На правах рукописи Lyn6

Сунь Чжилэй

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ ПЛЕНОК ОКСИНИТРИДОВ ТИТАНА МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ, ИХ СТРУКТУРНЫЕ ОСОБЕННОСТИ И СВОЙСТВА

01.04.07 Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Томск – 2020 г.

Работа выполнена в федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет»

Научный руководитель:	доктор физико-математических наук, профессор Пичугин Владимир Федорович
Официальные оппоненты:	Михайлов Михаил Михайлович доктор физико-математических наук, профессор, «Томский государственный университет систем управления и радиоэлектроники», Лаборатория радиационного и космического материаловедения, заведующий лабораторией
	Клопотов Анатолий Анатольевич доктор физико-математических наук, профессор, «Томский госуларственный архитектурно-

механики и материаловедения

строительный университет», кафедра прикладной

Защита состоится «<u>16</u>» <u>декабря</u> 2020 г. в 14:00 часов на заседании диссертационного совета ДС.ТПУ.03 при ФГАОУ ВО «Национальный исследовательский Томский политехнический университет», по адресу: 634028, г. Томск, пр. Ленина, 2а строение 4, аудитория 245.

С диссертацией можно ознакомиться в библиотеке ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: г. Томск, ул. Белинского, 55 и на сайте http://www.dis.tpu.ru

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В настоящее время большое внимание привлекают тонкие пленки на основе оксидов титана TiO₂, предназначенные для применения в солнечной энергетике, деградации загрязняющих веществ, в силу их фотокаталитической активности и настраиваемой смачиваемости, а также в биомедицине.

Обычно наблюдаемые кристаллические структуры полученных пленок TiO₂ представляют собой анатаз и рутил. Анатаз обладает высокой фотокаталитической активностью и фотоиндуцированной гидрофильностью, а рутил обладает высоким показателем преломления и термо-стабильностью. Более того, двойная система может демонстрировать многообещающие характеристики анатаз-рутил В гетерогенном фотокатализе благодаря дефектам на границе кристаллитов. Известно, что поверхность пленки TiO₂ может быть гидрофобной или а высокая фотокаталитическая активность в сочетании с гидрофильной, гидрофильной поверхностью может сделать пленку TiO₂ пригодной для самоочищающегося применения с разложением поглощенных примесей активными формами кислорода (АФК) в состоянии полного контакта с водой. Следовательно, можно ожидать, что поликристаллическая пленка TiO₂ с фазами анатаза и рутила будет иметь лучшие свойства для биомедицинского применения.

Степень разработанности темы. До последнего времени выполнен значительный объем исследований, посвященных получению оксинитридных плёнок титана методом реактивного магнетронного распыления (РМР). Следует отметить работы Шаповалова В.И., J.-M. Chappe, N. Martin, D. Depla, M. Fenker и др., в которых показана принципиальная возможность формирования Ti-N-O плёночных покрытий с различной степенью кристалличности. В настоящее время применение пленок TiO_2 ограничено нескольким причинам: (1)ПО фотокаталитическая активность TiO₂ ограничена шириной запрещенной зоны (3,2 эВ для анатаза и 3,0 эВ для рутила) и высокой скоростью рекомбинации электронов и дырок; (2) смачиваемость поверхности пленки TiO₂ обычно проявляет низкую стабильность; (3) по-прежнему сложно достичь нескольких оптимальных свойств одновременно в одной пленке TiO₂.

Фотокаталитическая активность и смачиваемость поверхности пленок TiO₂ тесно взаимосвязаны, однако одновременно эти характеристики не часто исследовались ранее. Кроме того, хотя легирование азотом и последующий отжиг

широко используются для обработки TiO₂ пленок, совместное влияние Nлегирования и отжига на их структуру и свойства остаётся слабоизученным и является предметом широкой дискуссии.

В связи с вышеперечисленными проблемами, целью настоящей работы является установление закономерностей формирования покрытий оксинитридов титана методом реактивного магнетронного распыления и установление особенностей их структуры и свойств в зависимости от режимов осаждения и последующей термической обработки.

Для достижения поставленной цели были поставлены и решены следующие задачи:

1. Исследовать параметры плазмы методом зонда Ленгмюра, установить закономерности изменения температуры электронов и концентрации ионов в зависимости от режимов распыления.

2. Получить тонкие пленки оксинитридов титана (N-TiO₂) методом реактивного магнетронного распыления, установить закономерности формирования их структурно-фазового состава и физико-химических свойств в зависимости от условий осаждения.

 Провести последующий термический отжиг пленок и установить закономерности влияния отжига на структурно-фазовые характеристики и свойства N-TiO₂ покрытий.

4. Провести комплексный анализ экспериментальных данных с целью установления особенностей влияния изменения соотношения N₂/O₂ в составе плазмы и термической обработки на структуру, оптические характеристики, параметры запрещенной зоны и смачиваемость пленок.

Научная новизна работы:

1. Установлено, что повышение мощности плазменного разряда приводит к увеличению концентрации ионов, уменьшению температуры электронов и повышению температуры подложки; в то же время, изменение соотношения расхода N₂/O₂ не оказывает существенного влияния на параметры плазмы.

