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Abstract. This paper describes the effect of preceramic paper composition on microstructure 

and mechanical properties of Ti3SiC2-based composites. The preceramic paper with 

Ti3SiC2-powder filler and different content (from 10 to 40 wt.%) of organic component 

(cellulose) was prepared. The composites were obtained by spark plasma sintering (SPS) at 

50 MPa pressure for 10 min holding time. The sintering temperature was 1473 K. The influence 

of organic content on microstructure, phase composition, and flexural strength of the sintered 

materials was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and 

mechanical testing, respectively. It was revealed that the microstructure of the sintered materials 

became more porous with increasing of cellulose content in the paper. XRD analysis showed the 

presence of Ti3SiC2, TiC and TiSi2 phases in the sintered samples while the content of the Ti3SiC2 

phase increase with decreasing of the organic content. The flexural strength changes from 

100 (40 wt.%) to 300 MPa (10 wt.% organic binder) that is caused by porosity of the composites.  

1. Introduction 

MAX-phases belonging to the class of heat-resistant materials are generally described by the formula 

Mn + 1AXn, where M is the transition metal, A is the element of the IIIA-IVA subgroup of the periodic 

system, X is the carbon or nitrogen. The Ti3SiC2-based MAX-phase composite is a well-studied 

compound and is of great interest to the modern industry from a practical point of view. Structural 

features of this compound cause a unique combination of the metal and ceramics properties, such as 

high melting point, resistance to thermal shock, high elastic modulus, resistance to oxidation and 

corrosion, thermal conductivity and machinability [1, 2]. 

The possibility of fabrication of Ti3SiC2-based composites by spark plasma sintering (SPS) using 

preceramic papers with inorganic Ti3SiC2 powder fillers as a feedstock has been shown in [3]. It is 

assumed that the application of preceramic papers in high-temperature sintering will provide the 

opportunity to obtain gradient ceramic materials with complex shape and geometry. The properties of 

such materials can be controlled by changing the paper composition or sintering parameters. Currently, 

there is no data on the preceramic paper composition effect on the synthesis of composites by SPS 

method. Thereby, influence of the organic binder content in preceramic papers on the microstructure, 

phase composition and flexural strength of the sintered composites was studied. 
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2. Materials and Methods 

2.1. Sample preparation and sintering procedure 

The preceramic paper sheets with Ti3SiC2 powder filler were fabricated by a laboratory dynamic hand-

sheet former (Dynamic hand-sheet former D7, Sumet Systems GmbH, Germany). The fabrication 

process is clearly described in paper [4].  

The composite materials were fabricated by spark plasma sintering SPS 10-4 (Advanced Technology, 

USA). A preform consisting of several layers of preceramic paper was placed between two punches in 

graphite die as it is shown in Figure 1.  

 

 
Figure 1. Schematic representation of fabrication process of Ti3SiC2-

based materials from preceramic papers. 

The sintering was performed in a vacuum under conditions summarized in Table 1. An extra 

processing was not performed since the samples was subjected to pressure treatment before and during 

the sintering [5]. The content of cellulose fibers in preceramic paper was varied from 10 to 40 wt.%. 

Table 1. Cellulose content and SPS parameters. 

Cellulose content [wt.%] SPS-sintering parameters 

10 

20 

30 

40 

Pressure [MPa] 

Sintering temperature [K] 

Holding time [min] 

50 

1473 

10 

 

Dense monolithic disks of the sintered Ti3SiC2-based materials with a diameter of 20 mm were 

subjected to mechanical surface treatment by grinding and polishing for further characterization. The 

grinding and polishing procedures were performed using silicon carbide papers (ISO from P80 to P2000) 

on both sides of each sample. Finally, the samples were cleaned in an ultrasonic bath with acetone for 

15 min. 
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2.2. Characterization 

The phase composition was analyzed by X-ray diffraction using Shimadzu XRD 7000S diffractometer 

(CuKα radiation) equipped with OneSight high-speed 1280-channel detector. The surface microstructure 

of the materials was studied by scanning electron microscopy using EVO 50 XVP (Zeiss, Germany) 

microscope. The apparent density of the composites was measured by Archimedes’ method. For the 

measurement, the kerosene with a density of 0.784 g/cm3 (293 K) was used. 

2.3. Mechanical testing 

The flexural strength of the sintered Ti3SiC2-based composites was measured using a Gotech al7000m 

testing machine. The measurements were performed according to the Borger et.al. [6] method using a 

special device for small punch strength tests [7]. After XRD and SEM analysis, each sample was cut 

into a five samples with a diameter of 8 mm and a thickness of 1 mm. The sample was mounted on the 

support ring of the device so that its middle was located in the centre of the inner diameter of the ring, 

and its longitudinal axis was perpendicular to the direction of loading with the tip of the punch. 

