#### Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования



#### «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Направление подготовки: 14.06.01 «Ядерная, тепловая и возобновляемая энергетика и

сопутствующие технологии»

профиль: 05.17.02 «Технология редких, рассеянных и радиоактивных элементов»

Школа: Инженерная школа ядерных технологий

Отделение ядерно-топливного цикла

#### Научный доклад об основных результатах подготовленной научно-квалификационной работы

Тема научного доклада

## ПРОЦЕСС ФТОРОАММОНИЙНОЙ ПЕРЕРАБОТКИ ВЫСОКОФТОРИСТЫХ БЕРИЛЛИЕВЫХ КОНЦЕНТРАТОВ

УДК 661.845'036.061.16

Аспирант

| Группа | ФИО                    | Подпись | Дата |
|--------|------------------------|---------|------|
| A4-49  | Малютин Лев Николаевич |         |      |

Руковолителя профиля полготовки

|  |           | - <del> </del> |                   |         |      |  |
|--|-----------|----------------|-------------------|---------|------|--|
|  | Лолжность | ФИО            | Ученая степень,   | Подпись | Дата |  |
|  | 7         |                | звание            |         |      |  |
|  | Профессор | Жерин И.И.     | д.х.н., профессор |         |      |  |

Руководитель отделения

| Должность         | ФИО          | Ученая степень,<br>звание | Подпись | Дата |
|-------------------|--------------|---------------------------|---------|------|
| Руководитель ОЯТЦ | Горюнов А.Г. | д.т.н., доцент            |         |      |

Научный руководитель

| The property of the second of |               |                           |         |      |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------|---------|------|--|--|
| Должность                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ФИО           | Ученая степень,<br>звание | Подпись | Дата |  |  |
| Профессор                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Дьяченко А.Н. | д.т.н., профессор         |         |      |  |  |

#### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

#### Актуальность работы

С каждым годом потребность мировой промышленности в бериллии возрастает. Объем добываемого бериллия (в пересчете на металл) вырос на 18 % с 2006 по 2016 год (в 2006 году объем добычи составил 182,5 т, в 2016 – 216 т). Общее мировое потребление бериллия в 2016 году составило около 280 т в пересчете на металл. Стоимость металлического бериллия в зависимости от чистоты колеблется от 20 до 100 тыс. руб./кг. По причине высокой стоимости бериллий применяется, в сферах, где его использование материалов-заменителей критично применение (титана, графита, алюминия, магния и т.д.) принесет недопустимое снижение техникоэксплуатационных характеристик. В промышленности такими критическими сферами являются направления применения медно-бериллиевых сплавов, металлического бериллия и бериллиевой керамики.

На сегодняшний день 72 % мирового потребления бериллия приходится на медно-бериллиевые сплавы (содержание Ве 0,1-2 %). 20 % потребляемого бериллия используется в виде чистого металла для создания металлических матриц, состоящих на 50 % из бериллия. 8 % бериллия бериллиевую керамику. Металлический бериллий приходится на применяется в авиационной и космической промышленности (32 %), при производстве потребительской электроники (20 %), транспорта (14 %), телекоммуникационного и телефонного оборудования (12 %), в энергетике, нефтяной, газовой промышленности (12 %), при производстве частей медицинского оборудования (5 %), при производстве систем безопасности (3 %), в оборонной и военной промышленности (2 %).

Бериллий выделяют из берилловых, бертрандитовых и бертрандитфенакитовых концентратов. Производство бериллиевой продукции отличается крайней степенью монополизации. Предприятия полного цикла, осуществляющие переработку природного бериллиевого сырья и техногенных отходов в готовую бериллиевую продукцию, сосредоточены всего в 3 государствах: США, Казахстан, Китай. В Российской Федерации нет предприятий полного бериллиевого цикла. В то же время на территории России находятся уникальные бериллиевые месторождения: Ермаковское, Малышевское, Завитинское. Наибольший экономический интерес представляет собой Ермаковское месторождение (среднее содержание ВеО в руде составляет 1,0 %). Мощность данного месторождения оценивается в 1 394 тыс. тонн по балансовой руде, которая представлена в основном флюорит-фенакит-бертрандитовыми метасоматитами.

Переработка флюорит-фенакит-бертрандитового концентрата (ФФБК) по сернокислотной схеме, затруднено несколькими факторами:

- 1. Для разрушения кристаллической решетки упорного фенакита перед стадией сернокислотного выщелачивания необходимо вводить процедуру предварительного высокотемпературного (1700)°C) сплавления концентрата с флюсами – содой, известняком. Формируются расходы на закупку флюсов И на избыточное количество серной кислоты, необходимой для нейтрализации образующегося щелочного плава.
- 2. Фтор-ион, находящийся в минерале флюорите, после сплавления и выщелачивания плава серной кислотой переходит в водную фазу вместе с бериллием. На стадии осаждения Be(OH)<sub>2</sub> фтор-ион препятствует полному выделению бериллия в твёрдую фазу, что приводит к увеличению потерь бериллия. Увеличивается экологическая нагрузка на окружающую среду, так как маточные растворы после фильтрации Be(OH)<sub>2</sub> направляются на шламохранилище.
- 3. При взаимодействии высокофтористого сырья с серной кислотой образуется большое количество газа фторсилана, после улавливания которого образуется гексафторокремниевая кислота. Данный продукт не имеет применения в технологической схеме сернокислотной переработки бериллиевых концентратов и является токсичным отходом производства.

