
2
0
1
8
 
J
I
N
S
T
 
1
3
 
C
0
3
0
1
9

Published by IOP Publishing for Sissa Medialab

Received: December 15, 2017

Revised: February 1, 2018

Accepted: February 18, 2018

Published: March 12, 2018

XII International Symposium on Radiation from Relativistic Electrons

in Periodic Structures — RREPS-17

18–22 September, 2017

DESY, Hamburg, Germany

The relative error of calculations at the Pöschl-Teller

model potential for the planar channeled muon

X.T. Li,a,1 K.B. Korotchenkoa and Yu.P. Kunashenkoa,b

aNational Research Tomsk Polytechnic University,

30 Lenin Ave., 634050 Tomsk, Russia
bTomsk State Pedagogical University,

60 Kievskay St., 634061 Tomsk, Russia

E-mail: syatun1@tpu.ru

Abstract: In the framework of quantum mechanics, we investigate muon channeling in the Si (200)
crystal. The transverse energy levels and wave functions are obtained for the Pöschl-Teller and the
Doyle-Turner potentials. Comparative analysis demonstrates that analytical results of calculations
obtained on the base of the Pöschl-Teller potential are in a good agreement with the numerical
results of calculations in the Doyle-Turner model for the low energy levels. These results for the
muon with rest mass mµ and relativistic factor γ are valid for any particle with elementary charge
and rest mass m and relativistic factor γm = γ(mµ/m). Therefore, our results can be useful for the
preparation and performing the experimental investigation of the various phenomena accompanying
particle channeling.
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1 Averaged channeling potentials

It is well known that when the fast charged particle penetrates into an aligned crystal, we deal with
coherent scattering [1] (an ultrathin crystal) and channeling effect (thick enough crystal), which can
be presented as a classical or quantum motion of particles in the electric field of periodic continuous
(average) potential of crystallographic planes or axis [2].

In the well known paper [3], it was shown that relativistic charged particle will be captured in
the channeling state when it enters into the crystal at a small angle (not more than some critical one
— θL) with respect to the crystal planes or axis.

Further we shall consider only planar channeling. Obviously, the potential of the system of
crystal planes is the sum of the potentials of the individual planes (taking into account the symmetry
of the crystal). Due to the periodicity of the crystal structure, this potential will be periodic too.

As it was noted in the book [4] H. Bethe was the first who understand importance of consider-
ation of “systematic” reflection for correct description of potential. In this book the connection of
crystal potential with structure scattering amplitudes was discussed in detail. Doyle and Turner [5]
proposed using the form factor of the crystal atoms to obtain any continuous potential with accuracy
which is very close to the “real” potential. In the work [6] using the same approach the potential
for proton channelling in Si crystal was obtained and used in experiments. Unfortunately, there is a
problem all calculation should be done by numerical methods.

In order to obtain analytical solution it is necessary to use model potentials. One of the simplest
and most accurate models is the modified Pöschl-Teller potential. The analytical solutions can be
obtained only for potential of an individual plane, and unluckily, those solutions did not allow
correctly describe the band structure of the energy levels of the transverse motion. Therefore,
it is very important to compare the results obtained by the numerical calculation and analytical
results. Such comparison of the results obtained within the framework of the Doyle-Turner model
and Pöschl-Teller, still was not carried out.
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The purpose of our work is to compare the results of calculations within the framework of the
quantum theory of the energy spectrum and matrix elements for planar channeled charged particles
using two models of the averaged potential: Doyle-Turner(DT) and the Pöschl-Teller(PT).

Since the results obtained for muons µ− with relativistic mass γmµ are also valid for any
particles with rest mass m, elelementary charge and relativistic factor γm = γ(mµ/m), we restrict
our consideration to muons. From the other hand, the muon channeling still was not investigated in
detail both theoretically and experimentally.

