ВЛИЯНИЕ ЭНЕРГЕТИЧЕСКИХ ПАРАМЕТРОВ ПРОЦЕССА ПЛАЗМОДИНАМИЧЕСКОГО СИНТЕЗА НА ФАЗОВЫЙ СОСТАВ ПРОДУКТОВ СИСТЕМЫ W-C

П.А.МАЛОФЕЕВА, Ю.Л.ШАНЕНКОВА, И.И. ШАНЕНКОВ

Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет» E-mail: malofeeva polina a@mail.ru

Открытый в 1893г карбид вольфрама известен такими свойствами как: высокие твердость, термо- и износостойкость, а также низкий коэффициент теплового расширения. Из-за схожести строения кристаллической решетки карбида вольфрама с кристаллической решеткой платины было предположено, что карбид вольфрама может проявлять каталитическую активность подобно металлам платиновой группы[1]. Карбид вольфрама существует в трех кристаллических модификациях: гексагональные WC и W₂C и кубический WC_{1-x}. Было доказано, что кубическая фаза карбида вольфрама обладает более высокой поверхностной реакционной способность по сравнению с другими фазами, что позволяет использовать ее в качестве катализатора для электрокаталитического получения водорода. Но очень узкий диапазон температурной стабильности делает процесс получения WC_{1-x} практический невозможным, рисунок 1а. В данной работе описывается метод получения кубической фазы карбида вольфрама плазмодинамическим методом в системе на основе коаксиального магнитоплазменного ускорителя (КМПУ), рисунок 16. С помощью которого удалось сохранить метастабильным при комнатной температуре WC_{1-x}.

Рисунок 3 - Диаграмма состояний вольфрам-углерод (а), схематическое изображение коаксиального магнитоплазменного ускорителя (б)

Синтез продукта осуществляется прямым плазмодинамическим методом в системе КМПУ с графитовыми электродами [2]. В качестве закладываемых прекурсоров использовались порошок вольфрама W и сажа С массами по 0,5 г каждый. Параметры эксперимента были следующие: зарядное напряжение U_{зар}=3,0 кВ, емкость конденсаторных батарей C=6 мФ, зарядная энергия W_C=27 кДж. После замыкания ключей ток разряда конденсаторной батареи начинает протекать по КФПС, инициируется дуговой разряд, формируется плазменная структура, содержащая заложенные прекурсоры. В процессе прохождения плазменного потока по ускорительному каналу, выполненному из графита, с его стенок происходит электроэрозия материала, который вовлекается в движение плазмы. чего плазменный поток выносится в пространство После камеры реактора. синтезированный материал остывает и осаждается на стенках. Было проведено три эксперимента по получению WC_{1-х} с разными энергетическими параметрами. Полученные

материалы исследовались методом рентгеновской дифрактометрии (XRD) (дифрактометр Shimadzu XRD7000S) результаты представлены на рисунке 2.

Рисунок 4 - Рентгеновская дифрактометрия продуктов синтеза: а) эксперимент №1, б) эксперимент №2, в) эксперимент №3

Значения мощности и энергии были посчитаны с помощью осциллограмм тока и напряжения, зарегистрированных в процессе проведения эксперимента, таблица 1. Для эксперимента №1 энергия плазменного потока составляла 16 кДж, выход кубической фазы оказался равен 69%, в этом случае образовалось большое количество побочных продуктов, а именно 17% гексагонального карбида вольфрама W_2C и 13,5% W. При увеличении энергии до 20 кДж (эксперимент №2) процентное содержание кубической фазы возросло до 78% и уменьшилось количество примесных фаз W2C и W до 4,5% и 10,2% соответственно. Наиболее удачным оказался эксперимент №3, где величина подведенной энергии составила 25 кДж, а выход кубической фазы 94

№	U _д	I _M	Рм	W _c	W	W/Wc	XRD			
	κВ	кА	МВт	кДж	кДж	%	WC _{1-x} ,%	W ₂ C,%	W,%	C,%
1	0,9	119	110	27	16	59	69,0	17,0	13,5	0,5
2	1,4	82	118	27	20	74	78,4	4,5	10,2	6,9
3	1,5	114	168	27	25	92	94,1	1,7	0,5	3,7

Таблица 1 - Массовый состав полученных образцов

Таким образом, в данной работе доказана возможность синтеза уникальной кубической фазы карбида вольфрама WC_{1-х} плазмодинамическим методом в системе КМПУ. Установлено, что при больших значениях энергии в составе продукта увеличивается содержание кубической фазы WC_{1-х} вплоть до 94%.%.

Список литературы

- 1. S. Aravinth, Binu Sankar, M. Kamaraj, S. R. Chakravarthy, R. Sarathi. Synthesis and characterization of hexagonal nano tungsten carbide powder using multi walled carbon nanotubes// Int. Journal of Refractory Metals and Hard Materials.- 2012.- N 33.- P. 53-57.
- 2. Сивков А.А., Сайгаш А.С., Пак А.Я., Евдокимов А.А. Прямое получение нанодисперсных порошков и композиций в гиперскоростной струе электроразрядной плазмы// Нанотехника. 2009. N 2(18).- С. 38-44
- 3. Harjinder Singh, Pandey O. P. Single step synthesis of tungsten carbide (C) nanoparticles from scheelite ore// Ceramics International.- 2013.- N 39.- P. 6703-6706.
- Kurlov A. S., Gusev A. I. Tungsten Carbides and W–C Phase Diagram // Inorganic Materials. – 2006. – V. 42. – No. 2. – P. 121–127