Таким образом, для переработки отечественного фторсодержащего бериллиевого сырья необходимо разработать технологию, обеспечивающую низкую себестоимость передела, благодаря устранению предварительных операций по активации сырья, снижению объемов жидких отходов и возможности регенерации реагентов и воды, используемых для выщелачивания бериллия.

Работа выполнялась в рамках Государственного контракта № 13411.0924800.05.022 с Министерством промышленности и торговли РФ от 18.11.2013 г. на выполнение научно-исследовательской и опытно-конструкторской работы «Разработка промышленной технологии переработки руд редких металлов по программе БЕРЛИТ (бериллий, литий) для получения редких металлов высокой чистоты».

**Целью работы** является разработка научных и технологических основ экономически обоснованной технологии переработки высокофтористых бериллиевых концентратов для получения фторида и гидроксида бериллия.

Для достижения цели необходимо решить следующие задачи:

- 1. Провести научное обоснование и экспериментально доказать принципиальную возможность переработки высокофтористого бериллиевого концентрата с помощью фторидов аммония.
- 2. Определить технологические режимы: выделения бериллия из концентрата, очистки раствора бериллия, получения тетрафторобериллата аммония.
- 3. Установить механизм процесса термического разложения тетрафторобериллата аммония.
- 4. Определить технологический режим выделения гидроксида бериллия из фтористых солей бериллия.
- 5. Разработать принципиальную схему фтороаммонийной переработки бериллиевого концентрата и рассчитать технологическую себестоимость

гидроксида бериллия, провести сравнительный технико-экономический анализ фтороаммонийного и сернокислотного способа.

#### Положения, выносимые на защиту:

- 1. Результаты термодинамических расчетов химических реакций и кинетических исследований процесса гидрофторирования бериллиевого концентрата в расплаве гидрофторида аммония.
- 2. Результаты термогравиметрических, дифференциально-термических исследований процесса термической диссоциации тетрафторобериллата аммония до фторида бериллия.
- 3. Технологическая схема, схема компоновки оборудования и техникоэкономическое обоснование процесса переработки высокофтористых бериллиевых концентратов с помощью гидрофторида аммония.
- 4. Технологические режимы процесса переработки бериллиевого концентрата с помощью гидрофторида аммония.

**Личный вклад автора** заключается в анализе литературных данных, выборе теоретических и экспериментальных методов решения поставленных задач, разработке исследовательского оборудования, личном участии в проведении экспериментальных исследований, анализе и интерпретации полученных данных, подготовке к публикации докладов и статей.

Достоверность полученных результатов подтверждается использованием современных химических и инструментальных методов анализа с применением сертифицированных методик и оборудования, соответствием теоретических расчетов результатам экспериментальных работ, а также практической реализацией разработанного способа.

**Апробация работы.** Результаты диссертационной работы были представлены на нескольких международных и всероссийских симпозиумах

и конференциях: XX Менделеевский съезд по общей и прикладной химии – Екатеринбург, 2016; 1st International Academic Congress «Fundamental and Applied Studies in the Pacific and Atlantic Oceans Countries» – Japan, Tokyo, 2016; International symposium on inorganic fluorides chemistry and technology – Томск, 2014; Международная конференция «Ресурсосбережение и охрана окружающей среды при обогащении и переработке минерального сырья» (Плаксинские чтения – 2016) – Санкт-Петербург; Всероссийская научнопрактическая конференция, приуроченная к 105-летию со дня рождения Б.В. Громова «Фторидные технологии в атомной промышленности. Громовские Международная чтения» Томск, 2014; научная конференция «Полифункциональные химические материалы и технологии» – Томск, 2015; XI Всероссийская конференция «Химия фтора» (к 110-летию со дня рождения академика И.Л. Кнунянца) – Москва, 2016.

Публикации. Основное содержание работы отражено в 5 статьях, которые входят в перечень рецензируемых журналов и изданий для опубликования основных научных результатов диссертации и в перечень журналов, индексируемых базами данных Scopus и Web of Science, 15 тезисах докладов на международных и всероссийских конференциях. Интеллектуальная собственность, созданная в результате исследований, защищена 3-мя патентами РФ на изобретение.

Структура и объем диссертации. Диссертация состоит из введения, 4 глав, выводов, списка цитируемой литературы (138 источников). Материал работы изложен на 132 страницах, включая 30 рисунков, 25 таблиц.

