СПИСОК ЛИТЕРАТУРЫ

- Семкин Б.В., Усов А.Ф., Курец В.И. Основы электроимпульсного разрушения материалов. – СПб.: Наука, 1993. – 276 с.
- Важов В.Ф., Журков М.Ю. Оптимизация энергии в разряде при резании горных пород электроимпульсным способом // Современные техника и технологии: Труды XI Междунар. научно-практ. конф. студентов, аспирантов и молодых ученых. — Томск, 2003. — С. 92—93.
- Jgun D., Jurkov M., Lopatin V., Muratov V., Vajov V., Gubsch I., Kunze G., Neubert M.. Application of pulsed discharges for materi-

als cutting // Digest of Paper of 1st European Pulsed Power Symposium. 22–24 October, 2002. – French-German Research Institute of Saint-Louis (ISL), France. – P. 22/1–22/4.

 Важов В.Ф., Журков М.Ю., Муратов В.М. Резание горных пород электрическими импульсными разрядами подвижной электродной системой в воде // Электромеханика, электротехнологии и электроматериаловедение: Труды V Междунар. конф., МКЭЭЭ-2003 (ICEEE-2003). — М.: ИЭ МЭИ, 2003. — Ч. II. — С. 122—125.

УДК 621.785:669.14.08.29

МОДИФИКАЦИЯ МЕТАЛЛОКЕРАМИЧЕСКОГО СПЛАВА ЭЛЕКТРОННО-ИМПУЛЬСНОЙ ОБРАБОТКОЙ ЕГО ПОВЕРХНОСТИ

В.Е. Овчаренко, С.Г. Псахье, О.В. Лапшин, Е.Г. Колобова

Институт физики прочности и материаловедения CO PAH. г. Томск E-mail: ove45@mail.ru

Экспериментально исследовано влияние электронного облучения в импульсном режиме поверхности инструментальной металлокерамики на основе карбида титана с никель-хромовой связкой на микроструктуру ее поверхности и приповерхност ослоя, а также на стойкость металлокерамики при резании металла. Экспериментально исследована микроструктура приповерхностного слоя после прошедших в нем структурных превращений. Проведен анализ этих превращений под влиянием электронного облучения как высокоэнергетического воздействия на композиционный материал дисперсного строения с металлической связкой. Показано, что в основе превращений лежат закономерности взаимодействия расплава металлической связки с частицами карбида в условиях высокоскоростного нагрева и охлаждения.

Введение

Высокоэнергетические лазерная и электроннолучевая импульсные обработки являются эффективным способом модифицирования структуры приповерхностного слоя изделий из различных материалов (стали [1, 2], твердых сплавов [3], напыленных покрытий [4]) с целью повышения их эксплуатационных характеристик. Сверхвысокие скорости нагрева (до 10⁶ град/с) тонкого приповерхностного слоя материала (10⁻¹ мм для лазерного и 10⁻⁴...10⁻³ мм для электронного пучков) до закритических температур и формирование предельных градиентов температуры (до 10⁷...10⁸ град/м), обеспечивающих охлаждение приповерхностного слоя за счет теплоотвода в основной объем материала со скоростью 10⁴...10⁹ град/с, определяют необходимые условия образования в приповерхностном слое неравновесных структурно-фазовых состояний. Последние характеризуются более высокими значениями плотности и дисперсности внутренней структуры по сравнению с исходным состоянием материала, значительным градиентом концентраций легирующих элементов в приповерхностном слое материала и т.п. Наиболее яркий эффект от такой обработки проявляется на порошковых (спеченных) материалах и на порошковых покрытиях, которые характеризуются общими особенностями - остаточной пористостью (от 0,1 до нескольких %), достаточно большим разбросом в дисперсности элементов внутренней структуры, неравноосностью формы отдельных компонентов порошковой композиции, неравномерностью распределения разнородных компонентов в объеме материала и т.п. Для металлокерамических сплавов инструментального назначения, работающих в режиме резания (твердые сплавы) или в режиме высокоскоростного трения (износостойкие материалы и покрытия) указанные дефекты строения являются концентраторами напряжения, инициирующими преждевременное разрушение рабочей кромки режущего инструмента или поверхности трения. Поэтому достижение неравновесных структурно-фазовых состояний в приповерхностном слое порошкового материала, при его высокоэнергетической обработке, должно позволить повысить его эксплуатационные характеристики.

