ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПРОТЯЖЕННОСТИ УСКОРЯЮЩЕГО ПРОМЕЖУТКА НА ПРЕДЕЛЬНЫЕ ТОКИ ФОРВАКУУМНОГО ИМПУЛЬСНОГО ПЛАЗМЕННОГО ИСТОЧНИКА ЭЛЕКТРОНОВ В АТМОСФЕРЕ АРГОНА

А.С. Смаилов, А.В. Казаков, А.В. Медовник

Научный руководитель: профессор, д.т.н. А.В. Бурдовицин Томский государственный университет систем управления и радиоэлектроники Россия, г. Томск, пр. Ленина, 40, 634050 E-mail: <u>Smailovalmas@mail.ru</u>

RESEARCH OF THE INFLUENCE OF THE ACCELERATING GAP LENGTH ON THE MAXIMAL CURRENTS OF THE FORE-VACUUM PULSED ELECTRON-BEAM PLASMA SOURCE IN THE ATMOSPHERE OF ARGON

<u>A.S. Smailov</u>, A.V. Kazakov, A.V. Medovnik Scientific Supervisor: Prof., Dr. V.A. Burdovotsin Tomsk State University of Control Systems and Radioelectronics, Russia, Tomsk, Lenin Avenue, 40, 634050 E-mail: Smailovalmas@mail.ru

Abstract. The results of experimental research of the electric strength of the accelerating gap of a fore-vacuum pulsed plasma electron source are presented. It is found that the dependence of the maximal currents on the length of the accelerating gap has an extremum.

Введение. Плазменные импульсные источники электронов широко используются для обработки различных материалов. Одной из особенностей таких источников является возможность обработки материалов без дополнительного оборудования для стекания заряда с поверхности диэлектриков, что обеспечивается за счет работы в диапазоне от 3 до 50 Па – форвакуумном диапазоне давлений [1, 2]. К подобным источникам выдвигается рад требований – стабильность работы во времени и высокие плотности тока пучка. Однако этому препятствует электрическая прочность ускоряющего промежутка, в связи с тем, что при увеличении либо длительности импульса, либо увеличении тока и плотности тока пучка, происходит пробой ускоряющего промежутка. Это ограничивает более широкое практическое применение источников электронов.

Возможными причинами электрического пробоя ускоряющего промежутка могут быть: обратный ионный поток, образующийся при прохождении электронного пучка в вакуумной камере, и формирование «вторичной» плазмы в ускоряющем промежутке [3]; зарядка диэлектрических включений на эмиссионном электроде или стабилизирующей сетке [4]; геометрия ускоряющего промежутка и, вероятно, изменение первеанса промежутка [5]. Тем не менее, не очевидно, что является преобладающим фактором для импульсного форвакуумного плазменного источника электронов. В связи с этим, целью настоящей работы является исследование одного из факторов – влияния протяженности ускоряющего промежутка на предельные токи разряда, эмиссии и пучка импульсного форвакуумного плазменного источника электронов.

ХІV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Экспериментальная установка и методика эксперимента. Схема экспериментальной установки изображена на рис. 1. В экспериментах использовался форвакуумный импульсный плазменный источник, эмиссионная плазма в котором генерировалась дуговым разрядом. Протяженность *h* ускоряющего промежутка - расстояние между анодной сеткой 6 и экстрактором 7 регулировалась в диапазоне от 5 мм до 22,5 мм. Электроды 6 и 7 выполнены из нержавеющей стали. Генератор поджигающих импульсов 9 использовался для зажигания дугового разряда. Дуга поддерживалась импульсным блоком питания разряда *10*. Для извлечения электронов из плазмы и их ускорения, использовался блок постоянного ускоряющего напряжения *11*. Более детальное описание конструкции импульсного плазменного источника электронов представлено в [6].

Рис. 1. Схема экспериментальной установки: 1 – катод; 2 – керамический изолятор; 3 – поджигающий электрод; 4 – анод; 5 – высоковольтный изолятор; 6 – анодная сетка; 7 – экстрактор; 8 – фланец вакуумной камеры; 9 – генератор поджигающих импульсов; 10 – импульсный блок питания разряда; 11 – высоковольтный блок постоянного ускоряющего напряжения; 12 – цилиндр Фарадея

Токи I_d разряда и I_e эмиссии измерялись с помощью трансформаторов тока. Ток пучка I_b измерялся с помощью цилиндра Фарадея и трансформатора тока. Максимальный (предельный) ток определялся как значение, при котором количество рабочих импульсов, т.е. импульсов без пробоя, было не менее 90 % от общего числа импульсов. Все эксперименты проводились при одинаковом ускоряющем напряжении 9 кВ. В экспериментах рабочим газом являлся аргон. Давление в диапазоне от 5 до 9 Па регулировалось непосредственным напуском аргона в вакуумную камеру.

Результаты экспериментов и их анализ. Токи I_d разряда, I_e эмиссии и I_b пучка представлены на осциллограммах на рис. 2. На рис. 3 представлен экспериментальный график зависимости предельных токов, усредненных по импульсу, от протяженности h ускоряющего промежутка при давлении 5,5 Па. При исследовании установлено, что зависимость предельных токов I_d , I_e и I_b от h имеет экстремум. С увеличением расстояния в левой части графика (h до 12 мм) происходит рост предельных токов. Это, по-видимому, связано с уменьшением напряженности электрического поля при увеличении расстояния. Дальнейшее увеличение протяженности ускоряющего промежутка (h более 12 мм) приводит к уменьшению предельных токов, что, вероятно, связано с усилением ионизационных процессов в ускоряющем промежутке. Для снижения влияния последних необходимо уменьшать ток.

Россия, Томск, 25-28 апреля 2017 г.

ХІV МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

Рис. 2 Типичные осциллограммы токов I_d разряда, I_e эмиссии и I_b пучка (без пробоя)

107

Рис. 3 График зависимости максимальных токов I_d, I_e и I_b от протяженности h ускоряющего промежутка при p = 5,5 Па

Заключение. Экспериментальные исследования продемонстрировали, что зависимость предельных токов от протяженности ускоряющего промежутка имеет экстремум, наличие которого может быть связано с двумя разными механизмами развития пробоя ускоряющего промежутка. Первый механизм обусловлен напряженностью электрического поля, а второй - ионизационными процессами в ускоряющем промежутке.

Работа выполнена при поддержке гранта РФФИ № 16-38-00224 мол_а.

СПИСОК ЛИТЕРАТУРЫ

- Бурдовицин В.А. Компенсация заряда изолированной мишени при облучении импульсным электронным пучком в форвакуумной области давлений / В.А. Бурдовицин, В.С. Гулькина, А.В. Медовник, Е.М. Окс // Журнал технической физики. – 2013. – Т. 83, № 12. – С. 134–136.
- Казаков А.В. Структура поверхности полипропилена при облучении импульсным электронным пучком в форвакуумном диапазоне давлений / А.В. Казаков, А.С. Смаилов, В.А. Бурдовицин, А.В. Медовник, Е.М. Окс // Доклады ТУСУРа. – 2014. – № 4 (34). – С. 56–59.
- Бурдовицин А.В. Об электрической прочности ускоряющего промежутка плазменного источника электронов в форвакуумном диапазоне давлений / А.В. Бурдовицин, М.Н. Куземченко, Е.М. Окс // Журнал технической физики. – 2002. – Т. 72, № 7. – С. 134–136.
- Vorobyov M.S. The multiarc plasma cathode electron source / M.S. Vorobyov, V.V. Denisov, N.N. Koval // Proc. of International Symposium on Discharges and Electrical Insulation in Vacuum. – 2012. – P. 615–618.
- Груздев В.А. Физические процессы формирования электронных пучков в плазменных источниках / В.А. Груздев, В.Г. Залесский // Вестник Полоцкого государственного университет. – 2007. – № 9. – С. 2–14.
- Казаков А.В. Форвакуумный импульсный плазменный источник электронов на основе дугового разряда / А.В. Казаков, В.А. Бурдовицин, А.В. Медовник, Е.М. Окс // Приборы и техника эксперимента. – 2013. – № 6. – С. 50–53.