# СПИСОК ОСНОВНЫХ ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

## Статьи:

- 1. **Малютин Л.Н.** Процесс выщелачивания бериллия из фенакит-бертрандитового концентрата с помощью гидрофторида аммония / А.Н. Дьяченко, Р.И. Крайденко, Л.Н. Малютин, И.В. Петлин // Ползуновский вестник. -2017. № 3. C. 86-90.
- 2. **Malyutin L.N.** The mechanism for production of beryllium fluoride from the product of ammonium fluoride processing of beryllium- containing raw material / R.I. Kraydenko, A.N. Dyachenko, I.V. Petlin // IOP Conference Series: Materials Science and Engineering. 2016. Vol. 135. [012021, 7 p.].
- 3. **Malyutin L.N.** The Research of  $(NH_4)_2BeF_4$  Solution Purification Effectiveness / A.N. Dyachenko, R.I. Kraydenko, I.V. Petlin // Procedia Engineering. 2016. Vol. 152 P. 51-58.
- 4. **Malyutin L.N.** The study of the process of alkaline precipitation purification of solutions from silicon macroscales in the ammonium-fluoride processing of beryllium-containing materials / A.N. Dyachenko, R.I. Kraydenko, I.V. Petlin // MATEC Web of Conferences. 2016. Vol. 85. [01009, 6 p.].
- 5. **Малютин Л.Н.** Исследование способа вскрытия редкометалльного минерального сырья борной кислотой / А.Н. Дьяченко, Р.И. Крайденко, Л.Н. Малютин, И.В. Петлин, Ю.А. Захарова, О.И. Мишукова // Ползуновский вестник. 2017. № 3. С. 115-120.

# Другие публикации:

- 1. **Малютин** Л.**Н.** Перспективы переработки бериллиевого сырья / Л.Н. Малютин, И.В. Петлин // XX Менделеевский съезд по общей и прикладной химии. Тезисы докладов в 5 томах. 2016. Т. 3. С. 186.
- 2. **Малютин Л.Н.** Флотационное дообогащение флюоритфенакитового концентрата / А.Н. Дьяченко, Р.И. Крайденко, Л.Н. Малютин, И.В. Петлин, А.А. Смороков // Материалы международной конференции

- «Ресурсосбережение и охрана окружающей среды при обогащении и переработке минерального сырья» (Плаксинские чтения-2016). 2016. С. 160.
- 3. **Малютин Л.Н.** Исследование процесса гидрофторирования бериллиевого концентрата / Л.Н. Малютин // ХІ Всероссийская конференция «Химия фтора» (к 110-летию со дня рождения академика И.Л. Кнунянца): материалы конференции 2016. С. 108.
- 4. **Malyutin L.N.** Beryllium concentrates processing by use ammonia hydrofluorid / A.N. Dyachenko, R.I. Kraydenko, L.N. Malyutin // Proceedings of the 1st International Academic Congress «Fundamental and Applied Studies in the Pacific and Atlantic Oceans Countries» Vol. II. 2014. P. 78-81.
- 5. **Malyutin L.N.** Fluorineammonia method of beryllium concentrates processing / L. N. Malyutin // International Symposium on Inorganic Fluorides: Chemistry and Technology: book of abstracts 2014. P. 109.
- 6. **Малютин Л.Н.** Использование гидрофторида аммония для переработки бериллийсодержащего сырья / Л.Н. Малютин // Полифункциональные химические материалы и технологии: Материалы Международной научной конференции 2015. Том 3. С. 86-89.
- 7. **Малютин Л.Н.** Фтораммонийный способ переработки бериллиевых концентратов / Л.Н. Малютин // Фторидные технологии в атомной промышленности. Громовские чтения-2014: материалы всероссийской научно-практической конференции, приуроченной к 105-летию со дня рождения Б.В. Громова 2014. С. 47-48.

## Патенты на изобретения:

1. Способ получения металлического бериллия: пат. на изобретение № 2599478. Российская Федерация: МПК С22В 35/00 / Л.Н. Малютин, А.Н. Дьяченко, Р.И. Крайденко, Ю.Ю. Нечаев; заявитель и патентообладатель: ФГАОУ ВО НИ ТПУ. — 2015110364/02, заявл. 23.03.2015, опубл. 10.10.2016, Бюл. № 28-8 с.

- 2. Способ получения металлического бериллия: пат. на изобретение № 2613267. Российская Федерация: МПК С22В 35/00, С22В 5/04 / Л.Н. Малютин, А.Н. Дьяченко, Р.И. Крайденко, И.В. Петлин; заявитель и патентообладатель: ФГАОУ ВО НИ ТПУ. 2015148179, заявл. 09.11.2015, опубл. 15.03.2017, Бюл. № 8 6 с.
- 3. Способ получения оксида бериллия и металлического бериллия: пат. на изобретение № 2624749. Российская Федерация: МПК С22В 35/00, С22В 7/00, С22В 3/04, С22В 3/20, С22В 3/02 / Л.Н. Малютин, А.Н. Дьяченко, Р.И. Крайденко, Ю.Ю. Нечаев, И.В. Петлин; заявитель и патентообладатель: ФГАОУ ВО НИ ТПУ. 2015151403, заявл. 01.12.2015, опубл. 06.07.2017, Бюл. № 19 10 с.