Как при лазерной, так и при электронной обработке поверхности формирование неравновесных структурно-фазовых состояний в приповерхностном слое материалов во многом обусловлено импульсным характером высокоэнергетического воздействия в микросекундном диапазоне. При этом электроннолучевая технология, обладая большими возможностями более точного контроля количества подводимой энергии, отличается и большей локальностью распределения энергии в приповерхностном слое обрабатываемого материала.

В настоящей работе приведены результаты исследования влияния импульсного облучения электронным пучком поверхности металлокерамического сплава на основе карбида титана (TiC) с никельхромовой связкой. Указанный вид металлокерамики является безвольфрамовым твердым сплавом инструментального назначения, в настоящее время имеющего широкое применение при изготовлении режущего инструмента различного назначения [5].

Методика исследования

Металлокерамические образцы для исследований были изготовлены в виде четырехгранных пластинок размером 10×10×4 мм. Подготовленные до уровня металлографических шлифов плоские поверхности образцов облучали в импульсном режиме широкоапертурным (закрывающим всю поверхность образца) электронным пучком заданной мощности. Микроструктуру образцов металлокерамики исследовали до и после облучения на металлографическом микроскопе "NEOFOT-32" и на электронном сканирующем микроскопе LEO-420. Ренгеноспектральный локальный анализ распределения легирующих элементов от поверхности к центральной части образцов был проведен на приборе "Camebax microbeam".

Эти же четырехгранные пластины исследовали в качестве режущего элемента в режиме резания стали 45. Стойкость пластин на стадии нормального изнашивания оценивали по ширине площадки износа на задней поверхности h_3 (h_3 =0,8 мм) при токарной обработке стали со скоростью резания 102 м/мин, подаче резца 0,28 мм/об., глубине резания 1 мм; углах: переднем -6° , заднем -6° , переднем в плане -45° .

Электроннолучевую обработку образцов проводили на вакуумной установке (10⁻⁴ Па), принципиальная схема которой представлена на рис. 1.

Рис. 1. Блок-схема установки для электронного облучения материалов: 1) катод; 2) катодная плазма; 3) двойной ионно-плазменный слой; 4) анодная плазма; 5) анод-коллектор; 6) соленоид; 7) корпус пушки; 8) вакуумная камера

Результаты и обсуждение

На рис. 2, *а* представлена микроструктура поверхности металлокерамики в исходном (после спекания) состоянии. Хорошо видна карбидная фаза (темного цвета) в виде частиц неравноосной формы,

которые сравнительно равномерно распределены в металлическом связующем (светлого цвета). На поверхности металлографического шлифа можно видеть остаточные после спекания металлокерамики микропоры. После первоначального электронного облучения (плотность энергии в пучке E=2,0 Дж/см², 5 импульсов облучения, длительность импульса 2,5 мкс) в карбидных частицах появляются микротрещины (показаны стрелками) (рис. 2, б). Появляются признаки оплавления металлической связки. При увеличении плотности энергии в пучке происходит увеличение эффекта оплавления металлического связующего, происходит смещение отдельных фрагментов структуры. Последнее говорит о том, что в приповерхностном слое металлокерамики увеличивается количество расплава металлического связующего. При $E_s=4,0$ Дж/см² (5 импульсов облучения) на поверхности металлокерамики образуются вихреподобные структуры, значительная часть микропор сливается в микропоры большего размера (рис. 2, в). При E_s=4,5 Дж/см² (30 импульсов) частицы карбидной фазы на поверхности практически не просматриваются, поверхность металлокерамики обогащена металлической связкой и разделена микротрещинами на ячейки приблизительно равной величины (рис. 2, г).

В то же время после обработки поверхности металлокерамического образца электронным пучком с E_s =5,0 Дж/см² (30 импульсов облучения) микроструктура поверхности выглядит совершенно иным образом: хорошо просматривается карбидная фаза в виде измельченных частиц, совершенно равномерно распределенных в объеме металлокерамики – каждая частица карбида окружена тонким слоем металла связующего, поры спекания практически отсутствуют (рис. 2, *d*). Дальнейшая электронная обработка образца при E_s =6,0 Дж/см² (30 импульсов) формирует на поверхности фрагментированную микротрещинами структуру (рис. 2, *e*).

Исследование влияния электронной обработки металлокерамики на ее стойкость в режиме резания металла показало следующее.

