На правах рукописи

Губарьков Дмитрий Владимирович

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ЭЛЕКТРОННО-ЛУЧЕВОГО ОПЛАВЛЕНИЯ НАПЫЛЁННЫХ ПОКРЫТИЙ И ПАЙКИ СВЕРХТВЁРДЫХ МАТЕРИАЛОВ НА РЕЖУЩИЙ ИНСТРУМЕНТ

Специальность 01.04.14 - теплофизика и теоретическая теплотехника

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание учёной степени кандидата физико-математических наук

Работа выполнена в Институте физики прочности и материаловедения Сибирского отделения РАН и Томском политехническом университете

Научный руководитель: доктор технических наук

В.А. Климёнов

Официальные оппоненты: доктор физико-математических наук,

профессор И.М. Васенин

кандидат физико-математических наук,

доцент Б.С. Зенин

Ведущая организация: Институт теоретической и прикладной

механики СО РАН (г. Новосибирск)

Защита состоится «<u>29</u>» декабря 2003 г. в <u>14</u> часов <u>30</u> минут в 228 аудитории 10 корпуса на заседании диссертационного Совета ДС 212.025.01 при Томском политехническом университете. Адрес: 634050, г. Томск, пр. Ленина, 30.

С диссертацией можно ознакомиться в библиотеке Томского политехнического университета.

Автореферат разослан «<u>28</u>» ноября <u>2</u>003 г.

Учёный секретарь диссертационного совета,

д.т.н., профессор

А.А. Орлов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Одним наиболее эффективных ИЗ получения упрочнённых деталей ответственного оборудования высокоресурсного режущего инструмента является применение электроннолучевой обработки в вакууме. Это связано с тем, что практически только с помощью высокоэнергетического воздействия электронного луча удаётся реализовать высокие скорости нагрева различных сплавов и керамики, избирательно осуществлять слоёв оплавление компонент или композиционных материалов и благодаря осуществлению процесса в вакууме добиваться консолидации, даже трудно свариваемых или спаиваемых материалов. Применение такой обработки сдерживается недостаточной изученностью процессов тепло- и массопереноса, ответственных формирование структуры обрабатываемых материалов и прочностных, в том числе адгезионных, свойств композиций материалов. В большей степени это ОТНОСИТСЯ процессам, происходящим В реальных технологических устройствах, в которых осуществляется, например, оплавление износостойких и коррозионностойких газотермических покрытий или пайка сверхтвёрдых материалов (СТМ) типа металлокерамики или поликристаллических алмазов на металлическую основу.

Анализ промышленного применения электронно-лучевых процессов показывает, что эффективность их использования связана с правильностью выбора значений технологических параметров И автоматизацией технологического процесса в целом. Выбор значений технологических параметров влияет на процессы тепло- и массопереноса в обрабатываемом материале, от него зависит структура и прочностные свойства материала после обработки. В СВЯЗИ что экспериментальный тем, рациональных значений технологических параметров является достаточно трудоёмким и энергоёмким процессом, в настоящее время развивается компьютерное моделирование процессов электронно-лучевой обработки материалов в комплексе с разработкой методик определения оптимальных значений основных технологических параметров. Создаваемые при этом программные средства позволяют прогнозировать структуру и физикомеханические свойства материалов, значительно снижать материальные затраты и трудоёмкость этапов технологической подготовки при использовании промышленных электронно-лучевых установок.

<u>Целью работы</u> является разработка математических моделей процессов электронно-лучевого оплавления композиции «газотермическое покрытиеоснова» и электронно-лучевой пайки композиции «сверхтвёрдый материалприпой-основа» и определение на их основе оптимальных значений основных технологических параметров, которые позволяют достигать высоких прочностных свойств данных композиций.

