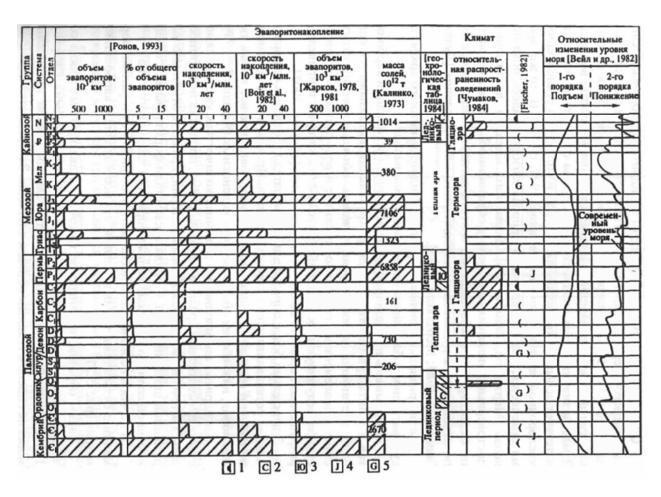
УДК 551

СЛЕДЫ ПОЗДНЕВЕНДСКОГО ЛЕДНИКОВОГО ПЕРИОДА В ОТЛОЖЕНИЯХ БЮКСКОЙ СВИТЫ НЕПСКО-БОТУОБИНСКОГО РЕГИОНА

И.Л. Крицкий, Е.П. Кропотова, Т.А. Коровина, М.Г. Лебедева Тюменское отделение СургутНИПИнефть, г. Тюмень E-mail: Kritskiy IL@.surgutneftegas.ru

Сделано предположение, что текстурно-структурные особенности пород разреза верхнебюкской подсвиты на Непско-Ботуобинском своде могут свидетельствовать о ледниковых условиях осадкона-копления в поздневендский период.


Ключевые слова: поздневендский ледниковый период, бюкская свита, керновые исследования.

Учитывая четкую дифференциацию докембрийского разреза отложений на Непско-Ботуобинском своде, можно предположить, что во время накопления терригенной его части, сформировавшейся преимущественно в верхнерифейско-нижневендское время, территория представляла собой слабогористую область с многочисленными озерами, которая, начиная с талахского времени, периодически заливалась морем. Считается, что климат был семиаридный, семигумидный с переменной влажностью. В этом климате сформировались все три цикла его терригенного осадконакопления и завершился третий цикл базальным горизонтом — ботуобинским песчаником, которым начинается иктехская (бюкская) серия отложений.

Считается, что его формирование совпало с заключительной стадией денудационных процессов. В образовавшееся мелководное море обломочного материала практически не поставлялось, за исключением наиболее устойчивых кварцевых зерен, которые в процессе неоднократного переотложения довольно хорошо отсортировались и обкатались, приобретя узнаваемую характерную для этого пласта округлую форму. Большинство исследователей считает, что отсутствие денудационных процессов усугублялось и наступившим засушливым климатом, приведшим к пересыханию рек, и интенсивному испарению воды из водоемов. Все это привело к тому, что последний базальный горизонт перекрывается уже не глинистыми, а существенно сульфатно-карбонатными отложениями с редкими глинистыми прослоями. И дальше территория развивается в условиях засушливого аридного климата. Но эта точка зрения входит в определенные противоречия с теми исследованиями, которые говорят о том, что, начиная с позднего венда, на Земле наступили условия глобального оледенения.

Следы поздневендского оледенения и такого же по масштабу орогенеза (горообразования) находят на всех континентах Земли. До недавнего времени их не находили только в Сибири. Лишь совсем недавно (фактически в конце 20-го века) удалось обнаружить на Енисейском кряже в основании позднедокембрийской кластической серии пород следы деятельности древних поздневендских ледниковых систем [6]. Ледниковые отложения на соседних территориях Центрального Казахстана и Тувино-Монгольского древнего микроконтинента также датированы поздним вендом. [2,3], но отличаются питающими провинциями.

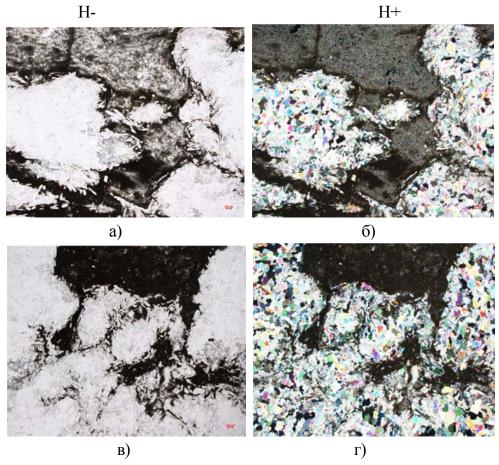

С другой стороны, исследователями [1], занимающимися процессами галогенеза на Земле, подмечено, что в истории глобального соленакопления прослеживается ряд крупных максимумов — эпох галогенеза. Причем, согласно статистике, наиболее мощные периоды соленакопления в древности происходили в периоды оледенения и понижения в связи с этим уровня Мирового океана (рисунок 1).

