет                                                    | эксперимент                                               | мас.                         |     |
| 1           | 12288,9                           | 0,020                                                     | 0,016                                                     | 0,0040                       | 1,6 |
| 2           | 11487,0                           | 0,019                                                     | 0,024                                                     | 0,0050                       | 1,3 |
| 3           | 10602,3                           | 0,018                                                     | 0,019                                                     | 0,0001                       | 1,4 |

Выполненные расчеты показали, что в условиях каталитического крекинга микросферический цеолитсодержащий катализатор подвергается обратимой дезактивации катализатора коксом аморфной структуры с соотношением C/H = 1,3-1,6 при изменении температуры процесса 515–530 °C. Абсолютная погрешность расчетов составляет не более 0,0050 % мас. В дальнейшем представленная методика расчета количества окисленного кокса будет использована при разработке математической модели реакторно-регенераторного блока, что позволит скорректировать технологические режимы работы реактора и регенератора, а также проводить исследования направленные на продление сроков службы катализатора крекинга за счет снижения суточного расхода свежего катализатора в регенератор.

#### Литература

- 1. Conversion of Higher n-Alkanes under Deep Catalytic Cracking Conditions / P. V. Lipin, V. P. Doronin et al. // Petroleum chemistry. 2010. Vol. 50, № 5. P. 362-367.
- Системный анализ и повышение эффективности нефтеперерабатывающих производств методом математического моделирования: учебное пособие / Под ред. А.В. Кравцов и др. – Томск: Издательство ТПУ, 2004. – 170 с.