<u>Научная новизна</u>. В работе впервые получены следующие научные результаты:

- 1. Разработана трёхмерная нестационарная математическая модель теплофизических процессов при оплавлении композиции «газотермическое покрытие-основа» движущимся электронным лучом, сканирующим по гармоническому закону в направлении перпендикулярном его поступательному перемещению, которая позволяет определять рациональные условия оплавления покрытия из сплава класса NiCrBSi на стальной основе в технологическом диапазоне значений плотности поглощённой мощности электронного луча (до 10⁵ Bт/см²) и скорости поступательного перемещения электронного луча MM/C). обеспечивающие проплавление покрытия до границы раздела с основой при максимальной скорости охлаждения расплава.
- 2. Разработан способ расчёта и определены оптимальные соотношения времени и температуры пайки композиции «кубический нитрид бора (КНБ)-сплав класса AgCuInTi-сплав на основе W и Co» для достижения задаваемой толщины диффузионной зоны титана в КНБ при ограниченной величине остаточных диффузионных напряжений в КНБ.
- 3. Разработан способ расчёта и определены значения коэффициента диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co по экспериментальным данным о распределении титана в композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» после завершения процесса пайки.

<u>Практическая ценность</u>. Результаты диссертационной работы использовались в Лаборатории газотермических покрытий ИФПМ СО РАН (г. Томск) на этапах отработки технологических режимов оплавления газотермических покрытий ответственных деталей, а также были переданы в Физико-технический институт НАНБ (г. Минск) для отработки технологических режимов пайки сверхтвёрдых элементов на режущий инструмент.

Разработанные программные средства могут быть использованы в инженерной деятельности на стадиях технологической подготовки электронно-лучевых установок как отдельно, так и в составе автоматизированных технологических систем оплавления и пайки композиций материалов.

Положения, выносимые на защиту:

- 1. Трёхмерная нестационарная математическая модель теплофизических процессов при оплавлении композиции «газотермическое покрытиеоснова» движущимся электронным лучом, сканирующим ПО гармоническому закону В направлении перпендикулярном его поступательному перемещению, которая позволяет определять рациональные условия оплавления покрытия из сплава класса NiCrBSi на стальной основе в технологическом диапазоне значений плотности поглощённой мощности электронного луча (до 10⁵ Вт/см²) и скорости поступательного перемещения электронного луча MM/C). обеспечивающие проплавление покрытия до границы раздела с основой при максимальной скорости охлаждения расплава.
- 2. Результаты расчёта термических циклов и скоростей охлаждения расплава при оплавлении покрытия из сплава класса NiCrBSi на стальной основе, а также выявленные рациональные значения плотности поглощённой мощности и скорости поступательного перемещения электронного луча, сопоставленные с экспериментальными данными.
- 3. Одномерная нестационарная математическая модель теплофизических процессов и диффузии при электронно-лучевой пайке композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co», учитывающая температурную зависимость коэффициента диффузии титана.

- 4. Результаты сравнения распределений концентрации титана, полученных с использованием изотермической и разработанной неизотермической моделей процессов пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co».
- 5. Способ расчёта и результаты расчёта значений коэффициента диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co по экспериментальным данным о распределении титана в композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» после завершения процесса пайки.
- 6. Способ расчёта и результаты расчёта оптимальных соотношений времени и температуры пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» для достижения задаваемой толщины диффузионной зоны титана в КНБ при ограниченной величине остаточных диффузионных напряжений в КНБ.

Апробация работы. Основные положения и результаты диссертации докладывались и обсуждались на 5 научных конференциях, в том числе на 2 международных: 7-я Всероссийская научно-техническая конференция «Механика летательных аппаратов и современные материалы» (Томск, 2000), 6-th International conference «Computer-Aided Design of Advanced Materials and Technologies» (Tomsk, Russia, 2001), 6-th Sino-Russian International Symposium «New Materials and Technologies» (Beijing, China, 2001), 2-я Всероссийская конференция молодых учёных «Фундаментальные и прикладные проблемы современной механики» (Томск, 2001), 4-я Всероссийская конференция молодых учёных «Физическая мезомеханика материалов» (Томск, 2001).

Структура и объём работы. Диссертационная работа состоит из введения, трёх глав, заключения и списка литературы. Работа изложена на 121 странице, содержит 26 рисунков, 8 таблиц, список литературы состоит из 106 наименований.

<u>Публикации</u>. По теме диссертации опубликовано 8 печатных работ: статей - 3, докладов на конференциях - 2, тезисов докладов на конференциях - 3.