As any relativistic fermions the muon in an external field is described by the Dirac equation.
In the well-known papers [7–9] it was shown that longitudinal motion of a relativistic channeled
particle can be described by plane wave, and the Dirac equation describing the transverse motion is
simplified to the Schrödinger-like equation, i.e. with relativistic mass

Ĥφn(x) =

(

p̂ 2

2mµγ
+U(x)

)

φn(x) = Enφn(x) , (1.1)

where mµγ is the muon relativistic mass, γ is the relativistic factor, φn(x) is the muon wave function,
n denotes numbers of the particle quantum states.

Energy levels and wave functions of the relativistic muon in the crystal field U(x) can be
obtained by solving this Schrödinger-like equation (1.1).

1.1 The modified Pöschl-Teller potential

The modified PT potential is

U(x) = −
U0

cosh2 αx
(1.2)

here α is the parameter defining the width of the PT potential well and U0 is the depth of this
potential well. For this potential it is known several different analytical solutions of the Schrödinger
equation (see, refs. [10–12]). For our task, it is convenient to use the solution obtained in [12]:

En = −
U0

q(q + 1)
(q − n)2 , q(q + 1) =

2mµU0

~2α2
. (1.3)

Here En is the transverse energy and the wave functions are

ψ
q
n (x) = (cosh(αx))n−qC

q−n+ 1
2

n (tanh(αx)) , (1.4)

where C
q
n are the Gegenbauer polynomials. In ref. [13] the modified PT potential was used to

calculate the resonances at small-angle reflection of X-ray radiation from relativistic electrons.
According to quantum mechanics the energy level number NE should be integer one, therefore,

from eq. (1.3) for energies En in the PT potential it follows that

NE = IntegerPart

[

1
2

(
√

8γU0m

α2~2
+ 1 − 1

)]

. (1.5)

In order to obtain the reliable results of calculations using the modified PT potential, one have
to define the parameters U0 and α of the potential (1.2) so that the periodic potential built from
the PT potentials would be close to the periodic potential of the DT model. Our calculations for
Si(220) crystal give U0 = 21.5 eV, α = 3.5 1/Å.
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1.2 The Doyle-Turner potential

For the DT potential of the crystal planes system due to their periodic arrangement the wave
functions should be the Bloch one [14]

ψn(x) = ei kx x
∑

m

Cn(gm, kx)e
−i gmx , (1.6)

here gm = mg, g = |g |, g is the reciprocal lattice vector in the first Brillouin zone of the system of
channeling planes and m is the natural number.

According to Bloch theorem [14] the Fourier components Cn(gm, kx) of the channeled particle
wave functions ψn(x) in the momentum space should satisfy the algebraic system of equations for
the eigenvalues:

∑

m

AmlCn(gm, kx) = En(kx)Cn(gm, kx) , (1.7)

Here matrix Aml is (see, [15, 16])

Aml = U(gm − gl) + δ(gm, gl)

[

~
2(gl + kx)

2

2mµγ

]

, (1.8)

and values U(gm) are the Fourier components of the DT periodic potential U(x).
We should note that unlike the PT model, the possible energy values En(kx) of the channeled

particle in the DT periodic potential U(x) are continuous functions of the wave vector of the particle
kx , i.e. form energy bands.

The numerical solution of the system (1.7) for the DT potential gives the energy spectrum
(i.e., the values En(kx)) and the Fourier components Cn(gm, kx) of the wave function of the chan-
neled particle. We used the package of symbolic-numerical computations Mathematica© from our
previous works [17].

The figure 1 shows the calculation of the energy levels’ number of the transverse motion (bands
for the DT potential) for the relativistic muon channeled in Si(220).

Figure 1. Dependence of the number NE of the energy levels (bands) of the muon transverse motion in
Si(220) on the µ relativistic factor γ: stars — for the Doyle-Turner potential and stepped line — for the
periodic potential on the basis of the Pöschl-Teller model potential.

One can see that the results of calculations are in good agreement.
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2 Muon planar channeling

2.1 The relative error of energy spectrum

For the reason discussed above, the calculation of the energy levels’ number in the transverse motion
of the relativistic channeled muon can be carried out with equal accuracy using both the PT and the
DT models.