Стойкость металлокерамики в исходном состоянии составила 336,6 м резания. При первоначально малых дозах электронного облучения, вплоть до облучения пучком с $E_s = 4,0$ Дж/см² при 5 импульсах облучения (ΣЕ=20,0 Дж/см²) стойкость металлокерамики снижается до минимума (112 м резания), что, по-видимому, обусловлено образованием в частицах карбидной фазы, вследствии термоудара при малых дозах электронного облучения, микротрещин, длина которых заведомо больше критического размера для данной металлокерамической композиции. Повышение Е_s электронного пучка (также как и количества импульсов облучения) увеличивает стойкость металлокерамики, которая достигает 652 м при $E_s=5,0$ Дж/см² и 30 импульсах облучения ($\Sigma E = 150 \text{ Дж/см}^2$). Дальнейшее увеличение дозы электронного облучения до 180,0 и 200,0 Дж/см² приводит к заметному снижению стойкости металлокерамики в режиме резания.

Рис. 2. Металлографические структуры поверхности металлокерамики: в исходном состоянии (а) и после облучения электронным пучком с различной плотностью энергии E_s, Дж/см²: б) 2,0 (5 имп.), в) 4,0 (5 имп.), г) 4,5 (30 имп.), д) 5,0 (30 имп.), е) 6,0 (30 импульсов)

Рассмотрим влияние электронного облучения на поверхность металлокерамического образца как следствие высокоэнергетического воздействия. Пусть на плоскую поверхность образца из карбида титана с никель-хромовой связкой (объемная доля карбидной фазы равна c_0 , частицы карбида имеют сферическую форму с радиусом r_0) падает поток электронов мощностью W. Длительность импульса электронного пучка составляет t_i . Считаем, что вся энергия электронного пучка расходуется на разогрев и плавление металлической связки в приповерхностном слое металлокерамического образца (считаем, что характерная температура разогрева T_L приповерхностного слоя превышает температуру плавления никель-хромовой связки, но ниже температуры плавления карбида титана).

Рис. 3. Зависимость стойкости металлокерамики в режиме резания по стали 45 (в метрах) от величины дозы электронного облучения ее поверхности

Время нагрева поверхности образца до температуры *T_L* можно оценить из известного решения линейного уравнения теплопроводности для поверхности образца [6]

$$t_0 \approx \pi \lambda c_p \rho (1 - P) \left(\frac{T_L - T_0}{2W} \right)^2, \qquad (1)$$

где c_p , ρ , λ – теплоемкость, плотность и теплопроводность образца, соответственно; P – пористость; T_0 – начальная температура.

Проведем оценку глубины зоны плавления h_i , принимая во внимание, что при больших температурах конвективной теплоотдачей можно пренебречь по сравнению с теплоотдачей излучением. Полагая, что подводимая к образцу энергия расходуется на плавление приповерхностного слоя, а $T_i >> T_0$, в конечном итоге получаем

$$h_i \approx \frac{(W - \sigma T_L^4)(t_i - t_0)}{(1 - c_0)(1 - P)L\rho},$$
 (2)

где L – теплота плавления металлической матрицы, σ – коэффициент теплоотдачи излучением.

Глубину прогретого за время *t* приповерхностного слоя образца оценим по формуле

$$d \sim \sqrt{\frac{\lambda t}{c_p \rho}}.$$
 (3)

К моменту прекращения действия электронного импульса в приповерхностном слое металлокерамики формируются две зоны: зона проплавления металла связки шириной h_i (A) и зона прогрева твердой части образца на глубину $\delta \approx d - h_i$ (B).

В зоне (А) при плавлении связки происходит растворение частиц карбидной фазы в металлическом расплаве. При небольших глубинах проплавления можно считать, что частицы карбида титана растворяются при постоянной температуре, равной T_L , в расплаве по линейному закону

$$r_i \approx r_0 [1 - c_{_H} k(T_L)(t_i - t_0)],$$
 (4)

где r – граница растворения, $k(T_l)$ – константа скорости растворения, c_n – предельная концентрация насыщения расплава растворенным карбидом.

Глубину проплавления с поверхности образца, после заполнения микропор металлокерамического сплава расплавом металлической связки, можно оценить из следующего соотношения

$$h_i^* \approx (1 - P)h_i. \tag{5}$$

Время существования зон расплава (А) и прогрева (В) в приповерхностном слое металлокерамики, после прекращения действия электронного импульса, увеличивается за счет тепла, выделившегося при кристаллизации расплава. Считаем, что кристаллизация расплава происходит при некоторой постоянной температуре $T_k \sim T_L$. Из условия равенства теплоприхода и теплоотвода в системе при температуре T_k определим время кристаллизации

$$\tau_{k} \sim \frac{[1 - c_{0}(r_{i} / r_{0})^{3}]Q_{k}\rho h_{i}^{*}}{\sigma T_{i}^{4}}, \qquad (6)$$

где Q_k – тепловой эффект от кристаллизации расплава.