Рисунок 1. Распределение количества солей в геологической колонке и их соотношение с климатом и колебаниями уровня Мирового океана в фанерозое (по В.Г. Кузнецову):

1-покровное оледенение; 2- северное оледенение; 3- южное оледенение; 4 – холодный период (icehouse); 5- теплый период, время парникового эффекта (greenhouse).

По-видимому, мощные толщи соляных пластов (начиная с торсальских солей) образовались в Непско-Ботуобинском осадочном бассейне в наиболее холодные периоды поздневендского оледенения. Процессы подпитывания отложений глубинными рассольно-солянными массами приводили к «вымораживанию» мощных соляных пластов (до нескольких сотен метров толщиной). Эпизодические потепления приводили к временному таянию льдов, опреснению водных бассейнов и массовому развитию биоты, способствуя накоплению биогенного карбонатного материала, особенно на отмелях, лучше прогреваемых солнцем. Не исключено, что многочисленные прослои брекчий и конгломератов в отложениях верхнебюкской свиты тоже несут следы ледникового воздействия (рисунок 2).

Рисунок 2. Обломки ангидрита сцементированы глинисто-ангидритовой перетертой массой в отложениях верхнебюкской подсвиты

Проведенные микрозондовые исследования с помощью электронномикроскопической съемки (рисунок 3) показали, что состав цементирующего материала в брекчиях, сложный и состоит из перетертых остатков ангидрита, магнезита, кварцевых и полевошпатовых зерен, а также глинистых минералов предположительно монтмориллонит-гидрослюдистого состава.

Более того, при таянии льда в бассейн вытапливался весь терригенный материал, накопленный во льдах [5]. При этом движение ледников приводило к переносу накопленного ими материала на довольно большие расстояния, что впоследствии приводило к инверсионному характеру осадочного разреза, когда более древние отложения перекрывали более молодые. Наиболее ярко это проявляется в карбонатно-галогенном разрезе верхнебюкской подсвиты в виде многочисленных прослоев, обогащенных терригенным материалом, часто ботуобинского облика (рисунок 4), в которых обломки кварца окатаны до совершенных округлых форм, что в природе, чаще всего происходит

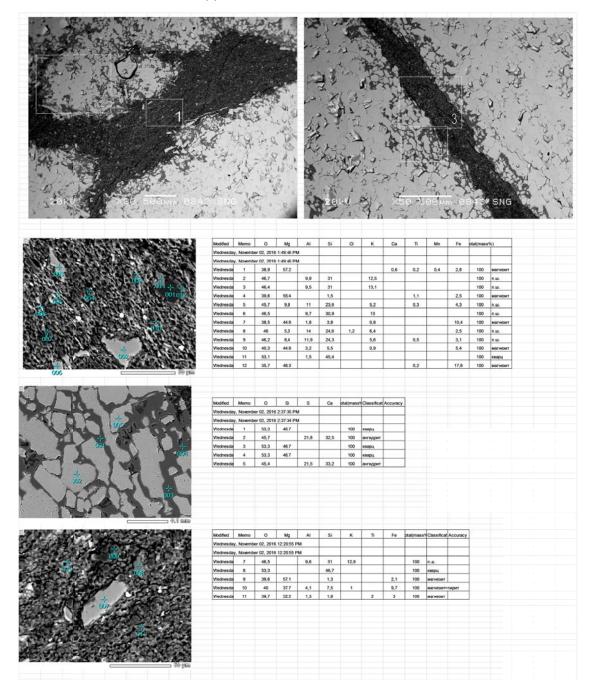
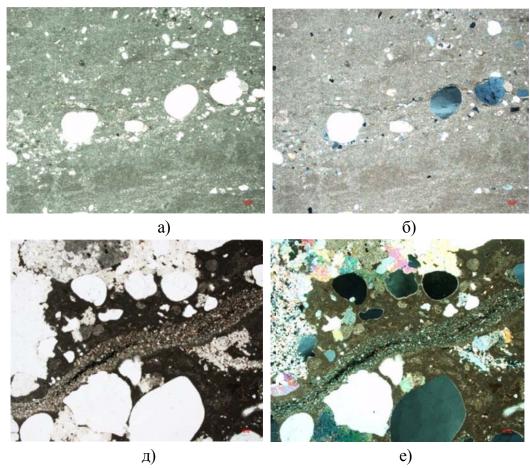
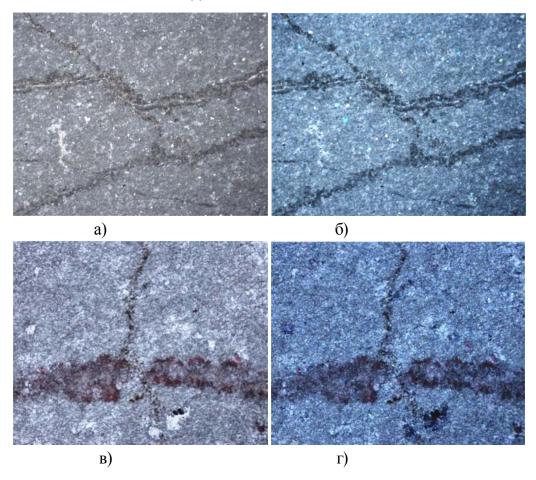