<u>Личный вклад автора</u> состоит в постановке задач, формулировке физических и математических моделей, выборе метода решения, разработке

алгоритмов и программ, проведении расчётов, оценке и интерпретации их результатов. Автором проведён анализ экспериментальных данных о структуре и свойствах композиций исследуемых материалов, сделаны выводы о работоспособности моделей, даны рекомендации по оптимизации технологических режимов.

СОДЕРЖАНИЕ РАБОТЫ

<u>Во введении</u> обосновывается актуальность темы диссертации, сформулированы цель и задачи работы, научная новизна, практическая ценность, а также положения, выносимые на защиту. Излагается краткое содержание работы.

Первая глава посвящена обзору состояния работ по исследуемой проблематике. В ней также рассматриваются физические особенности электронно-лучевого воздействия на металлические материалы, приводятся оценки необходимости учёта В математических моделях различных теплофизических и гидродинамических процессов, электронно-лучевой тепловой источник сравнивается по концентрации энергии с другими тепловыми источниками, используемыми при термообработке материалов. этого. приводятся результаты расчёта критической теплового потока для достижения на поверхности полубесконечного тела в центре пятна нагрева перемещающегося теплового источника температур плавления и кипения в установившемся режиме. На основе анализа литературных данных рассмотрены особенности математического моделирования электронно-лучевого теплового источника, приведена простейшая линейная одномерная задача нагрева неподвижным тепловым источником двухслойной композиции материалов С различными теплофизическими свойствами.

Во второй главе проводится математическое моделирование теплофизических процессов при электронно-лучевом оплавлении газотермического покрытия из сплава класса NiCrBSi на стальной основе. Дифференциальное уравнение теплопроводности записывается в следующем виде:

$$\rho \left[c + L\delta \left(T - T^*\right)\right] \frac{\partial T}{\partial t} = div(\lambda grad T),$$

где: T=T(x,y,z,t) - температура; $\rho=\rho(x,y,z,T)$ - плотность; c=c(x,y,z,T) - удельная теплоёмкость; $\lambda=\lambda(x,y,z,T)$ - коэффициент теплопроводности; L - удельная теплота фазового перехода; $\delta(T-T^*)$ - дельта-функция Дирака; T^* - средняя температура фазового перехода. Исходная температура композиции задаётся начальным условием. На всей границе, кроме текущей области действия теплового источника, тепловой поток считается равным нулю. Полученная задача решается численно с использованием явной разностной схемы расчёта. После выполнения серии расчётов с изменением значений параметров оплавления — плотности мощности теплового источника q и скорости поступательного перемещения электронного луча V_x , получены изолинии оплавления композиции (рис. 1) и распределения средней скорости охлаждения по толщине покрытия (рис. 2).

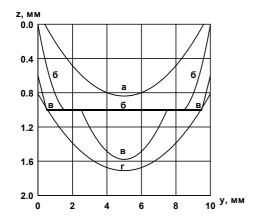


Рис. 1. Расчётные изолинии оплавления композиции по ширине дорожки сканирования для различных режимов оплавления: a-5 мм/с, $1,53\cdot10^5$ Bt/cm²; 6-2 мм/с, $0,76\cdot10^5$ Bt/cm²; 6-2 мм/с, $1,02\cdot10^5$ Bt/cm²; 6-2 мм/с, $1,02\cdot10^5$ Bt/cm²; 6-2 мм/с, $1,02\cdot10^5$ Bt/cm². Толщина покрытия 1мм.

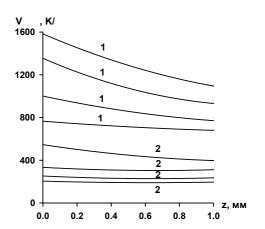


Рис. 2. Расчётные распределения средней скорости охлаждения по толщине покрытия для различных режимов оплавления: a1 - 5 мм/с, $0.76\cdot10^5$ Вт/см²; 61 - 5 мм/с, $1.02\cdot10^5$ Вт/см²; e1 - 5 мм/с, $1.27\cdot10^5$ Вт/см²; e1 - 5 мм/с, $1.53\cdot10^5$ Вт/см²; e2 - 2 мм/с, $0.76\cdot10^5$ Вт/см²; $0.76\cdot10^5$ Вт/см²; $0.76\cdot10^5$ Вт/см².

