товлением опытного образца.

Полиорганосилоксаны получают гидролизом алкил(арил)хлорсиланов с последующей поликонденсацией образовавшихся алкил(арил) силанолов, которые весьма реакционноспособны [1]:

Обязательным этапом в производстве СР является вулканизация. При вулканизации СР используют различные органические пероксиды, например: 2,5-диметил-2,5-ди(тетрабутилперок-

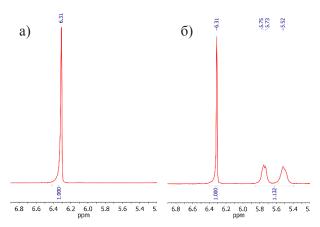
си)гексан, бис-(2,4-дихлорбензоил)пероксид. Смесь перед вулканизацией подвергают вальцеванию, для удаления воздуха из массы. Вулканизацию проводят в пресс форме под давлением от 3,9 до 7,85 МПа.

Во время работы был проведен пробный синтез СР в НПК «ПолиПласт», включающий предварительное вальцевание и вулканизацию при температуре 120°С и давлении 5 МПа.

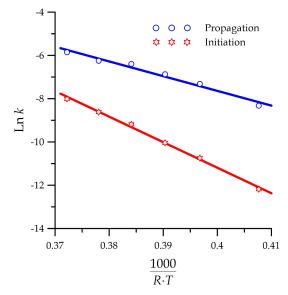
Список литературы

- 1. Коршак В.В. Технология пластических масс.— М.: Химия, 1985.— 560с.
- 2. Воробьев А. // Компоненты и технологии, 2004.—№2.— С.174—175.

МЕТАТЕЗИСНАЯ ПОЛИМЕРИЗАЦИЯ 5-НОРБОРНЕН-2,3-ДИКАРБОКСИМИД-N-ИЗОПРОПИЛ АЦЕТАТА


Е.В. Дудик, Н.А. Смирнова Научный руководитель – к.х.н., доцент А.А. Ляпков

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, tpu@tpu.ru


Наиболее популярным среди методов исследования кинетики метатезисной полимеризации (ROMP) и возможно самым эффективным является метод ЯМР-спектроскопии. Благодаря тому, что образование полимерной цепи вызывает смещение резонансов олефиновых протонов в область более сильного поля, становится возможным различить линии мономера и полимера в ЯМР-спектре.

В литературных источниках, касающихся полимеризации N-замещенных норборнен дикарбоксиимидов, редко описываются свойства получаемых полимеров и не упоминается о закономерностях их получения. Настоящая работа посвящена исследованию кинетики и термодинамики метатезисной полимеризации 5-норборнен-2,3-дикарбоксимид-N-изопропил ацетата при помощи метода ¹Н ЯМР, исследуя полимеризацию *in situ*.

Кинетику полимеризации 5-норборнен-2,3-дикарбоксимид-N-изопропил ацетата (1) под действием [1,3-бис-(2,6-диметилфенил)-2-и-

Рис. 1. Фрагменты ЯМР-спектров 1 в начале реакции (а) и через 90 мин (б) (температура — 21,9°C, концентрация 2-0,354 моль/л, концентрация $1-5,3 \cdot 10^{-4}$ моль/л)

Рис. 2. Аррениусовские зависимости для полимеризации 1 под действием 2

mate inspense ip a metalled incommetal and Assessment									
	T, K	1000/RT	$10^3 \cdot k_0,$ л • моль ⁻¹ • c ⁻¹	10 ⁵ • k _i , л • моль ⁻¹ • c ⁻¹	k_i/k_0	ΔH_0 , кДж • моль $^{-1}$	А ₀ , л • моль ⁻¹ • с ⁻¹	ΔН _i , кДж•моль ⁻¹	A_i , л • моль $^{-1}$ • c^{-1}
	295,05	0,408	0,24	0,51	0,02		3,18 • 108	-118	4,33 • 1015
	303,15	0,397	0,66	2,16	0,03				
	308,15	0,390	1,04	4,36	0,04	(0)			
	313,15	0,384	1,67	10,3	0,06	68 - -			
	318,15	0,378	1,93	18,1	0,09				
	323,15	0,372	2,85	33,2	0,12				

Таблица 1. Значения наблюдаемых констант скоростей реакций инициирования и роста цепи и активационные параметры метатезисной полимеризации 1 под действием 2

мидазолидинилиден]-дихлоро-(2-(N,N-диметиламинометил) -бензилиден)рутения (2) изучали методом ¹Н ЯМР. Опыты проводили по следующей процедуре. В ампулу для анализа помещали смесь 50 мг мономера 1 и 400 мкл растворителя СDСІ₃ и записывали спектр полученного раствора. После этого в ампулу добавляли 200 мкл раствора 1 мг катализатора 2 в 1000 мкл CDСІ₃ (концентрация мономера 0,354 моль/л, концентрация катализатора 5,3 • 10⁻⁴ моль/л, мольное соотношение мономер: катализатор=670:1) и через определенные промежутки времени записывали спектр на Фурье ЯМР-спектрометре Вгикег Avance III 400 (Германия) при заданной температуре.

Полимеризацию проводили в ампулах для исследований ЯМР, параллельно измеряя протонный спектр через определенный интервал времени. Измерение интенсивности резонансов

во времени позволяет следить за изменением концентрации 1 во времени и изучать кинетику процесса ROMP (рис. 1).

На основе значений наблюдаемых констант скоростей реакций инициирования и роста цепи при различных температурах (см. табл. 1) найдены величины активационных параметров метатезисной полимеризации 5-норборнен-2,3-дикарбоксимид-N-изопропил ацетата.

На рис. 2 приведены Аррениусовские температурные зависимости констант скоростей реакций инициирования и роста цепи метатезисной полимеризации 5-норборнен-2,3-дикарбоксимид-N-изопропил ацетата.

Исходя из данных, представленных на в табл. 2, можно сделать вывод о том, что образование активных центров происходит медленнее роста полимерной цепи.

ВЫСОКОДОЗНАЯ РАДИАЦИОННО-ХИМИЧЕСКАЯ МОДИФИКАЦИЯ ПОЛИМЕРНЫХ МЕМБРАН

А.А. Дюсембекова, В.В. Сохорева Научный руководитель – д.ф.-м.н., профессор И.В. Шаманин

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, a.dyussembek@gmail.com

В последнее время в качестве важнейших функциональных материалов выступают твёрдые электролиты с высокой проводимостью. Благодаря уникальности носителя тока, твердые электролиты с высокой подвижностью протона составляют особый класс ионных проводников. В силу высокой проводимости протонные электролиты широко применяются в качестве электрохимических устройств, а именно электролизеры для получения водорода, датчики парциального давления газов, электрохимические аккумуляторы, топливные элементы. Пе-

речень твердых протонных проводников весьма объемный, к ним относятся соединения низкотемпературных неорганических кристаллогидратных соединений, который имеют ряд недостатков при эксплуатации [1, 2].

Однако существуют перспективные протонпроводящие материалы – полимерные протонпроводящие мембраны (ППМ), обладающие высокой протонной проводимостью в области средних температур (130–250 °C). Ранее, в качестве методов синтеза, применялся метод термической полимеризации полимерных материалов [3], также, широко рассматривается метод