Характерное время температурной релаксации приповерхностного слоя образца на стадии его охлаждения можно оценить по следующему соотношению:

$$\tau \sim (h_i^* + \delta) \frac{c_p \rho}{\sigma T_i^3} \frac{n!}{r!(n-r)!}.$$
(7)

Глубину общей зоны прогрева приповерхностного слоя оценим из формулы (3)

$$d \sim \sqrt{\frac{\lambda(t_i + \tau_k + \tau)}{c_p \rho}}.$$
(8)

Глубина прогрева твердой части образца, с учетом (5), определится как

$$\delta \approx d - h_i^*. \tag{9}$$

Проведем количественную оценку глубины возможных структурных превращений в приповерхностном слое образца из карбида титана с никель-хромовой связкой в результате обработки поверхности образца импульсным электронным пучком с плотностью энергии импульса 5,0 Дж/см² и длительностью импульса $\tau_i=2,5\cdot10^{-6}$ с при 30 импульсах облучения (общее время облучения $t_i=7,5\cdot10^{-5}$ с). Количественные оценки были проведены на основе физико-химических констант для металлических систем [7, 8]: $\lambda=100$ Вт/м·К, $c_p=500$ Дж/кг, $\sigma=5,7\cdot10^{-8}$ Вт/м²·К⁴, P=0,2, $T_0=300$ К, $T_L=1700$ К, $k(T_L)=10$ с⁻¹, $c_n=0,6$, $W=1,6\cdot10^{-11}$ Вт/м², $r_0=1$ мкм.

Время разогрева приповерхностного слоя образца до максимальной температуры разогрева сос-

Рис. 4. Микроструктура поперечного сечения металлокерамического образца до и после электронного облучения

тавит около 3,6.10-11 с. В оставшееся время электронного облучения поверхности металлокерамики происходит образование в приповерхностном слое образца зоны проплавления металлической связки на глубину $h_i^* \approx 90$ мкм (зона A) и зоны прогрева металлокерамики в твердом состоянии на глубину $\delta = d - h_i^* \approx 30$ мкм (зона В), ширина общей зоны прогрева составит *d*≈120 мкм. Очевидно, что в зоне А происходит частичное растворение карбидных частиц в расплаве металлической связки. При этом растворенные в расплаве титан и углерод диффундируют из зоны расплава в твердофазную зону повышенных температур разогрева (в зону В). После прекращения электронного облучения охлаждение приповерхностного слоя до температуры кристаллизации расплава происходит за время ≈6.10⁻² с. Время охлаждения приповерхностного слоя после кристаллизации расплава составляет ≈4·10⁻² с. В результате в приповерхностном слое металлокерамического образца должна формироваться зона неравновесного структурно-фазового состояния, в которой средний размер частиц карбида должен быть меньше первоначального, а никель-хромовая связка должна быть дополнительно пролегирована титаном и углеродом.

На рис. 4 *а*, б представлены микроструктуры поперечного сечения приповерхностного слоя металлокерамического образца в исходном (после спекания) и после обработки поверхности образца электронным пучком с плотностью энергии импульса 5,0 Дж/см² и длительностью импульса $\tau_i=2,5\cdot10^{-6}$ с при 30 импульсах облучения состояниях. Из сравнения рис. 4, *а* и 4, *б* можно констатировать, что в то время как в исходном состоянии металлокерамики ее микроструктура на поперечном сечении образца имеет достаточно равномерный характер (частицы карбидной фазы неравноосной формы распределены с одинаковой плотностью как у поверхности образца, так и на достаточно больших глубинах его поперечного сечения), микроструктура металлокерамики после электронного облучения претерпевает заметные изменения: непосредственно в приповерхностном слое наблюдается зона повышенной плотности распределения частиц карбидной фазы.

Количественный анализ металлографической структуры приповерхностного слоя металлокерамики показал, что в результате электронной обработки средний размер карбидных частиц в зоне структурных превращений уменьшается с 3,05 мкм в центральной части образца до 2,80 мкм в зоне структурных превращений, объемное содержание карбидной фазы повышается с 40,0 об. % в центральной части образца до 42,5 об. % в зоне структурных превращений. Глубина зоны превращения не является величиной постоянной, изменяясь в разных точках поверхности образца от 90 до 160 мкм.