Изолиния a, показанная на рис. 1, соответствует такому режиму, при котором не происходит оплавление покрытия по всей толщине. Изолиния δ

соответствует режиму полного оплавления покрытия без плавления основы. При этом чётко выделяется граница раздела «основа-покрытие». Такой характер изолинии связан с различием температуры плавления основы и покрытия (разница порядка 300°К). Изолинии *в, г* соответствуют режимам полного оплавления покрытия с плавлением основы.

Анализ рис. 2 показал, что наибольшая интенсивность охлаждения слоёв покрытия, близких к рабочей поверхности композиции, по сравнению со слоями, близкими к границе раздела «основа-покрытие», наблюдается в случае оплавления наименьшей из выбранных плотностей мощности электронного луча и высокой скорости его поступательного перемещения (рис. 2 кривая а1). С увеличением плотности мощности при сохранении скорости поступательного перемещения источника происходит уменьшение величин и выравнивание по толщине покрытия скорости охлаждения в рассматриваемых точках (рис. 2 кривые 61, в1, в1). Снижение скорости поступательного перемещения источника с увеличением плотности мощности ведёт к дальнейшему уменьшению величин и выравниванию по толщине покрытия скорости охлаждения в рассматриваемых точках (рис. 2 кривые а2, 62, в2, в2). Распределения скорости охлаждения, показанные на рис. 2 (кривые 62, 82, 82), соответствуют режимам с перегревом расплава, когда за счёт теплоотвода в основу не обеспечивается более интенсивное охлаждение поверхностных слоёв покрытия по сравнению со слоями, близкими к границе раздела «основа-покрытие».

Таким образом, результаты расчётов показали, что режим с V_x = 2 мм/с, q = 0,76·10 5 Вт/см 2 позволяет рационально оплавить покрытие из сплава класса NiCrBSi на стальной основе. В таком режиме обеспечивается проплавление покрытия до границы раздела с основой при максимальной скорости охлаждения расплава.

Для проверки корректности полученных результатов и адаптации математической модели к эксперименту проведено оплавление электронным лучом промышленного порошкового материала класса NiCrBSi. Порошок напылялся азотно-аргоновой плазмой на стальную подложку на воздухе, оплавление покрытия проводилось в вакуумной камере, оснащенной электронной пушкой с плазменным катодом. Режимы оплавления

соответствовали принятым в расчетах. Металлографические исследования проводились по стандартной методике с применением оптических микроскопов Неофот и МИМ-9. Микротвердость структурных составляющих определялась на приборе ПМТ-3.

По выявлено. при результатам эксперимента что скорости поступательного перемещения V_{x} =5 мм/с оплавления покрытия на всю глубину не происходит. Граница раздела «покрытие-основа» и нижние слои покрытия не претерпевают изменений (рис. 3). Вблизи рабочей поверхности покрытия структура материала мелкодендритная, а микротвердость имеет среднее значение 6900±280 МПа. В покрытии, вблизи границы раздела «покрытие-основа», сохраняется исходная структура напыленного материала и значение средней микротвердости увеличивается до 7800±640 МПа. В основе, вблизи границы раздела «покрытие-основа», микротвердость плавно вследствие частичного диффузионного отжига, vвеличивается **принаст** достигает значений микротвердости покрытия. В целом, скачок свойств на границе типичен для напыленных покрытий.

При скорости поступательного перемещения $V_{x} = 2$ мм/с и плотности мощности электронного луча от 10⁵ Вт/см² и выше формируется структура близкая к структуре покрытия оплавленного плазмой. В поперечном сечении покрытия на границе раздела «покрытие-основа» образуется тонкий слой твёрдого раствора железа в никеле, на котором вырастают столбчатые кристаллы основной фазы с прослойками эвтектики (рис. 4). Значение микротвёрдости в этой зоне покрытия составляет около 3300±170 МПа. Структура в глубине покрытия представляет дендриты и зёрна твёрдого раствора Ni, пространство между которыми занимает мелкодисперсный твёрдый раствор Ni, а также эвтектика твердого раствора Ni и Ni₃B. Крупных выделений упрочняющих фаз не наблюдается. Микротвердость покрытия от «покрытие-основа» МОНОТОННО возрастает, достигая границы раздела значений 5700±280 МПа на расстоянии 0,25 мм от границы раздела. Резкого скачка свойств на границе раздела «основа-покрытие», типичного для напыленных покрытий, не наблюдается.

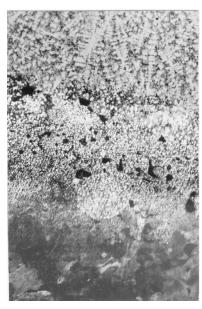


Рис. 3. Структура покрытия, полученная в режиме неполного оплавления. ×250.

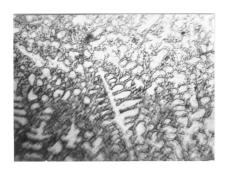


Рис. 4. Структура покрытия, полученная в режиме оплавления с перегревом, ×500.

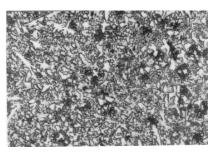


Рис. 5. Структура покрытия, полученная в режиме оплавления без перегрева, ×500.

При плотности мощности менее $10^5~\rm BT/cm^2$ и скорости поступательного перемещения электронного луча V_x = 2 мм/с формируется дисперсная зёренная структура, особенно мелкая на границе раздела «основа-покрытие», со средней микротвёрдостью $5500\pm280~\rm M\Pi a$ (рис. 5). В верхних слоях покрытия средняя микротвердость увеличивается до значений $6600\pm300~\rm M\Pi a$ за счет увеличения доли карбидных и боридных включений. Более высокая дисперсность основной и вторых фаз обеспечивает более высокие значения средней микротвердости при малой дисперсии. Резкого скачка свойств на границе раздела «основа-покрытие» не наблюдается. Таким образом, экспериментально подтверждено, что режим с V_x = 2 мм/с, q = 0,76·10 $^5~\rm BT/cm^2$ позволяет рационально оплавить покрытие из сплава класса NiCrBSi на стальной основе. В связи с этим можно сделать вывод о хорошем согласовании расчётных и экспериментальных данных.

<u>В третьей главе</u> проводится математическое моделирование теплофизических процессов и диффузии при электронно-лучевой пайке композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co». Дифференциальные уравнения теплопроводности и диффузии для каждого слоя композиции (СТМ - i=1, припой - i=2, основа - i=3) записываются в следующем виде:

$$c_i \rho_i \frac{\partial T_i}{\partial t} = \lambda_i \frac{\partial^2 T_i}{\partial x^2}, \quad i = 1, 2, 3,$$

где $T_i = T_i(x,t)$ - температура, c_i - удельная теплоёмкость, ρ_i - плотность, λ_i - коэффициент теплопроводности,

$$\frac{\partial C_i}{\partial t} = \frac{\partial}{\partial x} D_i \frac{\partial C_i}{\partial x}, \quad i = 1, 2, 3,$$

где $C_i = C_i(x,t)$ - концентрация диффундирующего элемента, $D_i = D_i(T)$ коэффициент диффузии, зависящий от температуры по закону Аррениуса

$$D_i = D_{i0} \exp\left(-\frac{E_i}{RT}\right),\,$$

где E_i - энергия активации диффузии, D_{i0} - предэкспонент, R - универсальная газовая постоянная. Исходная температура композиции и концентрация диффундирующего элемента задаётся начальным условием. На внешних границах композиции диффузионный поток считается равным нулю, а теплообмен задаётся по закону Ньютона. Задача решается численно с использованием явной разностной схемы расчёта. Диффундирующим элементом является титан. Начальная концентрация титана в припое 5%, в СТМ и основе — 0%. Толщина слоя припоя 200 мкм. Полученные распределения концентрации титана в диффузионной зоне при различных временах охлаждения показаны на рис. 6.

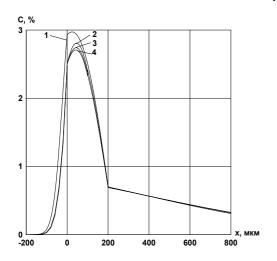


Рис. 6. Распределение концентрации титана в диффузионной зоне при различных временах охлаждения: 1 — изотермическая задача, t_s = t_e =60 c; 2 — t_s =60 c, t_e =65 c; 3 — t_s =60 c, t_e =70 c; 4 — t_s =60, t_e =80 c. Температура пайки T_s =1100 °C. Здесь t_s — время выдержки композиции при температуре T_s , t_e — время выдержки и охлаждения композиции.

В результате анализа рис. 6 отмечено, что с увеличением времени охлаждения композиции распределение концентрации титана стремится к некоторому конечному, остающемуся в образце после пайки. От условий охлаждения композиции (задаваемых в модели коэффициентом теплоотдачи с внешних границ) зависит время охлаждения до температур существенного замедления процесса диффузии. Для используемого набора параметров это ~850°С. Дальнейшее снижение температуры практически не сказывается на характеристиках диффузионной зоны.

Для выполнения представленных расчётов С использованием разработанной математической модели и решения задачи определения оптимальных соотношений времени и температуры пайки композиции предложен способ расчёта и получены оценки значений коэффициента диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co. При этом использовались экспериментальные данные по распределению титана в композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» после завершения процесса пайки, которые приведены в таблице 1.

Таблица 1. Экспериментально полученное распределение титана в композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» после пайки в течение 120 с, толщина слоя припоя 10 мкм (граница «КНБ-припой» имеет координату x =0)

Контрольные точки, x , мкм	-7	-2	0	1	5	8	1	13	21
Содержание, масс. %	0	8	26	33	15	11	8	3	0

Расчёт значений коэффициента диффузии титана основан на использование процедуры поиска минимума функционала, записанного в следующем виде:

$$J = \sum_{i=1}^{n} \alpha_i \sum_{j=1}^{m} \left[C_i^j - \overline{C}_i^j \right]^2,$$

где C_i^J - содержание титана в контрольных точках, рассчитанное с применением точного аналитического решения изотермической задачи пайки; \overline{C}_i^J - экспериментальные значения содержания титана в контрольных точках, которые представлены в таблице 1; n,m - число расчётных областей и контрольных точек соответственно; α_i - весовые коэффициенты. Значение функционала J зависит от выбора значений коэффициента диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co – D_1, D_2, D_3 , соответственно. Процедура поиска минимума функционала J основана на методе координатного спуска. В результате расчёта получены следующие значения коэффициента диффузии: D_1 =1,4·10⁻¹² м²/с, D_2 =1,28·10⁻¹¹ м²/с, D_3 =4,1·10⁻¹⁰ м²/с.

Расчёт оптимальных соотношений времени и температуры пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» основан на использование процедуры поиска минимума функционала, записанного в следующем виде:

$$I = \gamma_1 \left(\xi_s - \overline{\xi}_s \right)^2 + \gamma_2 \left(C_s - \overline{C}_s \right)^2 + \gamma_3 \left(\sigma - \overline{\sigma} \right)^2,$$

где ξ_s и $\overline{\xi}_s$ - расчетное и заданное значения толщины диффузионной зоны титана в КНБ; C_s и \overline{C}_s - расчетное и заданное значения концентрации титана в КНБ на расстоянии толщины диффузионной зоны от границы «КНБ-припой», σ и $\overline{\sigma}$ - расчетное и заданное максимальное по модулю значение остаточных диффузионных напряжений в диффузионной зоне титана, γ_i - весовые коэффициенты. За толщину диффузионной зоны титана в КНБ принято расстояние, на котором концентрация титана уменьшается в е раз по сравнению с её значением на исходной границе раздела «КНБ-припой». Значение функционала I зависит от выбора соотношения времени и температуры пайки. Процедура поиска минимума функционала I основана на методе координатного спуска. Распределение концентрации титана находится с использованием точного аналитического решения изотермической задачи пайки. Поле напряжений находится с использованием аналитического

решения, полученного на основе простейшего одномерного приближения, для условий, когда боковые и торцевые поверхности трёхслойной композиции свободны от действия внешних сил. Результаты расчёта оптимальных соотношений времени и температуры пайки показаны на рис. 7. Полученные кривые связывают оптимальные значения температуры пайки T_s и времени выдержки t_s , которые необходимо выдержать для достижения заданной величины диффузионной зоны ξ_s . Характерно, что одна и та же величина диффузионной зоны может быть достигнута увеличением температуры пайки T_s с одновременным уменьшением времени выдержки t_s .

На рис. 8 показаны расчётные зависимости максимальных по модулю величин остаточных диффузионных напряжений в слоях композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» от толщины диффузионной зоны титана в КНБ.

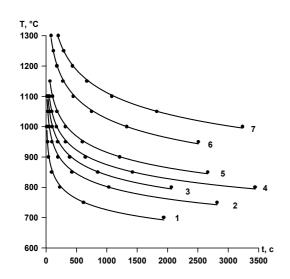


Рис. 7. Оптимизационные кривые, связывающие температуру и время выдержки для различных диффузионных зон титана в КНБ ξ_s : 1 – 10 мкм , 2 – 30 мкм, 3 – 50 мкм, 4 – 70 мкм, 5 – 100 мкм, 6 – 200 мкм, 7 – 300 мкм.

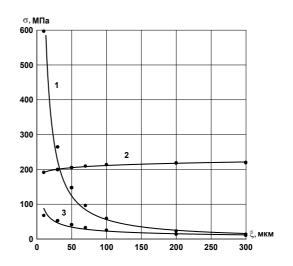


Рис. 8. Зависимости максимальных по модулю величин остаточных диффузионных напряжений в слоях композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» от толщины диффузионной зоны титана в КНБ: 1 – КНБ, 2 – сплав класса AgCuInTi (припой), 3 – сплав на основе W и Co (основа).

Анализируя рис. 8 можно отметить, что с ростом толщины диффузионной зоны титана в КНБ происходит уменьшение максимальных по

модулю величин остаточных диффузионных напряжений в КНБ и основе, что связано с уменьшением градиентов концентрации титана.

Таким образом, полученные зависимости, изображенные на рис. 7 и рис. 8 позволяют выбирать оптимальные соотношения значений основных параметров пайки — времени и температуры пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» для достижения задаваемой толщины диффузионной зоны титана в КНБ при ограниченной величине остаточных диффузионных напряжений в КНБ.

<u>В заключении</u> сформулированы основные результаты и выводы диссертационной работы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- 1. Разработана трёхмерная нестационарная математическая модель теплофизических процессов при оплавлении композиции «газотермическое покрытие-основа» движущимся электронным лучом, определять рациональные условия оплавления которая позволяет покрытия из сплава класса NiCrBSi на стальной основе в технологическом диапазоне значений плотности поглощённой мощности электронного луча (до 10⁵ Bт/см²) и скорости поступательного перемещения электронного луча (2-5 мм/с), обеспечивающие проплавление покрытия до границы раздела с основой при максимальной скорости охлаждения расплава. Показано, что полученные с использованием разработанной модели рациональные значения технологических параметров хорошо согласуются с экспериментальными данными по структуре и твердости оплавленной в соответствующем режиме композиции. Это даёт возможность исследования, анализа и оптимизации конкретных процессов электроннолучевого оплавления газотермических покрытий при минимальном использовании дорогостоящего оборудования и проведении трудоёмких структурных исследований.
- 2. Разработана одномерная нестационарная математическая модель теплофизических процессов и диффузии при электронно-лучевой пайке композиции «КНБ-сплав класса AqCuInTi-сплав на основе W и Co»,

- учитывающая температурную зависимость коэффициента диффузии титана. Показано, что полученные с использованием разработанной модели результаты расчёта изотермической стадии пайки хорошо согласуются с результатами точного аналитического решения соответствующей изотермической задачи пайки.
- 3. Показано, что в условиях принудительного охлаждения неизотермической стадией пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co» можно пренебречь, а в условиях естественного охлаждения неизотермическую стадию пайки можно учесть как добавочное время выдержки в изотермической модели.
- 4. Разработан способ расчёта значений коэффициента диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co, основанный на использовании процедуры поиска минимума функционала, учитывающего расхождение экспериментальных и расчётных значений концентрации титана в контрольных точках композиции. Получены оценки значений коэффициентов диффузии титана в КНБ, сплаве класса AgCuInTi и твердом сплаве на основе W и Co.
- 5. Разработан способ расчёта оптимальных соотношений времени и температуры пайки композиции «КНБ-сплав класса AgCuInTi-сплав на основе W и Co», основанный на использовании процедуры поиска минимума функционала, учитывающего отклонение расчётных значений толщины диффузионной зоны и диффузионных напряжений от задаваемых величин. Показано, что применение разработанного способа расчёта позволяет определять оптимальные соотношения времени и температуры пайки для достижения задаваемой толщины диффузионной зоны титана в КНБ при ограниченной величине остаточных диффузионных напряжений в КНБ.

Основное содержание работы изложено в следующих публикациях:

 Бутов В.Г., Губарьков Д.В., Князева А.Г. Распределение концентрации диффундирующего элемента в трёхслойной системе и оценка коэффициента диффузии на основе решения обратной задачи // Физ. мезомех. – 2000. – Т.3. – №6. – С. 105-112.

- 2. Клименов В.А., Ковалевская Ж.Г., Ерошенко А.Ю., Губарьков Д.В. Исследование теплового воздействия электронного пучка на композицию покрытие-основа // Сварочное производство. 2002. №6. С. 20-23. V.A. Klimenov, Zh.G. Kovalevskaya, A.Yu. Eroshenko and D.V. Gubar'kov Examination of the thermal effect of an electron beam on a coating-substrate composite // Welding International. 2002. №16 (11). Р. 899-902.
- 3. Бутов В.Г., Губарьков Д.В., Князева А.Г., Поболь И.Л. Об оптимизации процесса пайки на основе теоретического исследования диффузионной зоны // Физ. мезомех. 2002. Т.5. №1. С. 89-93.
- 4. Губарьков Д.В. Расчёт скорости охлаждения при электронно-лучевом оплавлении газотермического покрытия // Механика летательных аппаратов и современные материалы: Сборник избранных докладов VII Всероссийской научно-технической конференции. Томск: Изд-во ТГУ, 2000. Вып.3. С. 100-102.
- 5. Губарьков Д.В. Численное исследование неизотермической диффузии при электронно-лучевой пайке // Исследования по баллистике и смежным вопросам механики. Сб. статей. Томск: Изд-во ТГУ, 2002. Вып.5. С.75-76.
- Butov V.G., Gubar'kov D.V., Knyazeva A.G. Anisothermic diffusion during electron-beam soldering // Abstr. of the VI Int. Conf. «Computer-Aided Design of Advanced Materials and Technologies» (CADAMT'2001), March 29-31, 2001. – Tomsk: ISPMS, 2001. – P. 116-117.
 - Бутов В.Г., Губарьков Д.В., Князева А.Г. Неизотермическая диффузия при электронно-лучевой пайке // Тезисы докладов VI Международной конференции «Computer-Aided Design of Advanced Materials and Technologies» (CADAMT'2001), 29-31 марта, 2001. Томск: ИФПМ СО РАН, 2001. С. 116-117.
- Klimenov V.A., Eroshenko A.Yu., Gubar'kov D.V., Kovalevskaja Zh.G. Research of electron beam thermal influence on the composition «coating-basis» // New Materials and Technologies in 21st Century. Proceeding of VI Sino-Russian International Symposium on New Materials and Technologies. – Beijing, China, 2001. – P. 356.

- Клименов В.А., Ерошенко А.Ю., Губарьков Д.В., Ковалевская Ж.Г. Исследование влияния электронно-лучевого термического воздействия на композицию «покрытие-основа» // Новые материалы и технологии в 21 веке. Материалы VI Китайско-Российского международного симпозиума по новым материалам и технологиям. Пекин, Китай, 2001. С.356.
- 8. Губарьков Д.В., Ерошенко А.Ю. Расчёт теплового процесса при электронно-лучевой обработке стали 45 // Тезисы докладов IV Всероссийской конференции молодых учёных «Физическая мезомеханика материалов». Томск: ИФПМ СО РАН, 2001. С. 123-124.