Выводы. Установлено, что формирование адгезионного подслоя ионным пучком из C_3H_8 с энергией – 3-5 кэВ способствует увеличению адгезионной прочности напыляемого покрытия, толщина переходного слоя при этом может составлять до 15-20 нм. Последующий синтез при энергии пучка до 0,6 кэВ позволяет повысить твердость покрытия до 20 $\Gamma\Pi a$.

Авторы выражают благодарность В.А. Володину, С.Ю. Чепкасову, М.Н. Хомякову за помощь при работе на диагностической аппаратуре. Работа выполнена при поддержке Проекта НГУ: Стратегические академические единицы (САЕ) «Нелинейная фотоника и квантовые технологии 2016 – 2017».

Список литературы

- 1. Akit K., Ahish V., Niranjan Reddy K., et al. Synthesis of high hardness IR optical coating using diamond-like carbon by PECVD at room temperature // Diamond & Related Materials. 2017. Vol. 78 P. 39–43.
- 2. Nusupov K. Kh., Beisenkhanov N. B., Valitova I. V., et al. Structural Studies of Thin Silicon Layers Repeatedly Implanted by Carbon Ions // Physics of the Solid State. 2005. Vol. 48. No. 7. P. 1255–1267.
- 3. Murmu P. P., Markwitz A., Sushke K., Futter J. A novel radial anode layer ion source for inner wall pipe coating and materials modification Hydrogenated diamond-like carbon coatings from butane gas // Review of Scientific Instruments. 2014. Vol. 85. P. 085118.

ИЗУЧЕНИЕ ВЛИЯНИЯ СОДЕРЖАНИЯ ХЛОРА В ГАЛОГЕНМОДИФИЦИРОВАННЫХ ЭЛАСТОМЕРАХ НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА РЕЗИН И РЕЗИНОВЫХ СМЕСЕЙ

 $\underline{K.B.\ CVXAPEBA^{1,2}}$, И.А. $\underline{MUXA\breve{M}\PiOB^{1,2}}$, Ю.О. $\underline{AHДPUACSH^2}$, А.А. $\underline{\PiO\PiOB^{1,2}}$ 1 РЭУ им. Г.В. Плеханова 2 Институт биохимической физики им. Н.М. Эмануэля РАН E-mail: aspirantras@mail.ru

Освоение и внедрение новых технологий в различных отраслях промышленного производства связано с потребностью в эластомерных материалах, обладающих сложным комплексом специфических свойств, обеспечивающих их работоспособность в экстремальных условиях. Серийно выпускаемые в настоящее время синтетические полимеры (эластомеры) не в состоянии полностью удовлетворить все возрастающие потребности различных отраслей промышленности в новых материалах.

С учётом вышеизложенного, актуальной задачей является расширение диапазона свойств серийно выпускаемых каучуков посредством их хлорирования по технологии механохимической галоидной модификации [1,2]. Из литературы известно, что посредством галоидной модификации каучуков удается получать резины с повышенной прочностью, масло-, бензостойкостью, негорючестью, адгезией, стойкостью к воздействию агрессивных сред и различных микроорганизмов для использования в резинотехнических изделиях с повышенными требованиями к долговечности.

Целью данной работы является изучение влияния содержания галогена (хлора) в галогенмодифицированных эластомерах на физико-механические свойства резин и резиновых смесей.

В качестве объектов исследования были взяты: бутадиен-стирольный каучук марок СКС-30РП и СКМС – 30РП, бутилкаучук БК-1675н и этиленпропиленовый каучук СКЭПТгалоидсодержащего модификатора использовали предельный хлорсодержащий углеводород общей формулы C30H38C124 (содержание $C1\sim70\%$). На основании данных каучуков с помощью метода твердофазной механохимической галоидной модификации были получены модификаты с общим содержанием хлора 8 и 12% масс.

Исследование физико-механических характеристик заключалось в определение прочностных свойств резин при растяжении, эластичность и твердость образцов. Прочностные характеристики определяются согласно ГОСТ 270-75 на разрывной машине, эластичность измеряется методом определения эластичности по упругому отскоку (ГОСТ 6950-73), измерение твердости проводят с помощью твердомера по методу Шора (ГОСТ 263-75). В ходе эксперимента были определены следующие параметры для исследуемых образцов: напряжение при удлинении 200% (М200, МПа), напряжение при удлинении 300% (М300, Мпа), напряжение при удлинении 500% (М500, МПа), прочность (бр., МПа), относительное удлинение, при котором происходит разрыв (отн.удл. %) и остаточное удлинение, оставшееся после разрыва в течение 1 мин (ост. удл. %), твёрдость по Шору (тв. по Шору, усл.ед), Эластичность (эл-ть по отскоку, усл.ед). Результаты испытаний представлены в таблице 1.

Таблица 1 - Физико-механические характеристики каучуков с повышенным содержанием хпора

mopu.	
Шифр	pe
Ci	ме

Шифр резиновой	Сод.	Физико-механические характеристики							
смеси	связа	M_{200}	M_{300}	M_{500}	бр	Отн.	Ост.	Тв. по	Эл-ть
	нхло	МΠа	МΠа	МΠа	МΠа	Удл.	Удл.	Шору	по
	pa.					%	%		отско
	%ма								ку
	cc								
СКС – 30РП	0	0,49	1,22	4,36	10,6	720	14	43	37
					3				
XCKC 5	2,6	1,8	2,7	9,0	13,9	720	14	43	37
XCKC 10	5,0	1,8	4,4	11,0	11,9	525	6	52	29
XCKC 15	7,5	0,9	2,3	6,6	11,4	680	14	58	23
СКМС – 30РП	0	2,5	5,2	-	8,8	350	6	60	32
XCKMC 5	1,8	1,3	3,54	9,9	11,7	550	10	54	31
XCKMC 10	3,5	1,28	2,91	7,9	12,2	600	12	58	26
XCKMC 15	5,4	1,4	4,0	10,3	13,2	580	11	57	25
БК	0	2,7	5,4	13,7	16,3	565	28	62	14
ХБК 5	2,7	1,7	4,0	10,4	15,1	590	40	66	17
ХБК 10	5,2	2,1	4,0	10,2	14,3	650	47	77	12
ХБК 15	7,5	1,3	2,6	6,25	13,5	740	53	76	13
СКЭПТ-Э60	0	7,9	15,1	-	16,4	330	4	72	32
ХСКЭПТ-Э60 5	2,1	6,1	11.2	-	17,2	475	24	81	27
ХСКЭПТ -Э60 10	4,0	9,5	-	-	10,3	225	8	82	25
ХСКЭПТ -Э60 15	5,5	8,1	-	-	8,05	200	10	80	25

Анализируя данные по физико-механическим испытанием видно, что для всех СКЭПТ-Э60, кроме наблюдается увеличение твердости, уменьшение эластичности. Для СКС снижаются прочностные свойства, по-видимому, из-за увеличения жесткости полимерной цепи при повышении содержания хлора. У СКМС – 30РП прочность меняется незначительно. Для СКЭПТ-Э60 твердость и эластичность не изменяются, но падает прочность, что может быть связано с повышением нерегулярности структуры.

Список литературы

- 1. Mikhaylov I.A., Sukhareva K.V., Andriasyan Yu.O., Popov A.A., Vorontsov N.V. Mechanochemical modification of natural rubber // AIP Conference Proceeding, 2016. V. 1783, № 020153. P. 1-4
- Sukhareva K.V., Mikhailov I.A., Andriasyan Yu.O., PopovA.A.
 Thermomechanochemische Modifikation des Butylkautschuks in Anwesenheit von chlorhaltingen Reagenzien// Gummi. Fasern. Kunststoffe. 2016. №6. P. 374-376.

НОВАЯ ТЕХНОЛОГИЯ ПОВЕРХНОСТНОЙ МЕХАНОХИМИЧЕСКОЙ ФТОРМОДИФИКАЦИИ РЕЗИН

 $\underline{\textit{K.B. CУХАРЕВА}^{1,2}}$, И.А. МИХАЙЛОВ ^{1,2}, Ю.О. АНДРИАСЯН ², А.А. ПОПОВ ^{1,2} ¹ РЭУ им. Г.В. Плеханова ²Институт биохимической физики им. Н.М. Эмануэля РАН E-mail: aspirantras@mail.ru

Модификация полимеров является активно развивающимся направлением для получения галогенсодержащих полимеров. Таким способом можно получать эластомерные материалы, имеющие новые специфические свойства. Среди разнообразных способов модификации полимеров особенно перспективной в практическом аспекте является модификация их поверхности [1]. Предлагаемый новый метод поверхностной механохимической фтормодификации является одним из течений научного направления механохимической галоидной модификации эластомеров [2]. Отличается данный метод от используемых в настоящее время тем, что с целью уменьшения стадийности процесс проводят в одну стадию обработкой вулканизата эластомерного материала раствором фтормодификатора.

В рамках исследования была проведена поверхностная модификация образцов резин на основе бутадиен-нитрильных каучуков (БНК) с помощью фтормодификатора и было установлено, что в зависимости от продолжительности модификации варьируются такие показатели резин как стойкость к термоокислению, стойкость к воздействию агрессивных сред и физико-механические показатели.

Исследование влияния процесса термоокисления на модифицированные фтором образцы резины на основе БНК проводилось на манометрической установке (в соответствии с ГОСТ ISO 188-2013) при температуре $t=150^{\circ}$ С и давлении кислорода PO2=300 мм рт ст. В результате были получены кинетические кривые (рис. 1) для образцов с разным временем модификации (1 сутки, 3 суток, 6 суток и исходный образец БНК без модификации).

Исходя из данных, представленных на рисунке 1, видно, что после фторирования образцов резин на основе БНК в течение 6 суток показатель поглощения кислорода уменьшился на 45% по сравнению с исходным не фторированным образцом резины на основе БНК.