2. Показано, что осаждение пленок N-TiO₂ методом реактивного магнетронного распыления при удельной мощности 2,7 Вт/см² в среде кислорода приводит к формированию двухфазной структуры TiO₂ в форме анатаз+рутил в соотношении 1/2; увеличение содержания азота в составе плазмы приводит к

формированию N-TiO₂ пленок с двухфазной TiO₂ структурой анатаз+рутил в соотношении 2,6/1.

3. Установлено, что поверхность пленок, выращенных при удельной мощности 2,7 Вт/см² является гидрофобной со значением контактного угла смачивания от 100° до 88°, а термический отжиг приводит к росту гидрофильности поверхности со значением контактного угла от 45° до 15° с увеличением отношения N_2/O_2 в плазме от 1 до 3.

4. Показано, что изменение отношения N_2/O_2 в плазме от 0 до 3 приводит к уменьшению доли анатаза в составе пленок, выращенных при удельной мощности 5,4 Bt/cm², от 100% до 0%. Предложена модель фазового перехода анатаз-рутил, в N-TiO₂ пленке обусловленного ростом содержания азота в плазме.

5. Установлено, что динамическое осаждение в режиме 5,4 Вт/см² (60 мин) + 8,1 Вт/см² (30 мин) позволяет получить пленку с более высоким содержанием рутила в пленке (75%) при низком соотношении N_2/O_2 , в сравнении с осаждением при мощности 5,4 Вт/см² (<9%) или 8,1 Вт/см² (<15%).

Теоретическая значимость работы заключается в установлении взаимосвязи между структурой и свойствами пленок N-TiO₂, в моделировании механизмов фазового перехода, установлении изменения ширины запрещенной зоны и смачиваемости пленок в результате роста содержания азота в составе плазмы и последующего термического воздействия.

Практическая значимость работы. Представленные в работе данные являются основой для разработки технологии формирования азотсодержащих покрытий на основе оксида титана. Подготовленные N-TiO₂ пленки могут быть использованы в различных областях электроники, солнечной энергетики, фотокатализе, в качестве самоочищающейся пленки, и для модифицирования поверхности медицинских имплантатов.

Положения, выносимые на защиту.

1. Изменение соотношения N₂/O₂ в составе плазмы магнетронного разряда в интервале 0–3 не оказывает существенного (в пределах погрешностей измерения) влияния на концентрацию ионов, температуру электронов и температуру подложки.

2. В пленках N-TiO₂, осажденных при удельной мощности 2,7 Bт/см², легирование азотом и отжиг приводят к изменению кристаллической структуры от аморфной до поликристаллической с долей анатаза 49%; уменьшению ширины

запрещенной зоны от 3,39эВ до 3,25эВ; снижению краевого угла смачивания от 100° до 15°.

3. В пленках N-TiO₂, осажденных при мощности 5,4 Вт/см², увеличение соотношения N₂/O₂ в плазме от 0 до 3 приводит к фазовому переходу анатаз-рутил с уменьшением доли анатаза до 0% и увеличением доли рутила до 100% и гидрофилизации поверхности пленок.

4. Динамический процесс осаждения пленки: последовательность напыления при мощности 5,4 Вт/см² (60 мин) + напыление при мощности 8,1 Вт/см² (30 мин) позволяет получить кристаллическую пленку с преимущественным содержанием фазы рутила (\sim 75 %).

Достоверность полученных результатов обеспечивается корректным использованием современного оборудования и методов исследования, и отсутствием противоречий между полученными данными и результатами других авторов.

Личный вклад автора. Все представленные результаты получены при личном участии автора. Разработка режимов напыления и отжига, подготовка N-TiO₂ пленок, проведение и анализ экспериментальных результатов, апробация результатов на международных конференциях. Постановка задач и анализ результатов выполнены совместно с научным руководителем и соавторами опубликованных работ.

Апробация работы. Основные результаты работы докладывались и обсуждались на следующих международных конференциях: XIV Международной конференции студентов, аспирантов и молодых ученых «Перспективы развития фундаментальных наук» (Россия, г. Томск, 2017), The 13th International Forum on Strategic Technology (IFOST 2018) (China, Haerbin, 2018), Energy Fluxes and Radiation Effects (EFRE-2018) (Russia, Tomsk, 2018), 13-я международная конференция «Пленки и Покрытия – 2017» и 14-я международная конференция «Пленки и Покрытия – 2019» (Россия, г. Санкт-Петербург, 2019), XVII Международной конференции студентов, аспирантов и молодых ученых «Перспективы развития фундаментальных наук» (Россия, г. Томск, 2020).

Публикации. Результаты научно-квалификационной работы изложены в 12 научных публикациях, из них 4 статьи в журналах, рекомендованных ВАК, 6 статей в журналах, входящих в базу данных SCOPUS и Web of Science из них 2 статьи в журналах Q1.

Структура и объем научно – квалификационной работы. Научноквалификационная работа состоит из введения, четырех глав, выводов, списка литературы, включающего 237 наименований. Полный объем работы – 154 листов машинописного текста, в том числе 85 рисунков и 15 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность и степень разработанности темы, сформулированы цель и задачи исследования, представлена научная новизна, теоретическая и практическая значимость работы.