To estimate the calculation error of the transverse energies of muon in the PT potential (in
comparison with the values obtained in the DT model), we introduce the quantity

∆En =
En − En(kx)

En

, (2.1)

where En is the transverse energy of the muon channeled in Si(220) (eq. (1.3)) according to PT
model and En(kx) is calculated by the DT model (eqs. (1.7)–(1.8)).

The figure 2 shows the results of calculations of the relative error ∆E for a muon channeled in
Si(220) (taking into account the band structure En(kx)).

Figure 2. The dependence of the relative error ∆En as a function of the NE level number and the relativistic
factor γ.

The figure 2 shows that for all relativistic factors the relative error ∆En changes with increasing
of the number NE (transverse energy) as it follows:

- for the ground state value ∆En is order of 1%;

- after that value ∆En increases up to 5% for bound energy approximately equal to one quarter
of the potential well;

- on the next step the value ∆En decreases to zero when muon energy achieves the middle of
the potential well;

- after that the value ∆En again increases up to 10% for bound energy approximately equal to
three quarter of the potential well;

- and finally the value∆En decreases to zero for muon energy near to the top of the potential well.
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2.2 The relative error of matrix elements

The wave functions and energy levels obtained above allow to estimate the error of the calculations
based on the model potential of PT for many physical processes.

For example, in order to calculate the probability of different types of radiation from relativistic
channeled particles, we need two parameters: the energy of the photon ~Ωi f = Ei − E f , arising
during the spontaneous transition i → f between the quantum states of transverse motion and
matrix elements xi f = 〈ψf (x)|xe−ikx x |ψi(x)〉 corresponding to this transition.

To estimate the calculation errors of the photon energy and matrix elements in the PT potential
we introduce the quantities

∆Ωi f =

Ω
PT
i f

−ΩDT
i f

Ω
DT
i f

, ∆Xi f =

(x2

i f
)PT − (x2

i f
)DT

(x2

i f
)DT

, (2.2)

where the index PT indicates the calculation results according to the Pöschl-Teller model and the
DT index indicates the calculation results according to the Doyle-Turner model.

The figure 3 shows the calculation results of the relative errors ∆Ωi f and ∆Xi f for transitions
between adjacent levels of muon channeled in Si(220)(i.e. ∆Ωi,i−1 and ∆Xi,i−1).

Figure 3. It is shown relative errors ∆Ωi,i−1 and ∆Xi,i−1 for transitions between neighbor levels for muon
channeled in (220) Si. In the left figure the relative error of photon energy ∆Ωi,i−1 is plotted as a function of
the initial level number i and the relativistic factor γ. In the right picture the relative error of matrix elements
∆Xi,i−1 is shown versus the initial level number at the γ = 5. Here, in and fn are the number of the subband
(we divided each band into 10 parts).

In order to take into account the width of energy band during calculation of matrix elements
(in DT model), we divide every energy band into 10 subbands and consider all possible transitions.

3 Conclusion

We compare the calculation results of the number NE of the bound states, the energy spectrum En,
photon energies ∆Ωi,i−1 and the matrix elements ∆Xi,i−1 for muon channeled in Si(220) for two
Pöschl-Teller and Doyle-Turner potentials. The main results are as follows:

- the number NE of the muon bound states is in good agreement;

- the relative error of transverse muon energy does not exceed 10%;
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- the relative errors of photon energies and the matrix elements is in a good agreement only for
the muon energy levels far from the top of the potential well. Such a behavior of these quan-
tities is connected with the fact that when transverse energy of muon approaching to the top
of the potential well, the energy bands expand and the band structure plays an increasing role.
Consequently, one can use the Pöschl-Teller potential only in order to obtain the estimation of
the phenomena connected with the low energy levels of channeled particle’s transverse motion.

Our results for the muon with rest mass mµ and relativistic factor γ are valid for any particles
with elementary charge and rest mass m and relativistic factor γm = γ(mµ/m). Therefore, one
can be useful in the preparation and carrying out the experimental investigation of the various
phenomena accompanying particle channeling.
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