Выводы:обеспечение стабильной электрической энергии залог работы аппаратуры в штатном режиме работы и непрерывности производственного процесса. В данной статье приведены основные методы стабилизации ЭЭ. Другие методы имеют либо большую стоимость реализации, либо масса-габаритные показатели, либо же будут иметь недостаточную точность выходных величин, потому необходимо учитывать, что именно требуется от регулятора и выбирать в соответствие с поставленной задачей.

Список литературы:

- 1. Бесперебойное электроснабжение. Инжиниринговый центр и интернетмагазин. [Электронный ресурс]: Режим доступа: свободный(22.11.17). http://www.td-m.ru/equipment/section.php?SECTION_ID=390
- 2. Дизельные электростанции. Регуляторы частоты вращения. [Электронный ресурс]: Режим доступа: свободный (22.11.17). https://www.adkom.ru/reg-chast-vrash/
- 3. Дизельные электростанции. Регуляторы напряжения. [Электронный ресурс]: Режим доступа: свободный(22.11.17). https://www.adkom.ru/avr
- 4. Инженерные системы. [Электронный ресурс]: Режим доступа: свободный (22.11.17). http://stroysss.ru/systems/electrichestvo/395.html

ФОН ВНУТРЕННЕГО ТРЕНИЯ ПРИ НЕКОНСЕРВАТИВНОЙ ЗЕРНОГРАНИЧНОЙ ДЕФОРМАЦИИ В МЕТАЛЛАХ

В.Г. Кульков, профессор Филиал Национального исследовательского университета МЭИ, 399110, г.Волжский, пр.Ленина,69 E-mail: vikulkov@yandex.ru

Демпфирующая способность металлических материалов определяется уровнем внутреннего трения, рассеивающего энергию вибраций. Это свойство материалов бывает востребованным при эксплуатации механизмов и машин. Весьма поликристаллических деформации важным видом металлов зернограничное проскальзывание. Известно, что оно определяет значительный вклад во внутреннее трение как пикового, так и фонового характера. Классические модели этого явления используют как правило представления о плоских границах зерен, скольжение по которым имеет однородный характер. Реальные границы всегда содержат неизбежные отклонения от плоских конфигураций и содержат различного рода ступеньки, фасетки и другие неровности. Их учет приводит к смешанному механизму скольжения с большой долей неконсервативных процессов диффузионного характера.

Рассмотрим одномерную модель смещения двух сопрягающихся зерен вдоль границы, содержащей ступени противоположного знака с плоскими участками между ними. Одни из них переводят границу в параллельную плоскость на расстояние, равное высоте ступеньки d, а другие возвращают назад. Вдоль границы действует переменное напряжение простого сдвига с частотой ω . На ступенях имеются нормальные напряжения растяжения и сжатия. Химические потенциалы вакансий на них имеют противоположные знаки, что приводит к их диффузионным

потокам, определяющим скорость проскальзывания.

Общий метод решения подобных задач изложен в [1]. Решается уравнение диффузии для избыточной в сравнении с равновесной концентрации вакансий $\frac{\partial C_b(x,t)}{\partial t} = D_b \frac{\partial^2 C_b(x,t)}{\partial x^2} \quad \text{с} \quad \text{граничными} \quad \text{условиями} \quad C_b(0,t) = C_b' \exp(-i\omega t),$

 $C_b(l/2,t)=0$ Это соответствует периодическим условиям на ступеньеке и нулевым по концентрации в середине плоского сегмента. Решение имеет вид

$$C_b(x,t) = C_b' \frac{\sin(\Gamma(1+i)(l-x))}{\sin(\Gamma(1+i)l)} \exp(-i\pi t), \tag{1}$$

где $\Gamma = \sqrt{\frac{\Pi}{2D_b}}$, D_b – граничный коэффициент диффузии вакансий, x – координата

вдоль направляющей плоского участка границы, C_b' — постоянная, линейно связанная с амплитудой действующего напряжения и определяемая из учета эффекта подстройки напряжения [2]. Скорость взаимного смещения зерен $\mathbf{x} = \frac{j \pi \Omega}{d}$ выражается через плотность потока вакансий $\mathbf{j} = -2D_b \frac{\partial C_b(\mathbf{x},t)}{\partial \mathbf{x}}$. Здесь