В первой главе представлен обзор литературы, посвященный изучению проблем контроля структуры пленок N-TiO₂, осажденных методом PMP и их практического применения. Анализируются структурные параметры, которые влияют на свойства пленок. Рассмотрены результаты регулировки технических характеристик магнетронного распыления и последующей обработки для получения пленок с различной структурой. Установлено, что пленки N-TiO₂ с определенным фазовым составом имеют хорошие перспективы применения на практике. Определены направления и методы модификации структуры и свойств азотсодержащих пленок на основе TiO₂.

Во второй главе приведено описание и основные параметры установок, "УВН-200МИ" и "ТИОН-2М", для осаждения N-TiO₂ пленок. Диагностика плазмы проводилась при изменении (1) состава плазмы: чистый аргон Ar, чистый кислород O₂, и смесь O₂+N₂ с соотношением объемного расхода N₂/O₂ - 1, 2, и 3; (2) мощности разряда: 300, 500, 800, 1000 Вт, и соответственно удельные мощности: 1,0, 1,6, 2,5, 3,2 Вт/см²; (3) расстояние зонд-мишень: 15, 55, 95 и 135 мм.

Для выполнения поставленных задач были подготовлены 3 группы образцов, сформированных на установке "ТИОН-2М", включающего в себя дуальную магнетронную систему, состоящую из двух идентичных катодных узлов с цилиндрическими мишенями из титана, распыляемыми в атмосфере, состоящей из аргона, кислорода и азота. Поток рабочего газа Ar поддерживался равным 4 мл/мин, реактивные газы N_2 и O_2 подавались в вакуумную камеру с различным соотношением N_2/O_2 (0, 1, 2 и 3) для поддержания рабочего давления 0,20 Па. Пленки 1-ой группы осаждались при удельной мощности 2,7 Вт/см² (время осаждения 60 мин), а 2-я группа подготовлена при мощности 5,4 Вт/см² (время осаждения 120 мин). Пленки были нанесены на подложки, которые размещались на расстоянии 100 мм от распыляемой мишени. Напряжение смещения на подложке

отсутствует ($U_b = 0$). Перед размещением в вакуумной камере образцы отмывались в ультразвуковой ванне (нефрас+спирт) 10 минут. Далее, производилась очистка образцом в шлюзовой камере ионами газовой плазмы Ar при импульсном потенциале смещения - 400 B на рабочем столе в течение 5 минут. Последующий отжиг проведен в печи до 500°C в течение 60 мин на воздухе со скоростью нагрева 6°C/мин. 3-я группа образцов подготовлена динамическим напылением на установке ТИОН-2М при мощности разряда 5,4 Вт/см² первые 60 мин и далее при мощности 8,1 Вт/см² в последующие 30 мин. Рабочее давление в камере – 0,20 Па, соотношение расходов $O_2/N_2 - 1,5/1, 1/1, 1/2$ и 1/3, температура отжига 400°C, 500°C, 600°C, 700°C и 800°C.

Проблема влияния аргона как рабочего компонента в составе газовой атмосферы на структуру и свойства N-TiO₂ покрытий, осажденных методом PMP остается до настоящего времени открытой. В связи с этим, были исследованы пленки, осажденные на установке УВН-200МИ: частота питания MPC 20 кГц, материал катода - Ti, расстояние между подложкой и магнетроном – 100 мм, рабочее давление в камере - 0,1 Па, удельная мощность 3,2 Вт/см², соотношение объемного расхода $N_2/O_2 - 0$, 1, и 3. Были сформированы 2 группы пленок: 1-ая группа подготовлена при отсутствии аргона в составе рабочего газа и отсутствии смещения на подложке; 2-я группа - с аргоном Ar (1,4 мл/мин) в составе рабочего газа и с отрицательным смещением на подложке $U_b = -200$ В.

Толщина пленки И показатель преломления измерялись методом эллипсометрии на комплексе Ellipse 1891 SAG. Методы рентгеновской дифракции и рамановской спектроскопии были использованы для изучения кристаллической Рентгеновская дифракция (XRD) структуры пленки. выполнялась на Shimadzu XRD 6000 (СиКа-излучение с λ =0,15418 дифрактометре нм). Рамановская спектроскопия была реализована на Renishow inVia Basis с использованием лазера с длиной волны 780 нм. Химический состав пленки был изучен методами ИК и рентгеновской фотоэлектронной спектроскопии (РФЭС). ИК измерения проводились на спектрометре Thermo Nicolet 5700 в диапазоне 400-4000 см⁻¹, а измерение РФЭС выполнялось на спектрометре K-Alpha+ с использованием микрофокусированного и монохроматического излучения AlK_a. Методами СЭМ (JLU SKLSHM Magellan400) и ACM (Solver HV) были исследованы морфология поверхности и шероховатость пленки. Спектры пропускания в видимом и ближнем УФ диапазоне пленок измерены на

спектрофотометре SF-256UVI в диапазоне 200 – 1000 нм. Краевой угол смачивания (WCa) измерялся на Easy Drop DSA20 с использованием капли воды объемом 3 мкл.