3. Results and Discussion 

3.1. X-ray diffraction 

The analysis of diffraction data revealed a strict regularity in the phase content changes depending on 

the organic binder content in the preceramic paper (Figure 2). It was found that a change in the content 

of cellulose in the range from 10 to 40 wt.% leads to a decrease in the content of the Ti3SiC2 phase from 

69.4 to 49 vol.% (Table 2), respectively. Along with the decrease of the MAX-phase content, an increase 

in the volume content of the TiC and TiSi2 phases is observed. Partial decomposition of the Ti3SiC2 is 

due to an increase in the concentration of additional carbon formed as a result of fibers decomposition. 

Thus, it was found that the additional carbon can react with the Ti3SiC2 phase leading to its partial 

decomposition and the formation of TiC and TiSi2 phases. 

 

 

Figure 2. Diffraction patterns of Ti3SiC2 composites obtained by SPS of 

preceramic paper with 10, 20, 30, 40 wt.% of organic binder at 50 MPa, 1473 K. 
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Table 2. Phase composition, lattice parameters and crystallite size of the samples. 

Sample Phase Phase content [vol.%] 

Ti3SiC2_10 wt.% 

Ti3SiC2 69.4 

TiC 18.4 

TiSi2 12.2 

Ti3SiC2_20 wt.% 

Ti3SiC2 67.2 

TiC 28.0 

TiSi2 4.8 

Ti3SiC2_30 wt.% 

Ti3SiC2 52.8 

TiC 40.8 

TiSi2 6.4 

Ti3SiC2_40 wt.% 

Ti3SiC2 49.0 

TiC 48.4 

TiSi2 2.6 

3.2. Hydrostatic weighing results 

Table 3 shows the results of density and porosity measurements of the sintered materials. The obtained 

results demonstrate that the powder particles in the preceramic paper consolidate more strongly (lower 

porosity) as the powder filler content increases. This is also confirmed by the SEM data presented below. 

The density of composites increases from 2.65 to 4.04 g/cm3 as the proportion of organic component 

decreases. 

 

Table 3. Hydrostatic weighting results for the sintered samples 

Cellulose content 

[wt.%] 

Water absorption 

[%] 
Porosity [%] 

Density of sample 

[g/cm3] 

10 

20 

30 

40 

1.9 

9.0 

7.7 

6.7 

11.1 

48.9 

38.9 

29.2 

4.04 

2.82 

2.81 

2.65 

3.3. SEM analysis 

The analysis of SEM images (Figure 3) shows a significant difference in the microstructure of the 

samples depending on the content of cellulose in the preceramic paper. Decrease in the fraction of 

cellulose in the sintered paper leads to compaction of the material and, consequently, to a decrease in its 

porosity (dark areas) at sintering temperature of 1473 K. Elongated pores can be seen in the structure of 

composites sintered from preceramic paper with 30 and 40 wt.% of cellulose. Such pores begin to 

collapse with increasing sintering pressure and are not observed in composites obtained from preceramic 

papers with 10 wt.% of cellulose at 50 MPa as shown in [3]. 

3.4. Flexural strength 

The flexural strength of composites sintered at 1473 K (50 MPa) was increased from 100 to 120 MPa 

with decreasing cellulose content from 40 to 20 wt.%. Such low values are due to the high porosity of 

such composites (see Table 3). Decrease in the proportion of organic component to 10 wt.% leads to 

increase in the strength of composites (sintered at the same parameters) up to 300 MPa. 
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Figure 3. Surface SEM images of the sintered Ti3SiC2-based materials. 

Conclusion 

The influence of preceramic paper composition on microstructure and phase composition of spark 

plasma sintered Ti3SiC2-based composites was studied. It was found that the increase in the content of 

organic component in the preceramic paper leads to phase redistribution in the sintered composites: 

decreasing MAX phase and increasing TiC content. Flexural strength of the composites sintered from 

preceramic paper with cellulose content of 20-40 wt.% was only 100-120 MPa, which is due to its low 

density (2.65-2.82 g/cm3). The decrease of cellulose content leads to fabrication of more dense (4.04 

g/cm3) composites with significantly higher flexural strength (300 MPa). Varying the composition of 

preceramic papers provides the possibility to obtain composites with different microstructures, which 

can be used for manufacturing of composites with gradient porosity. 
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