 Ω — атомный объём, δ — диффузионная ширина границы. С такой скоростью проскальзывания связано напряжение на плоских участках границы $y_1 = 3^{-1}x$, где η^{-1} — эффективная вязкость границы. Баланс сил на плоских участках и ступенях имеет вид: $2yl = 2l3x + \frac{C_b'dkT}{C_{0b}\Omega} \exp(-imt)$. Из выражений для напряжения и скорости

проскальзывания получаем величину внутреннего трения $Q_1^{-1} = \frac{\Delta W}{2\pi W}$. Здесь в числителе стоит энергия, рассеянная за один период, а в знаменателе — упругая энергия, запасённая в объёме V_0 зерна $W = \frac{V_0 \sigma_0^{-2}}{2G}$. С учетом (1) находим:

$$Q^{-1} = \frac{2\mu G l \cos(\varphi_2 - \varphi_1) \sqrt{F(2\Gamma l)}}{R^2 \sin(2\Gamma l)} \left[\left(\sin(2\Gamma l) + \lambda F(\Gamma l) \right)^2 + \left(\sin(2\gamma l) + \lambda F(\gamma l) \right)^2 \right]^{\frac{1}{2}}. \tag{2}$$

Здесь G — модуль сдвига, R — средний рзмер зерна, θ — геометрический фактор, l — расстояние между ступенями, C_{0b} — равновесная концентрация вакансий в границе, а

также
$$tg\phi_1 = \frac{\sin 2l\Gamma - \sinh 2l\Gamma}{\sin 2lz + \sinh 2l\Gamma + 2\pi F(\Gamma l)}, \quad tg\phi_2 = \frac{\sin 2l\Gamma - \sinh 2l\Gamma}{\sin 2l\Gamma + \sinh 2l\Gamma}, \quad F(z) = \sin^2 z + \sinh^2 z.$$

$$\lambda = \frac{d^2kT}{4D_b} \Delta\Omega^2 C_{0b} \text{3} \Gamma l \,.$$

Параметр $\lambda = \upsilon_s/\upsilon_d$ имеет смысл отношения скорости собственного проскальзывания по границам без ступенек и скорости неконсервативного процесса, реализуемого диффузией между ступеньками. Механизм первого из этих процессов не предполагает диффузии вакансий на дальние расстояния в границе, а определяется долько локальными перестройками ее атомной структуры [3]. Оценки показывают, что во многих случаях $\lambda \gg 1$. Преобразуя выражение (2) в случаях высоких и низких температур, можно получить выражения для внутреннего трения.

$$Q^{-1} = \frac{4\theta G l \Omega^2 \delta C_{0b}}{R^2 d^2 k T} \frac{D_b}{\omega}, \qquad \gamma l \ll 1; \tag{3}$$

$$Q^{-1} = \frac{4\theta G l \Omega^{2} \delta C_{0b}}{R^{2} d^{2} k T} \frac{D_{b}}{\omega}, \qquad \gamma l <<1;$$

$$Q^{-1} = \frac{4\theta G l^{2} \Omega^{2} \delta C_{0b}}{R^{2} d^{2} k T} \sqrt{\frac{D_{b}}{\omega}}, \qquad \gamma l >>1.$$
(4)

На рисунке 1 приведена зависимость логарифма величины внутреннего трения от обратной температуры. Согласно (3) и (4) здесь имеются два прямолинейных участка с различающимися в два раза тангенсами углов наклона к оси абсцисс.

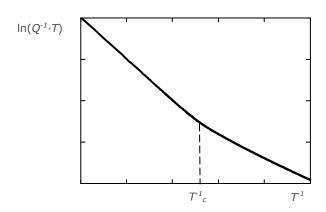


Рис. Характер зависимости логарифма внутреннего трения от от обратной температуры в условных единицах.