Методом зонда Ленгмюра установлено, что с увеличением мощности увеличивается, разряда концентрация ионов а температура электронов уменьшается, вне зависимости от состава плазмы. В металлическом режиме концентрация ионов выше, а температура электронов ниже, чем в оксидном режиме. Изменение соотношения N₂/O₂ не оказывает заметного влияния на параметры плазмы (Рис. 1). Результаты измерения температуры подложки показывают, что повышение мощности разряда приводит к увеличению температуры подложки, а при одной и той же мощности разряда, значения конечной температуры подложки не зависит от состава рабочего газа и составляет величину порядка 90°С.

Рис. 1. Концентрация ионов (а) и температура электронов (b) плазмы в зависимости от мощности разряда. 1: Ar, 2: O_2 , 3: O_2/N_2 1-1, 4: O_2/N_2 1-2, 5: O_2/N_2 1-3.

В третьей главе представлены результаты исследований структурных особенностей и свойств пленок TiO₂ и N-TiO₂, осажденных при удельной мощности 2,7 Bt/см².

В спектрах пленок N-TiO₂, пики при 147 см⁻¹, 399 см⁻¹, 519 см⁻¹ соответствуют модам анатаза E_g , B_{1g} , A_{1g}/B_{1g} соответственно; кроме того, моды рутила E_g и A_{1g} расположены при 442 см⁻¹ и 609 см⁻¹ (Рис. 2). Интенсивность пиков рамановского рассеяния пленок N-TiO₂ уменьшается с увеличением отношения N₂/O₂. Пленка TiO₂ имеет типичный рамановский спектр рутила, в котором можно

увидеть моды рутила E_g , A_{1g} при 435,68 см⁻¹, 607,87 см⁻¹ и широкую полосу в диапазоне 200-300 см⁻¹.

Рис. 2. Рамановские спектры осажденных (а) и отожженных (b) пленок, соответствующих мощности 2,7 Bт/см².

Данные XRD показывают отсутствие рефлексов на дифрактограммах осажденных пленок. Дифрактограммы отожженных пленок показывают пики при 25,2° (анатаз (101)) и 27,3° (рутил (110)). Отожженные пленки TiO₂ содержат только фазу анатаза, а пленки N-TiO₂ имеют смешанную структуру анатаз+рутил. Объемные доли анатаз/рутил и размер зерна, оцененные с помощью программы PowerCell 2.4 на основе дифрактограмм, суммированы в Таблице 1. Кроме того, рамановские пики анатаза (144 см⁻¹) и рутила (612 см⁻¹) также использованы для определения доли анатаз/рутила (Таблица 1) согласно формуле [1]:

$$V_A = I_A / (1.265 \times I_R + I_A)$$
, $V_R = I_R / (0.884 \times I_A + I_R)$

где *I_A* и *I_R* относятся к интенсивности пика анатаза и рутила.

						осажд	енных при	12, / BT/CM
N_2/O_2	А-R доля (Раман), %				А-R доля		Размер зерен	
					(XRD), %		(XRD), нм	
	осажденные отожженные			отожженные		отожженные		
	A	R	A	R	\boldsymbol{A}	R	\boldsymbol{A}	R
0	33	67	20	80	100	0	42.22	-
1	71	29	59	41	23	67	23.56	12.56
2	72	28	57	43	55	45	27.20	16.33
3	72	28	51	49	49	51	18.33	24.56

Таблица 1. Объемная доля A-R и размер зерна подготовленных пленок,

Несоответствие между значениями доли A-R, оцененными из данных рамановской спектроскопии и XRD, можно объяснить наличием кристаллитов с размерами ниже порога чувствительности XRD. Схема роста пленки в результате N-легирования и последующего отжига представлена на Рис. 3.

Согласно результатам XRD, осажденные TiO_2 и TiON 1-3 пленки имеют аморфную структуру (Рис. 3). Спектры рамановского рассеяния и XRD показывают, что изменение состава плазмы из-за присутствия N₂ приводит к снижению степени кристалличности и увеличению доли анатаза в пленке TiON 1-3. Отжиг пленки TiO_2 приводит к фазовым переходам аморфное состояние \rightarrow анатаз и анатаз \rightarrow рутил, а зерна анатаза со средним размером 42 нм образуются в результате укрупнения частиц/связей вследствие нагрева (Рис. 3), которого, однако, недостаточно для роста зерен со структурой рутила. Поэтому дифракционные рефлексы рутила не наблюдаются, и в отожженной пленке TiO_2 был обнаружен только пик анатаза.

Рис. 3. Схема фазового перехода под влиянием N-легирования и последующего отжига при удельной мощности 2,7 Вт/см².

В пленке TiON 1-3 NO-связи препятствуют эпитаксиальному росту зерен, ограничивая атомы в небольших областях. В то же время, при одинаковых условиях отжига, фазовый переход анатаз → рутил может играть ведущую роль после достижения зерна анатаза некоторого критического размера, вместо дальнейшего роста зерна анатаза. В отожженной пленке TiON 1-3 было обнаружено, что анатаз и рутил имеют одинаковые объемные доли, и меньшие размеры зерна по сравнению с отожженной пленкой TiO₂.

