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Introduction: The average life expectancy of people all over the world is increasing since the early 1950s 

and it is predicted that this trend will continue in future [1]. Geetha et. al payed attention to the fact that 90 % 

of population over the age of 40 suffer from degenerative diseases [2]. This tendency in combination with the 

wish to improve life quality of older people increases demands for biomedical implants. The nowadays mostly 

used biomedical materials are stainless steel, Cr-Co alloys and Ti - 6Al - 4V. One drawback of these alloys is 

that their Young’s modulus are several times higher compared to Young`s modulus of human bones. This 

causes an effect called stress shielding [3] which leads to subsequent loosening of implants. To avoid the stress 

shielding effect metallic alloys with low Young’s modulus should be used for manufacturing of the implants. 

Out of three aforementioned alloys Ti - 6Al - 4V possesses the lowest Young’s modulus (~100 GPa). 

However, alloying elements such as aluminium and vanadium exhibit several disadvantages. Aluminium can 

be reason for Alzheimer`s or Parkinson’s diseases whereas vanadium is a known as rather toxic element for 

human body[4]. In this study we report on some structural and mechanical peculiarities of Ti-Nb alloys which 

are currently considered to be promising for application in biomedicine due to their low Young’s modulus and 

perfect biocomatibilty.  

Materials and Methods: The ingots made of commercially pure (c.p.) Ti and binary Ti-Nb alloys with Nb 

content between 0 wt% and 37 wt% (hereafter wt% will refer to as %) were melted using a BUEHLER Arc 

Melter in a Ti-gettered argon atmosphere. Considering the difference in density (Ti:4,5 g/cm³; Nb: 8,57 g/cm³) 

and in melting point (Ti: 1941 K; Nb: 2750 K) between the initial materials and because of the relatively broad 

two phase field in the Ti-Nb phase diagram the samples were melted 16 times and flipped after every second 

melt to ensure chemical homogeneity. Before and after melting the weight was measured to detect the weight 

loss during melting. After melting the binary samples were annealed at 1000 °C for 24 h followed by quenching 

from 1000 °C into oil. Both heat treatments were conducted in vacuum. Microhardness measurements were 

done with a WOLPERT Group 402 MVD Vickers hardness tester. X-Ray diffraction analysis was implemented 

using a ARL X`TRA diffractometer using Cu-kradiation in 2 range from 30° to 80°. 

Results and Discussion: The highest weight loss during melting was found to be 0.83 %. The niobium 

content as well as the different weight loss values are shown in Table 1. It is well known that in Ti 

alloys two stable phases, namely α and β and four nonequilibrium phases (martensitic α` and α``, ω 

and metastable β) can exist. The formation of martensitic phases in Ti-Nb alloys depends on the 

alloying content as well as on the quenching rate [6]. Metastable ω phase can be achieved in two 

cases: when the cooling rate is sufficiently high, or during aging. XRD patterns of the samples showed 

that after annealing the samples are composed of hcp α`and bcc β. The border between α` and β phases 

lies at 25% Nb. After quenching the samples mainly consist of martensitic α`` and β phase. Stable β 

phase is reached when the alloying content is above 37 %.  

Table 1 - Chemical Composition, weightloss and microhardness of researched alloys 

Alloy 

Code 

Nb, 

% 

Ti, 

% 

Weight loss, 

% 

Microhardness after 

annealing, HV0.05 

Microhardness after 

quenching, HV0.05 

c.p. Ti  100  165 ± 5  

Ti-14Nb 14 ± 0,7 Balance 0.83 233 ± 4 246 ± 6 

Ti-24Nb 24 ± 0,8 Balance 0.10 271 ± 4 212 ± 5 

Ti-29Nb 29 ± 0,2 Balance 0.13 393 ± 10 225 ± 5 

Ti-34Nb 34 ± 0,5 Balance 0.01 322 ± 7 195 ± 3 

Ti-37Nb 37 ± 0,4 Balance 0.04 245 ± 3 211 ± 4 
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Fig. 1. Optical microstructures of a) c.p. Ti; b) annealed Ti-14Nb; c) quenched Ti-37Nb 

Fig. 1 shows, that the cast c.p. Ti sample exhibit a typical lath-type morphology while the microstructure 

of the binary samples strongly depends on alloying content and heat treatment. The annealed sample with a 

Nb content of 14 % shows a fine acicular martensitic structure. When the alloying content reaches 25% Nb the 

needle like structure is replaced by a typical β structure. The quenched sample with 14% Nb exhibits a fine 

martensitic structure like the annealed sample. With increasing the alloying content the amount of martensitic 

structure increases. It is suggested that this happens because to the solute decreased martensite transformation 

starting temperature (Ms). The sample with 37% Nb shows a typical β structure where only the grain 

boundaries are visible. The results of the microhardness testing are also shown in Table 1. All binary alloys 

show a higher microhardness than c.p.-Ti. The microhardness value of the sample with 14% Nb is higher due 

to the solid solution strengthening effect due to Nb addition. For annealed alloys the microhardness increased 

further with increasing the alloying content up to a maximum of 393 HV0.05. It is suggested that this happens 

because the samples were cooled down in the furnace after annealing. The cooling rate was so low that the 

samples were subjected to aging treatment. Mantani and Tajima showed with his research that 1h of aging 

treatment above a temperature of 573 K is enough to receive metastable ω phase in Ti-Nb alloys in an alloying 

range between 25 and 40 % [6]. It has to be mentioned that XRD and optical microscopy of annealed samples 

did not show the presence of ω phase, because of the nanometer size and low volume fraction of ω 

precipitations. For quenched samples the microhardness increased to a maximum of 225 HV0.05. This 

microhardness value corresponds to the sample with 29% Nb which consists of α`` phase. When Nb content is 

above 34 % the microhardness decreases because the β phase dominates in structure. 
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