Подобный результат наблюдался неоднократно ранее в системах с различными неоднородностями на границах [4, 5]. Такой вид зависимости внутреннего трения можно понять из следующих соображений. Поток вакансий из ступеньки определяется градиентом их концентрации, пропорционалным $j\sim D_bC_b/l_d\sim D_b\sigma_0/l_dT$, где l_d — диффузионная длина вакансий, σ_0 — амплитуда напряжения. Тогда потери ΔW за период колебаний T_0 пропорциональны $\Delta W \sim j\sigma_0 T_0 \sim \frac{D_b T_0 \sigma_0^2}{l_d T}$, упругая энергия $W \sim \sigma_0^2$. Следовательно, $Q^{-1} \sim \frac{D_b T_0}{l_d T}$. При низких частотах или высоких температурах диффузия успевает пройти на всем плоском сегменте, поэтому за диффузионную длину можно принять его размер *l*, который от периода колебаний не зависит, тогда $Q^{-1}T \sim D_b T_0 \sim \frac{D_b}{\Omega}$. В области высоких частот или низких температур основную роль в диффузионных процессах играют области вблизи границ сегмента протяженностью $l_d \sim \sqrt{2D_bT_0}$. В этом случае $Q^{-1} \cdot T \sim \sqrt{D_b T_0} \sim \sqrt{\frac{D_b}{\omega}}$. В отсутствие ступенек зависимость имела бы вид прямой без областей излома. Температура T_c соответствует равенству диффузионной длины вакансий размеру плоского сегмента. Определив в эксперименте эту температуру, можно оценить расстояние между ступеньками на межзеренной границе.

Список литературы:

1. Кульков В.Г. Межкристаллитное проскальзывание вдоль фасетированных границ зерен // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. – 2005. – № 11. – С. 108-112.

- 2. Кульков В.Г. Диффузионная модель внутреннего трения в нанокристаллическом материале // Журнал технической физики. -2007. Т. 77. № 3. С. 43-48.
- 3. Кульков В.Г. Межзеренное проскальзывание по границе, сопрягающей плотноупакованную и некристаллографическую плоскости // Вестник МЭИ. − 2005. № 5. С. 96 100.
- 4. Нелинейные явления в нано- и микрогетерогенных системах / С.А. Гриднев, Ю.Е. Калинин, А.В. Ситников, О.В. Стогней. М.: БИНОМ. Лаборатория знаний, $2012.-352~\rm c.$
- 5. Калинин Ю.Е., Даринский Б.М. Высокотемпературный фон внутреннего трения в твердых телах // МиТОМ. -2012. №5. C. 15 18.

ОПРЕДЕЛЕНИЕ МАГНИТНЫХ ПАРАМЕТРОВ ПРИ ИЗМЕНЕНИИ ПОЛОЖЕНИЯ РОТОРА КОМПОНЕНТА УПРАВЛЯЕМОГО АСИНХРОННОГО КАСКАДНОГО ЭЛЕКТРИЧЕСКОГО ПРИВОДА.

Афанасьев Виктор Леонидович — аспирант, ассистент кафедры электроснабжения промышленных предприятий,тел. 8-952-833-4627, E-mail: buguvix@mail.ru

Карандей Владимир Юрьевич – канд. техн. наук, доцент кафедры электроснабженияпромышленных предприятий Сташ Адам Нурбиевич–студент, гр.15-3НМ-ЭЭ1 Кубанский государственный технологический университет, 350072 г.Краснодар, ул. Московская 2

Большой сложностью при проектированииэлектрических приводов различных конструкций[1-2] является расчет электромагнитных параметров компонентов [3-4]. Необходимо применять сложный математический аппарат[5-7]дляопределение магнитных параметров, даже для неподвижной системы, тем более большой сложностью является определение магнитных параметров при изменении положения ротора, так как происходит постоянное и непрерывное изменение магнитных параметров, в частности магнитных сопротивлений. Предлагается новый подход к определению магнитных параметров для подвижной системы координат[8]. Приведен пример определения магнитных параметров типового электрического двигателя АИР63А4У3.

1 Определениемагнитных сопротивлений статора

При изменении положения ротора происходит постоянное изменение величины магнитных параметров в частности магнитных сопротивлений участков магнитной системы электрической машины таких как: зубцовая зона статора и ротора, а также воздушного зазора (рисунок 1;2;3). Нам удалось получить расчетные формулы позволяющие определить магнитные сопротивления при изменении положения ротора.

Магнитные сопротивления находятся по следующей зависимости: