КОНСТРУКЦИИ ДЛЯ ОРБИТАЛЬНОГО ПЕРЕМЕЩЕНИЯ ОБОРУДОВАНИЯ С.И. Колесников

Научный руководитель - доцент Ф.А. Симанкин Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В статье производится обзор решений на основе которых возможно осуществить орбитальное перемещение радиографического оборудование по внешней части сварного шва трубопровода.

Одним из распространённых вариантов в нефтегазовой сфере является цепной механизм, применяемый для перемещения труборезной машины типа «Волжанка» (рис.1) [5].

Рис. 1 Волжанка

К преимуществам можно отнести простоту и надежность конструкции. Однако в связи с тем, что площадкой перемещения является поверхность трубопровода необходима очистка поверхности. В связи с большой массой для проведения работ необходимо применять грузоподъемные механизмы, а также оборудование для подачи трехфазного переменного тока, что снижает автономность и повышает необходимые требования к квалификации персонала.

Еще одним вариантом исполнения является тележка орбитального перемещение на магнитных колесах. На рынке представлены аппараты «WeldROVER» производства компании Olympus [2,4].

Рис. 2 Тележка с устройством автономного орбитального перемещение на магнитных колесах

К основным особенностям можно отнести высокие требования к подготовке поверхности трубопровода, необходимость в бесперебойности питания, ферромагнитность материала поверхности перемещения, а также необходимость в визуальном контроле оператора и корректировки положения при необходимости. Грузоподъемность каретки равно 29 килограммам. К преимуществам можно отнести высокую мобильность, а также невысокое время, затрачиваемое на подготовку. В отличие от «волжанки» не требуется специальная квалификация персонала. Так как аппарат не имеет жесткой связи с трубопроводом при перебоях питания происходит отключение электромагнитов, что приводит к необходимости повторного производства работ.

При необходимости точного перемещения по окружности трубопровода существует вариант исполнения поверхности перемещения в виде направляющего пояса (рис. 3), закрепленного на небольшом расстоянии от внешней поверхности трубопровода по шаблону. Привод осуществляется с помощью роликов, имеющее фрикционное зацепление с боковой гранью пояса. Недостатком данной конструкции является большой износ приводных роликов, необходимость в применение точных шаблонах. К преимуществам можно отнести точное позиционирование оборудования, отсутствие необходимости в тщательные подготовки поверхности, удержание позиции без источника тока, что дает возможность использовать аккумуляторный источник питания с заменой при разряде без прерывания производства работы. В данный момент поясной вариант исполнения перемещения применяется для сварочных головок компании «CRC-EVANS» по сварному шву [1,3].

Рис. 3 Тележка, закрепленная на направляющем поясе

Основные характеристики аппаратов

Таблица 1

	CRC-EVANS	WeldROVER	Волжанка
Масса, кг	16	13	95
Длина х высота х	240 x 340 x 300	430 x 340 x 175	500 x 600 x 1400
ширина, мм			
Необходимое	24	24	380
напряжение, вольт			
Удерживающий	Ролики, пояс.	Электромагниты	Цепь
механизм			

Выволы

Входе анализа представленных на рынке агрегатов, позволяющего производить орбитальное перемещения диагностического оборудования выбран для дальнейшего исследования вариант каретки закрепленной на поясе вследствие возможности исполнения с повышенной автономностью. Известными недостатками в данный момент являются большой износ приводных роликов. Дальнейшее направление исследования включает в себя подбор механизма, материалов, конструкции приводных роликов для реализации каретки с высокими потребительскими качествами, а именно: точностью перемещения, автономностью, транспортабельностью, ремонтопригодностью и износостойкостью.

Литература

- 1. Орбитальный держатель [Электронный ресурс] // [сайт]. URL:https://findpatent.ru/patent/244/2441738.html (дата обращения: 01.11.2019);
- 2. Руководство для учащихся по изучению программного обеспечения SolidWorks [Электронный ресурс] // Учебное пособие: [сайт]. URL:https://www.solidworks.com/sw/docs/Student_WB_2011_RUS.pdf (дата обращения: 01.11.2019);
- 3. Системы автоматической сварки компании CRC-EVANS [Электронный ресурс] // [сайт]. URL:http://www.arguslimited.com.ua/catalogue/Sistemyi-avtomaticheskoy-svarki-kompanii-CRC-EVANS-19 (дата обращения: 01.11.2019);
- 4. Сканирующий аппарат «weldrower» [Электронный ресурс] // [сайт]. URL:https://www.olympus-ims.com/ru/scanners/weldrover/ (дата обращения: 01.11.2019);
- 5. Сканирующий дефектоскоп [Электронный ресурс] // [сайт]. URL:http://www.freepatent.ru/patents/2402760 (дата обращения: 01.11.2019);
- 6. Труборезная машина «Волжанка» [Электронный ресурс] // [сайт]. URL:http://totaltorg.ru/index/0-118 (дата обращения: 01.06.2019);