РАЗРАБОТКА СОСТАВА ВЫСОКОТЕМПЕРАТУРНОЙ КЕРАМИКИ ДЛЯ ИЗГОТОВЛЕНИЯ ОСНАСТКИ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ПЕЧЕЙ

<u>А.С. ОРЕХОВ</u>, А.А.ДИТЦ

Национальный исследовательский Томский политехнический университет E-mail: ditts@tpu.ru

Ввеление

На сегодняшний день огнеупорные материалы, благодаря своим особым свойствам, стали незаменимы для многих отраслей промышленности, где требуется использование высоких температур и агрессивных сред [1]. С развитием высокотехнологичных областей промышленности в нашей стране все большую роль играют керамические изделия функционального назначения с повышенным уровнем физико-механических свойств. Производство таких изделий требует специальной огнеупорной оснастки на операциях синтеза материала и обжига изделий.

В связи с этим цель работы разработка состава высокотемпературной керамики для изготовления оснастки для высокотемпературных печей.

Эксперимент

Анализ литературы и публикаций показал, что на сегодняшний день оснастка для высокотемпературных печей изготавливают в системах BN_{cub} , AlN- BN_{cub} , SiC.

Выбор компонентов шихты производили, руководствуясь требованиям к огнеупорной оснастке: огнеупорная оснастка должна выдерживать не менее 50 теплосмен в режиме от комнатной температуры до 1650 °C и более; приемы формования огнеупора должны позволять изготавливать огнеупорную оснастку различной конфигурации и габаритов; огнеупорные изделия не должны иметь дефектов в виде выплавок, окрашивающих легкоплавких пятен; высокая термомеханическая стойкость при температурах более 1650 °C; инертность к спекаемым материалам [2].

В работе в качестве материалов были использованы промышленные порошки нитрида алюминия, оксида иттрия производства фирмы H.C. Starck (Германия), порошок нитрида кремния производства фирмы МП «Комплекс» (Россия).

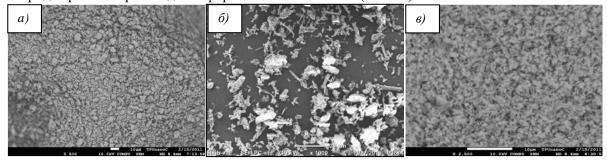


Рисунок 1 -Микрофотографии исходных порошков а) порошок нитрида алюминия $\times 20000$; б) порошок нитрида кремния $\times 500$; в) порошок оксида иттрия $\times 20000$

По данным РЭМ рисунок 1а порошок нитрида алюминия представлен агрегатами неправильной обломочной формы размером 1-2 мкм, по данным РФА на рентгенограмме присутствуют только рефлексы, принадлежавшие нитриду алюминия. По данным РФСА порошок нитрида алюминия содержит следующие примеси: марганец, железо, никель и вольфрам. Нитрид кремния представлен частицами вытянутой призматической формы размером от 5 до 8 мкм, по данным РФА представлены бетта фазой, и содержит примеси металлического кремния и оксида кремния. Порошок оксида иттрия рисунок 1в представлен чешуйками, размер которых от 0,5 до 1 мкм. По данным РФА и РФСА в порошке не обнаружено примесей.

В работе образцы готовили методом одноосного прессования, при удельном давлении 200 МПа. В качестве технологической связки применяли р-р поливинилбутираля, содержание 5 мас.%, схема приготовления приведена в работе [3, 4].

Составы приготовленных шихт представлены в таблице 1, на рисунке 2 представлены данные об относительной плотности спрессованных образцов.

Таблица 1- Составы шихт

III.udn acarana	Содер	$\rho_{\text{Teop.}}$,		
Шифр состава	AlN	Si ₃ N ₄	Y_2O_3	$\rho_{\text{Teop.}}$, Γ/cm^3
A	63,82	28,82	7,36	3,472
В	72,27	21,76	5,97	3,442
С	79,82	15,45	4,73	3,412

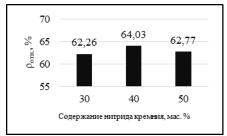


Рисунок 2 – Относительная плотность прессовок

После прессования из образцов удаляли временную связку в муфельной печи при нагревании на воздухе и выдержке в течение 30 мин при температуре $500\,^{\circ}$ С. Дальнейшее спекание проводили в высокотемпературной вольфрамовой печи при разных временах выдержки $2,4,6\,^{\circ}$ ч.

Таблица 2 – Данные определения свойств спеченной керамики

Шифр	Время выдержки, ч											
состава	2				4			6				
	Усадка, %	ρ _{отн.} , _{Γ/см³}	σ _{сж} , МПа	σ _{изг} , МПа	Усадка, %	ρ _{отн.} , _{Γ/см} ³	σ _{сж} , МПа	σ _{изг} , МПа	Усадка, %	ρ _{отн.} , г/см ³	σ _{сж} , МПа	σ _{изг} , МПа
A	8,64	50	160	19	7,21	62,57	172	13	6,76	60	200	22
В	10,43	59	113	21	8,90	57,86	115	31	8,27	63	98	20
C	10,94	66	182	24	8,44	59,52	117	28	9,36	62	165	44

Выводы: Получены образцы высокотемпературной керамики со следующими характеристиками: прочность на сжатие: 200 МПа; относительная плотность: 61%.

Полученные результаты показали, что мелкодисперсные частицы порошка нитрида кремния. Они равномерно распределены в объеме, менее загрязнены примесями, и спекаются до более высоких относительных плотностей.

Использование порошков нитрида алюминия и нитрида кремния при высоких температурах приводит к синтезу нитевидных кристаллов, при этом расходуется эвтектический расплав и процесс спекания замедляется, о чем свидетельствуют низкие значения относительной плотность.

Появление нитевидных кристаллов приводит к эффекту армирования керамики, повышая ее прочностные характеристики при этом уменьшается относительная плотность.

Определены зависимости влияния времени и температуры на формирование структуры и свойств предложенных составов.

Список литературы

- 1. Кащеев, И. Д. Свойства и применение огнеупоров / И. Д. Кащеев. М.: Теплотехник, 2004.-352 с.
- 2. Пивинский, Ю. Е. Теоретические аспекты технологии керамики и огнеупоров. Избранные труды. В 2-х т. т 1. СПб: Стройиздат, 2003. 242 с.
- 3. Obtaining high thermally conductive materials by pressing from the granulate // A. Ditts, I. Revva, Y. Pautova. IOP Conference Series: Materials Science and Engineering, Volume 71, Issue 1, 2015, (doi:10.1088/1757-899X/71/1/012059).
- Obtaining high thermally conductive materials by the method of compaction of granulate // A.A. Ditts, I.B. <u>Revva</u>, V.M. Pogrebenkov. Conference Proceedings - 2014 International Conference on Actual Problems of Electron Devices Engineering, APEDE 2014 Volume 2, 14 November 2014, p. 394-401 (DOI: 10.1109/APEDE.2014.6958284).