Рис. 5. Концентрационный профиль распределения титана в металлической связке металлокерамики после ее обработки электронным пучком

Принимая во внимание, что зона структурных превращений в приповерхностном слое металлокерамики при ее облучении электронами формируется, прежде всего, в результате образования зоны расплава металлической связки, было проведено исследование концентрационного распределения титана в никель-хромовой связке металлокерамики на поперечном срезе металлокерамического образца, представленного на рис. 4, *б*. На рис. 5 приведен концентрационный профиль распределения титана в металлической связке по поперечному срезу образца металлокерамики, представленного на рис 4, *б*, от поверхности образца к его центральной части (измерения были проведены по точкам с шагом 5 мкм).

Содержание титана в металлической связке в зоне структурных превращений не является величиной постоянной, что говорит о неравновесном состоянии материала, обусловленного высокими скоростями разогрева и охлаждения зоны в процессе электронного облучения. Тем не менее среднее содержание титана в зоне структурных превращений существенно выше содержания титана в центральной части образца, а концентрационный профиль распределения титана четко фиксирует зону прогрева металлической связки электронным пучком как зоны растворения частиц карбида титана, размер которой хорошо коррелирует с размером зоны структурных превращений на металлографической структуре поперечного среза металлокерамического образца.

Выводы

Электронно-импульсная обработка поверхности металлокерамического материала является эффек-

СПИСОК ЛИТЕРАТУРЫ

- Варавка В.Н., Бровер Г.И., Магомедов М.Г., Бровер А.В. Теплофизические особенности процесса импульсной лазерной обработки инструментальных сталей // Вестник ДГТУ. – 2001. – Т. 1. – № 1(7). – С. 56–63.
- Бровер Г.И., Магомедов М.Г., Бровер А.В., Холодова С.Н., Сидоркина Н.М. О роли массопереноса в создании структурной картины при импульсной лазерной обработке // Вестник ДГТУ. – 2001. – Т. 1. – № 2(8). – С. 42–49.
- Ivanov Y.F., Rotshtein V.P., Proskurovsky D.I., Orlov P.V., Polestchenko K.N., Ozur G.E., Goncharenko I.M. Pulsed electronbeam treatment of WC-TiC-Co hard-alloy cutting tools: wear resistance and microstructural evolution // Surface and coating technology. – 2000. – V. 125. – P. 255–256.

тивным методом модифицирования структуры его приповерхностного слоя, приводя к образованию зоны неравновесного структурно-фазового состояния металлокерамики. Последняя отличается более высокой дисперсностью частиц карбидной фазы, большей плотностью распределения частиц карбидной фазы, повышенным содержанием легирующих элементов в металлической связке и высоким градиентом концентрации легирующих элементов от внешней поверхности в сторону центральной части образца металлокерамики. Целенаправленное формирование указанной зоны неравновесного состояния в приповерхностной области металлокерамического материала позволяет кратно увеличить его стойкость в условиях резания металла.

Авторы благодарят Д.И. Проскуровского, Г.Е Озура и В.П. Ротитейна (Институт сильноточной электроники СО РАН, г. Томск) за помощь в проведении электронного облучения образцов металлокерамики и за участие в обсуждении полученных результатов.

Исследования выполнены в рамках интеграционного проекта СО РАН "Создание неравновесных структурно-фазовых состояний в поверхностных слоях материалов на основе разработки новых вакуумных электронно-ионно-плазменных технологий и оборудования для получения покрытий с высокими функциональными свойствами" (постановление СО РАН № 62 от 21.02.03, приложение № 1, проект № 7).

- Klimenov V.A., Kovalevskaya Zh.G., Eroshenko A.Yu. Examination of the thermal effect of on electronbeam on a coating substrate composite // Welding International. – 2002. – V. 16. – № 11. – P. 899–902.
- 5. Патент 2093309 РФ. МКИ⁶ В22F 7/04, В32В 7/02. Износостойкое изделие и способ его получения / В.Е. Овчаренко, В.Е. Панин, Г.А. Прибытков, А.А. Голубев. Заявлено 22.06.1993, опубликовано 20.10.1997, бюл. № 29. — 11 с.: ил. 6.
- Лыков А.В. Теория теплопроводности. М.: Высшая школа, 1967. — 600 с.
- Смитлз К.Дж. Металлы. Справочник. М.: Металлургия, 1980. – 446 с.
- Самсонов Г.В., Винницкий И.М. Тугоплавкие соединения. Справочник. – М.: Металлургия, 1976. – 556 с.