Рис. 4. РФЭС спектры O1s (a) и N1s (b) для осажденной и отожженной пленок TiON 1-3, соответствующих удельной мощности 2,7 Вт/см².

Результаты РФЭС (Рис. 4) показывают, что N-TiO₂ пленки содержат внедренные атомы азота в форме оксидов, преимущественно в области межзёренных границ. Наблюдаются, также, -OH группы на поверхности пленки в результате отжига (Рис. 4а), с чем связан термоиндуцированный переход смачиваемости.

Среднеквадратичная шероховатость (RMS) на разных площадях представлена на Рис. 5. Можно выделить 2 области значений RMS: более низкое RMS для пленок TiO₂ и TiON 1-1, и более высокое значение RMS для TiON 1-2 и TiON 1-3 пленок, характеризующихся блочной структурой.

Рис. 5. RMS пленок, подготовленных при удельной мощности 2,7 Вт/см², в зависимости от соотношения N₂/O₂. На вставках (а) и (b) показаны 2D ACM изображения (3×3 мкм²) осажденных пленок TiO₂ и TiON1-3. Значение ширины запрещенной зоны E_g полученных пленок были

исследованы методом УФ спектроскопии согласно соотношению:

$$\alpha h \nu = A(h \nu - E_q)^m,$$

где A - постоянная, hv - энергия фотона, коэффициент поглощения $\alpha = \frac{1}{d} ln(\frac{1}{T})$ можно рассчитать, зная толщину пленки (d) и коэффициент пропускания (T), коэффициент мощности m=2. Построены кривые зависимости (α hv)^{1/2} от hv и значения E_g были получены путем извлечения линейной части кривых к (α hv)^{1/2}=0 и представлены на Рис. 6.

Модель изменения ширины запрещенной зоны, вызванное легированием пленок азотом и последующим отжигом, представлена на Рис. 7. Отожженная

пленка TiO₂ имеет типичную зонную структуру без примесных уровней с шириной запрещенной зоны 3,36 эВ (Рис. 6 (b)).

После легирования азотом и отжига, в пленке TiON 1-1 возможно появление азота в позициях замещения. В этом случае появляется полоса (N_s) шириной 0,09 эВ над валентной зоной. С увеличением уровня легирования азотом, в отожженной пленке TiON 1-3 полоса замещающего N (N_s) имеет ширину 0,11 эВ и уровни энергии, соответствующие междоузельному азоту N (N_i) и вакансиям кислорода (V_o) (Рис. 7).

Рис. 7. Иллюстрация сужения запрещенной зоны, вызванного N-легированием, отожженных пленок, соответствующих удельной мощности 2,7 Bт/см².

Рис. 8 иллюстрирует значения WCa для осажденных и отожженных пленок в зависимости от соотношения N_2/O_2 . Осажденные пленки являются гидрофобными. Контактный угол для пленок TiO₂, TiON 1-1 и TiON 1-2 и TiON 1-3 имеет значение 99,0 - 88,2° (Рис. 8). Отжиг приводит к уменьшению контактного угла на 55–85% (см. Рис. 8). N-легирование способствует образованию кислородных вакансий в осаждаемой пленке, что приводит к уменьшению WCa с ростом соотношения N_2/O_2 . Увеличение смачиваемости, вызванное отжигом, является следствием комбинированного воздействия улучшения кристаллической структуры и локализации гидроксильных групп -OH на поверхности пленки.

Рис. 8. WCa пленок, осажденных при удельной мощности 2,7 BT/cm^2 , в зависимости от отношения N_2/O_2 .

В четвертой главе представлены результаты исследований структурных особенностей и свойств пленок TiO₂ и N-TiO₂, осажденных при мощности разряда 5,4 Bt/cm².

Исходные дифракционные картины полученных пленок показаны на Рис. 9. Было обнаружено, что пленка TiO₂ является однофазной и имеет структуру анатаза, в то время как пленка TiON 1-3, являясь также однофазной, состоит из фазы рутила. Пленки TiON 1-1 и TiON 1-2 имеют двухфазную структуру и состоят из анатаза и рутила.

Рис. 9. Исходные дифрактограммы осажденных (а) и отожженных (b) пленок, соответствующих удельной мощность 5,4 Вт/см².
Средний размер зерна рассчитывался по формуле Шеррера: D = Kλ/β cos θ, где D
размер зерна, λ - длина волны рентгеновского излучения, К - постоянная, принятая равной 0,89 [3], β - FWHM (в радианах), 2θ - положение дифракционного пика. Полученные значения долей анатаза/рутила и размер кристаллитов приведены в Таблице 2.

Увеличение соотношения N_2/O_2 приводит к фазовому переходу анатаз — рутил, изменению преимущественной ориентации зерен анатаза и монотонному уменьшению размера зерна, что объясняется эффектом блокировки эпитаксиального роста зерен TiO₂ NO-связями [4] и усиленной аморфизацией, сопровождаемой фазовым переходом.

Таблица 2. Значения доли анатаза/рутила и размера зерен пленок, полготовленны	JX
	_2
при удельной мощности 3,4 Вт/см	1.

N_2/O_2	доля анатаза/рутила, %							
соот.	осажденные				отожженные			
	A (101)	R (110)	A (200)	A (211)	A (101)	R (110)	A (200)	A (211)
0	73.82	0	26.18	0	46.97	12.73	35.38	4.92
1	75.19	8.48	16.33	0	67.46	9.18	21.74	1.62
2	34.10	65.90	0	0	52.86	47.14	0	0
3	0	100	0	0	34.12	65.88	0	0
_								
N ₂ /O ₂				размер з	ерна, нм		•	
N ₂ /O ₂ соот.		осажд	енные	размер з	ерна, нм	отожэ	кенные	
N ₂ /O ₂ coot.	A (101)	<i>осажд</i> R (110)	енные А (200)	размер з А (211)	ерна, нм А (101)	отожэ R (110)	<i>кенные</i> А (200)	A (211)
N ₂ /O ₂ coot.	A (101) 11.28	осажд R (110) -	енные А (200) 14.82	размер з А (211)	ерна, нм А (101) 16.06	отожэ R (110) 13.09	<i>кенные</i> А (200) 15.44	A (211) 18.02
N ₂ /O ₂ соот. 0 1	A (101) 11.28 9.23	осажд R (110) - 8.29	енные А (200) 14.82 9.03	размер з А (211) -	ерна, нм А (101) 16.06 13.43	<i>отожэ</i> R (110) 13.09 12.93	<i>кенные</i> А (200) 15.44 10.68	A (211) 18.02 18.10
N ₂ /O ₂ соот. 0 1 2	A (101) 11.28 9.23 12.78	осажд R (110) - 8.29 6.79	енные A (200) 14.82 9.03 -	размер з А (211) - - -	ерна, нм А (101) 16.06 13.43 12.71	<i>отожэ</i> R (110) 13.09 12.93 9.68	женные А (200) 15.44 10.68	A (211) 18.02 18.10

Фазовый переход, вызванный легированием азотом можно анализировать с точки зрения механической стабильности зерен. Низкий уровень легирования азотом приводит к образованию вакансии кислорода в TiO₂, что снижает стабильность зерна и способствует фазовому переходу анатаз → рутил. Одновременно, ингибирование эпитаксиального роста зерен молекулами оксида азота и перестройка атомов во время фазового перехода приводит к аморфизации растущей пленки и, следовательно, наблюдается снижение кристалличности, вызванное N-легированием.

На Рис. 10 показано значение RMS осажденных пленок в зависимости от соотношения N_2/O_2 и 2D ACM изображения (3×3 мкм²) отожженных пленок TiO₂ (вставка (а)) и TiON 1-3 (вставка (b)).

RMS осажденных пленок меняется в следующем порядке: TiON $1-3 > TiO_2 > TiON 1-2 \approx TiON 1-1$, что может быть связано с фазовым переходом. Пленка TiO_2 состоит из анатаза, при N-легировании происходит переход анатаз \rightarrow рутил, который сопровождается частичной аморфизацией, и при этом поверхность сглаживается. С увеличением уровня N-легирования образовалось значительное количество кристаллитов рутила, что приводит к восстановлению RMS (Puc. 10).

Из Рис. 11 видно, что осажденная пленка TiON 1-1 содержат замещающий (397,6 эВ) и междоузельный (399,8 эВ) N, а в пленках TiON 1-2 и TiON 1-3 присутствует только междоузельный N (400,5 эВ). После отжига азот полностью удаляется из пленки TiON 1-1. В спектрах отожженных пленок TiON 1-2 и TiON 1-3 пик междоузельного N (399,6 эВ) сохраняется с меньшей интенсивностью.

Рис. 11. Спектры РФЭС N1s для осажденных (а) и отоженных (b) пленок, соответствующих удельной мощности 5,4 Bт/см².

Значения E_g пленок представлены на Рис. 12. Среди осажденных пленок, TiON 1-1 пленка демонстрирует наибольшее значение E_g (Рис. 12 (a)), а после отжига – показывает наиболее очевидное уменьшение - на 0,05 эВ. Это может быть связано с размером зерна анатаза (Таблица 4) и небольшой долей рутила в пленках TiON 1-1 и TiON 1-1 500°C (меньше на 10%).

Отжиг недостаточно эффективно меняет зонную структуру осажденных пленок, за исключением образцов пленки TiON 1-1 (Рис. 12 (b)). Тем не менее, уровни примеси, связанные с легированием азотом, были модифицированы отжигом.

Рис. 12. Кривые зависимости $(\alpha hv)^{1/2}$ от hv для осажденных (а) и отожженных (b) пленок, соответствующих удельной мощности 5,4 Bt/cm².

Как показано на Рис. 13, можно предположить, что изменение напряженного состояния пленки может играть ключевую роль в изменении уровня WCa в зависимости от уровня N-легирования и отжига. Кроме того, удаление примесей с поверхности пленки также способствует изменению смачиваемости, вызванному отжигом.

Рис. 13. WCa пленок, подготовленных при удельной мощности 5,4 Вт/см², в зависимости от соотношения N₂/O₂. Штриховые линии представляют сдвиг пика Рамана анатаза (144 см⁻¹).

В пятой главе представлены результаты исследований структурных особенностей и свойств пленок TiO₂ и N-TiO₂, осажденных динамическим напылением 5,4 Bt/cm² (60 мин) + 8,1 Bt/cm² (30 мин).

На Рис. 14 (а) представлены GIXRD дифрактограммы пленок TiON 1.5-1, в зависимости от температуры отжига. Было обнаружено, что с увеличением температуры отжига объемная доля анатаза уменьшается с 25% в осажденной

пленке до 0% в пленке, нагретой до 700-800 °C, а объемная доля рутила увеличивается с 75 % до 100 %.

Рис. 14. GIXRD дифрактограммы (а) и рамановские спектры (b) для осажденных и отожженных пленок TiON 1.5-1.

В отличие от GIXRD, рамановские спектры (Рис. 14 (b)) показывают, что с отжиг до температуры 600°С приводит к росту содержания как анатаза, так и рутила. В рамановском спектре присутствуют типичные пики анатаза при 399 см⁻¹, 639 см⁻¹ и 144 см⁻¹. Повышение температуры отжига до 700°С приводит к уменьшению интенсивности пиков анатаза, а дальнейший нагрев до 800°С приводит к формированию типичного рутильного рамановского спектра без следов пиков анатаза. Данное явление может быть связано с двухслойной структурой пленки. В слое, сформированном при мощности 2 кВт, отжиг в интервале температур от 400-600°C приводит к фазовому переходу аморфная структура \rightarrow анатаз, а более высокие температуры приводят к полному переходу к рутилу.

Рис. 15. Кривые зависимости RMS и *г* пленки TiON 1.5-1 от температуры отжига (а), и дифрактограммы пленок, осажденных при удельной мощности 8,1 Bt/cm² (b).

С увеличением температуры шероховатость пленки и соотношение площади поверхности (Рис. 15 (a)) сначала уменьшаются, а затем немного увеличиваются. Некоторый рост RMS и r пленки TiON 1.5-1, отожженной при 600°С, можно объяснить различием процессов фазовых переходов в нижнем (5,4 Вт/см²) и верхнем (8,1 Вт/см²) слоях.

Сравнивая фазовый состав пленок, осажденных при удельной мощности 5,4 Вт/см² (Рис. 9) и 8,1 Вт/см² (Рис. 15 (b)) и 5,4+8,1 Вт/см² (Рис. 14 (a)), можно заметить, что в первых двух случаях при меньшем расходе азота (TiO₂, TiON 1-1) пленки представляет чистый анатаз либо с малой долей рутила, а в 3-ем случае получается пленка с долей рутила около 75%.

На Рис. 16 (а) приведены спектры пропускания в УФ-видимой области пленок TiON 1.5-1 в зависимости от температуры отжига. Рассчитанные значения Е_g пленок представлены в Таблице 3.

Рис. 16. Спектры пропускания (а) и кривые зависимости $(ahv)^{1/2}$ от hv (b) для пленки TiON 1.5-1 в зависимости от температуры отжига.

Полученные результаты показывают, что с увеличением температуры отжига собственная ширина запрещенной зоны E_g уменьшается от 3.24 эВ до 3.11 эВ, а значение E_{gi} связанное с примесными состояниями вследствие N-легирования, уменьшается от 3.02 эВ до 2.68 эВ, что может быть обусловлено диффузией азота с поверхности в объем кристаллита. Можно полагать, что динамический процесс 2+3 кВт позволяет сохранить азот в пленке при отжиге.

Таблица 3. Значения E_g пленок TiON 1.5-1 в зависимости от температуры отжига.

	осажденная	400 °C	500 °C
Собственная E _g	3,24	3,20	3,11
E_{gi}	3,02	2,86	2,68

Как отмечалось ранее, аргон составе газа рассматривается как рабочая компонента, роль которой – обеспечить распыление мишени. Влияние аргона на

структуру и свойства покрытий N-TiO₂ осаждаемых в магнетронном процессе остается открытой.

Сравнительные исследования 2 групп образцов осажденных в двух режимах: 1) состав газа: O_2+N_2 ; $U_b=0$ и 2) состав газа Ar+ O_2+N_2 ; $U_b=-200$ B, показывают, что добавка аргона в плазму и подача смещения на подложку совместно приводят к образованию аморфной пленки.

Рис. 17. Дифрактограммы пленок, осажденных из плазмы без аргона и смещения (а), и из плазмы с аргоном и смещением (b).

Анализ дифрактограмм пленок, осажденных в плазме O_2+N_2 ; $U_b=0$ (Рис. 17 (а)) показывает, что рост соотношения N_2/O_2 приводит к переходу анатаз-рутил. Объемная доля анатаза в пленках TiO₂, TiON 1-1 и TiON 1-3 составляет 70%, 14% и 13%, со средним размером зерен анатаза – 20 нм, 14 нм и 13 нм, соответственно. При осаждении в режиме Ar+O₂+N₂; $U_b = -200$ В, формируются пленки с аморфной структурой, что подтверждается XRD (Рис. 17 (b)). Введение аргона в плазму и подача смещения на подложку $U_b = -200$ В приводит к образованию гладкой поверхности без видимых особенностей.

