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Abstract. The research deals with the development of an algorithm for detecting pathological 

formation in cystic fibrosis using the PSPNet model with focal loss. The model allows data sets 

to be entered in accordance to their similarities based on their pathological diagnostic signs. The 

simple and effective algorithm structure groups annotated images, processes them in a multi-

scale CNN, and localizes areas of cystic fibrosis in the lungs with high accuracy. 

1.  Introduction 

Cystic Fibrosis (CF) [1, 2] is a hereditary condition, where excess mucous produced in the lungs leads 

to various respiratory diseases. A patient suffering from CF is prone to it for life, as there is no cure for 

this life-threatening disease. Pneumonia and Bronchitis are commonly known diseases that occur in 

patients with CF. Hence, detecting the disease at an early stage plays a vital role in reducing the impact 

that CF has on the patient. 

The proposed CAD system will assist radiologists to accurately detect CF in lung computer 

tomography (CT) images. The CT images which are identified with CF can also be used for future 

research purposes in the medical and computational fields. Hence, the research concentrates on 

producing accurate outputs that aid in increasing various therapeutic options to detect CF at an early 

stage. 

The pyramid scene parsing network (PSPNet) [3] has displayed accuracy in the high computational 

segmentation [4, 5] of the brain. The multiple scaling process [6] refines the accuracy of the detection 

before being upsampled to the original image size. Hence, the PSPNet will also positively aid in the 

detection of CF in lung CT images. 

An ongoing experiment to detect pulmonary fibrosis in lung CT images is possible by subjectively 

dividing high-resolution computer tomography images (HRCT) [7] into various subsets before training 

the dataset. Since CT images of CF may contain a number of variations, the process of dividing them 

accordingly should be taken into account to display accurate results. The algorithm is simple and is 

developed to focus purely on pathologies occurred through CF rather than CT images as a whole. 
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The purpose of the study is to create a computational model that annotates images according to their 

pathologies, and to detect CF from the annotated images using an improved PSPNet model with 

accuracy. 

2.  Methods and Technologies 

The process for detecting CF is carried out in two simple stages:  

 Categorize the input, which are the HRCT images according to their similarities 

 Identify CF.  

2.1.  Categorize the Input, which are the HRCT Images According to their Similarities  

In this stage, HRCT images are collectively input into the system. The images are annotated and trained 

by a multi-scale CNN [8, 9]. This process of feature extraction [10] and pixel manipulation [11] helps 

identify detailing in images, and image outputs are automatically grouped according to their similarities 

into a number of subsets. 

 

 

Figure 1. Structural working of the system in two stages:  

Stage 1 - HRCT images annotated using a multi-scale CNN, 

  Stage 2 - PSPNet with the pyramid module for identifying CF. 

 

2.2.  Identify CF  

In this stage, the image subsets are passed via PSPNet with the pyramid pooling module. This region 

based contextual aggregation is known in the pyramid pooling module [12], where images are inputted 

at various scales.  

 

Figure 2. An individual subset consisting of annotated images to be passed into the PSPNet. 
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In Figure 2, images that are annotated and passed into the second phase with the PSPNet as depicted.  

In the feature map [13] of the pyramid module, the final network layer indicates the use of pooling 

kernels [14]. CF cysts are identified by taking into account the final layer of the convolutional network 

which consists of a feature that is obtained from the feature map. Average pooling [15] is applied to the 

element that is identified in the feature map. The feature map sizes, which are actually the output of the 

average pooling that is applied to the feature map, are divided into sizes 1×1, 2×2 and so on. The final 

output of the pyramid module is achieved by applying a 1×1 convolution neural network (CNN) to every 

feature map. The image is restored to the original size with equal weights by Upsampling and Bilinear 

Interpolation [16]. By this process, the final feature map is restored to the required dimension. Finally, 

the final layer of the feature map that is input into the system is concatenated with the previously 

obtained feature map to produce the required output. 

 

 

Figure 3. PSPNet incorporated with the pyramid pooling module to detect CF. 

 

In Figure 3, the process of the pyramid pooling module with the PSPNet is depicted in detail. The 

input CT image is convolved to four scales before it is upsampled and concatenated to produce the 

original image. 

The pre-processing techniques in the network incorporates functions to deal with mucous distortion 

or pathologies as seen in the CT images containing CF that is input into the system. Fuzzy logic 

technique is implied to detect mucous, and the Binary Image morphing technique helps to detect blood 

vessels and veins which differentiate them from pathologies. Finally, focal loss [17] and cross entropy 

[17] techniques are used to focus on all less confidently classified classes. This reduces the loss obtained 

in the final output. 

The focal loss is derived using the equation: 

fc(m,n) = -n(1–m)𝛾log(m) – (1–n)m𝛾log(1–m) 

where, fc is the focal loss, and γ is the respective down weights in the classified samples. 

The cross-entropy loss is derived using the equation: 

e(a,b) = –tblog(a) – (1–t)(1–b)log(1–a) 

where, e is the cross-entropy loss, and t is the weights. 

The focal loss in the PSPNet is denoted by γ= 1, which increases the performance of the model. The 

final output is derived by a comparative analysis. The images that are annotated a number of times as 

seen in figure 2, are input into the system with the PSPNet combined with the pyramid module. After 

the image is processed and trained to detect CF, a certainty in the results is obtained by passing the 
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output of the PSPNet through a basic image comparison process. The final output thus accurately 

displays the image with CF. 