Рисунок 3. Электронномикроскопические снимки с результатами качественного элементного состава породы в точке методом энергодисперсионного микрозондового анализа.. Брекчия ангидритовых обломков, сцементированных перетертой глинисто-ангидритовой массой с битумной пигментацией и примесью микроскопических обломков кварца, полевого шпата и др.

при длительном воздействии ледниковых масс. Цементирующая масса представлена тонкоперетертым тиллитоподобным материалом сложного состава.


Нередко в поздневендских карбонатах можно встретить мелкозернистые довольно плотные доломиты, слегка ангидритизированные с тонкой разнонаправленной трещиноватостью, по которой наблюдаются нитевидные прорастания бактериальных форм (рисунок 5). Возможно, это тоже следы оледенения. В результате замерзания водоемов, многие существовавшие в них бактерии погибли, но образовались (или сохранились)

те, которые, «питаясь энергией камней», смогли приспособиться к изменившимся условиям [7]. Разнонаправленная трещиноватость доломитов вполне могла образоваться тоже в процессе замерзания осадка, насыщенного водой. В свою очередь, такие породы легко брекчировались под воздействием движущихся ледников.

Рисунок 4. Примесь терригенного материала (ботуобинского типа) в более поздних отложениях верхнебюкской подсвиты. Фотографии шлифов в проходящем (а,д) и поляризованном (б,е) свете. Объектив x2,**5**

Судя по всему, оледенение, начавшиеся в конце венда, продолжилось и в раннем кембрии вплоть до ордовика, захватив, так называемый, надсолевой комплекс. Периоды потепления, которым способствовали и многочисленные интрузии раскаленной магмы в надсолевом комплексе, не исключают периодические похолодания, также отмеченные галогенными отложениями, но уже более скромными.

Рисунок 5. Доломит мелкозернистый прорезан нитевидными разнонаправленными прорастаниями бактериальных форм по тонким трещинам. Фотография шлифа в проходящем (а, в) и поляризованном (б, г) свете. а, б) – Ув. X25; в, г) – Ув. X100.

ЛИТЕРАТУРА:

- 1. Беленицкая Г.А. История закономерности пространственно-временного размещения соленосных бассейнов мира. Эволюция осадочных процессов в истории Земли. Том II. М. 2015. Стр.14-16.
- 2. Каныгина Н.А., Третьяков А.А., Жимулев Ф.И. Возрастное ограничение образования тиллитов байконурской свиты (Улутау): данные U-PB датирования детритовых цирконов методом LA ICP-MS и SR-хемостратиграфии. Эволюция осадочных процессов в истории Земли. Том II. М. 2015. Стр.60-63.
- 3. Караковский Е.А., Прошенкин А.И. Вендские тиллиты Тувино-Монгольского микроконтинента: время образования, состав и возраст пород питающих провинций, корреляция. Эволюция осадочных процессов в истории Земли. Том II. М. 2015. Стр.63-66.
- 4. Кузнецов В.Г. Эволюция осадочного породообразования в истории Земли. М. Научный мир. 2016. 21.
- 5. Лисицын А.П. Новое в осадкообразовании в мировом океане. Эволюция осадочных процессов в истории Земли. Том І. М. 2015. Стр.5-10.
- 6. Советов Ю.К., Соловецкая Л.В., Казак А.К. Прибрежный апвелинг в позднем криогении: юго-запад Сибирского кратона. Эволюция осадочных процессов в истории Земли. Том І. М. 2015. Стр.160-161

7. Хабаров Е.М. Роль микробиальных сообществ в карбонатонакоплении докембрия. Эволюция осадочных процессов в истории Земли. Том І. М. 2015. Стр.180-183.

Коровина Татьяна Альбертовна. Начальник НИО литологии НПК петрофизических исследований Тюменского отделения «СургутНИПИнефть», ОАО «Сургутнефтегаз», г. Тюмень.

Кропотова Екатерина Павловна. Ведущий научный сотрудник НИО литологии НПК петрофизических исследований Тюменского отделения «СургутНИПИнефть», ОАО «Сургутнефтегаз», г. Тюмень.

Крицкий Игорь Леонидович. Старший научный сотрудник НИО литологии НПК петрофизических исследований Тюменского отделения «СургутНИПИнефть», ОАО «Сургутнефтегаз», г. Тюмень.

Лебедева Маргарита Геннадьевна. Заведующая НИЛ, НИО литологии НПК петрофизических исследований Тюменского отделения «СургутНИПИнефть», ОАО «Сургутнефтегаз», г. Тюмень