3.  Experimental analysis and results 

The training data set consists of 312 HRCT images that were obtained from local hospitals. The data, 

after passing through the first stage of training, was reported to contain 128 CF patients. Out of the 128 

affected patients, 71 were detected as female CT images, and 57 were detected as male CT images. The 

Kruskal-Wallis test was performed to determine the statistical performance of the model.  

The CT image annotated via CAD displayed better competence in producing results. A comparison 

between variables that displayed continuity and dichotomy was performed to analyse the output 

produced. Testing was carried out on 5 test case samples for 42 complete epochs. Each test case sample 

consisted of approximately 63 CT images. The overall p-value was calculated as 0.00757. Table 1 below 

displays the accuracy of similarity by a comparative analysis between four selected pathologies (P1, P2, 

P3 and P4) respectively. The similarity median is first calculated for each pathology separately, then a 

pathology pair (for example, P1:P2) is formed by taking the higher median values of the four medians 

analysed, from which the average median value was calculated and displayed in the table. The difference 

in similarity of the pathologies for each test case is given by their P-value below: 

 

Table 1. Kruskal-Wallis performance analysis  

Pathologies Median Quarter Epoch 

Cycle 

Mid Epoch 

Cycle 

P-Value 

P1:P2 vs P1:P3 40.32 16.84 66.89 0.00757 

P1:P2 vs P1:P4 4.87 1.45 15.85 0.01630 

P1:P3 vs P1:P4 24.58 10.54 54.12 0.00938 

P2:P3 vs P1:P2 40.36 16.87 66.91 0.00143 

P2:P3 vs P1:P3 3.56 1.02 15.72 0.01484 

P2:P3 vs P1:P4 24.58 10.54 54.12 0.00974 

P2:P4 vs P1:P2 40.32 16.84 66.89 0.01024 

P2:P4 vs P1:P3 4.87 1.45 15.85 0.00934 

P2:P4 vs P1:P4 24.62 10.57 54.17 0.00998 

P3:P4 vs P1:P2 6.81 2.83 14.73 0.01005 

P3:P4 vs P1:P3 40.44 16.91 66.94 0.00743 

P3:P4 vs P1:P4 5.06 1.53 15.04 0.00938 

P3:P4 vs P2:P4 8.11 3.11 14.22 0.00699 

P2:P3 vs P2:P4 4.87 1.45 15.85 0.01018 

P2:P3 vs P3:P4 40.33 16.88 66.92 0.00871 

 

To decipher the difference in similarity in the four pathologies that were tested, H-statistics (H) is 

calculated:  

H = (12/N(N+1)) ∙ (∑T2/n) – 3(N+1) = 0.018 ∙ 5612.7 – 78 

= 23.0286 and p-value <0.01 

Where the value of N represents the number of data samples per test (N = 25, n = 5) and T is the 

ranks set to all images within the data samples according to accuracy in their similarities.  

The invariant annotation of images without the use of a CAD system shows inconsistency. It usually 

requires an expert to correct any missed regions during the annotation.  

 

Table 2. Output performance with/without annotated CT images using the CAD System 

Experimental 

Analysis 

F1 Score 

(Manual) 

F1 Score 

(CAD) 

Test Case 1 0.8730 0.9091 
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Test Case 2 0.8353 0.9061 

Test Case 3 0.9490 0.9764 

Test Case 4 0.7819 0.8361 

Test Case 5 0.8550 0.9035 

 

The competency of the output is statistically analysed by evaluating the accuracy rate depending on 

the number of false positives and false negatives. The Sensitivity (TPR) and Specificity (SP) of the 

detected CF in CT images is 0.8366 and 0.9436 respectively. Based on the TPR and SP values, the 

precision is calculated to 0.9209, thus infirming that the negative predictive value for the detected CF is 

about 0.8804. The false positive and negative rate is 0.0564 and 0.1634. The false discovery rate is 

0.0791 based on the percentage of FP and FN, with an accuracy rate of 0.8966. The F1 score that 

balances the precision with the accuracy obtained is 0.8767. The overall working performance of the 

model based on the output and quality obtained is determined by Mathew’s Correlation Coefficient, 

which is an approximate of 0.7906.  

Figure 4 displays the graphical analysis of the overall system performance. In Figure 4(a), the system 

is analyzed for every training cycle where sensitivity and specificity are calculated to check the number 

of false positives and negatives. Increase in sensitivity and specificity depicts lesser false positive and 

negative values. Figure 4(b) calculates the error rate for all 5 test cases in terms of its probability. 

According to data acquired from the graph, the probability of error lies between 0 and 0.25, which proves 

the efficiency of the system in detecting CF. 

 

 

a     b 

Figure 4. Graphical analysis: a) system output performance b) system error probability. 

 

Thus, the overall statistical analysis displays the consistency of the working model. The model will 

be tested in future researches for various other diseases pertaining to lung CT images.  

4.  Conclusion 

The collective input of datasets can create a variation during training. Hence, by the method of 

annotating CT images, and training them to be grouped according to similar pathologies, help in paving 

the way for successful identifications of Cystic Fibrosis. The number of subsets that are obtained can be 

passed via PSPNet with the pyramid pooling module. Multiple scaling techniques in the pooling module 

help to scale and successfully identify pathologies related to Cystic Fibrosis. This model is efficient and 

displays accuracy in the detection of CF.  

This model can also aid in future researches, to identify lung CT images pertaining to deadlier 

diseases like COVID-19.  
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