Мы полагаем, что при осаждении пленки в плазме без аргона и без электрического смещения O_2+N_2 ; $U_b=0$, мишень оксидируется, что приводит к понижению коэффициента распыления, уменьшению скорости осаждения пленки, формированию упорядоченной структуры. В результате формируется пленка с высокой степенью кристалличности. Введение аргона и подача смещения (Ar+ O_2+N_2 ; $U_b =-200$ B) увеличивает скорость роста пленки и уменьшает степень кристалличности. Бомбардировка поверхности пленки ионами аргона также приводит к её аморфизации. В результате образуется мелкие кристаллиты (слабые пики в дифрактограммах и рамановских спектрах) и поверхность с низким значением шероховатости.

ОСНОВНЫЕ ВЫВОДЫ

1. Установлено, что повышение мощности разряда приводит к увеличению концентрации ионов и уменьшению температуры электронов, в то время как изменение соотношения N₂/O₂ не оказывает существенного влияния на параметры плазмы. Значение конечной температуры подложки не зависит от состава рабочей атмосферы.

2. При удельной мощности 2,7 Вт/см², легирование азотом приводит к повышению доли анатаза, от 33 % до 72 %; вызывает изменение топографии пленки, из однородной сплошной до блочной структуры. Легирование азотом, совместно с отжигом, приводит к уменьшению ширины запрещенной зоны, от 3,36 эВ до 3,25 эВ; появлению промежуточного уровня междоузельного N, 2,55 эВ под дном зоны проводимости; снижению контактного угла смачивания, от 98,9° до 14,9°.

3. При удельной мощности 5,4 Вт/см², легирование азотом одновременно приводит к изменению преимущественной ориентации анатаза, фазовому переходу, уменьшению степени кристалличности и измельчению зерен в пленке, а в процессе отжига до 500°C одновременно происходят уплотнение пленки и фазовый переход.

4. При удельной мощности 5,4 Вт/см², легирование азотом приводит к изменению формы зерна из квазисферической до формы рисового зернышка; образованию примесной промежуточной зоны в запрещенной зоне; гидрофилизации поверхности пленки.

5. Установлено, что динамический процесс напыления 5,4 Вт/см² (60 мин) + 8,1 Вт/см² (30 мин) позволяет получить пленку с неоднородной структурой по толщине; напыление при 5,4+8,1 Вт/см² приводит к более высокому содержанию рутила в пленке (\sim 75 %), чем при удельной мощности 5,4 Вт/см² или 8,1 Вт/см².

6. Установлено, что добавка аргона в плазму (1,4 мл/мин) и подача смещения (-200 В) на подложку совместно приводит к образованию аморфной пленки, увеличению скорости осаждения пленки, заметному снижению шероховатости (до ~0,3 нм) и показателя преломления.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ НКР

В рецензируемых научных журналах, входящих в список ВАК:

1. **Чжилэй Сунь** К.Е. Евдокимов, М.Е. Конищев, Чжилэй Сунь, В.Ф. Пичугин, Исследование плазмы реактивного магнетронного разряда в

трехкомпонентной газовой среде зондовым методом // Приборы и техника эксперимента. — 2016. — № 6. — С. 44-49.

2. Сунь Ч. В. Ф. Пичугин, А. А. Пустовалова, М. Е. Конищев, И. А. Хлусов, Н. М. Иванова, Сунь Чжилэй, С.С. Гутор Растворение *in vitro*, структурные и электрокинетические характеристики оксинитридных покрытий титана, полученных методом реактивного магнетронного распыления // Поверхность. Рентгеновские, Синхротронные и нейтронные исследования, 2016, № 3, с. 1–11.

3. Сунь Чжилэй К.Е. Евдокимов, М.Е. Конищев, В.Ф. Пичугин, А.А. Пустовалова, Н.М. Иванова, Сунь Чжилэй, Определение концентрации и температуры электронов в плазме магнетронного разряда с помощью оптической спектроскопии и столкновительно-излучательной модели аргона // Известия высших учебных заведений. Физика. — 2017. — Т. 60, № 5. — С. 21-25.

4. Сунь Ч. Сунь Ч., Евдокимов К.Е., Конищев М.Е., Исследование влияния реактивной атмосферы на характеристики пленок азотосодержащего диоксида титана, осажденных методом магнетронного распыления // Известия высших учебных заведений ФИЗИКА, — 2018. — Т. 61, № 8/2. — С. 178-182.

В других научных изданиях:

1. **Zhilei S.** Pichugin V.F., Pustovalova A.A., Konishchev M.E., Khlusov I.A., Ivanova N.M., Zhilei S., Gutor S.S., In-vitro dissolution and structural and electrokinetic characteristics of titanium-oxynitride coatings formed via reactive magnetron sputtering // Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. — 2016. — Vol. 10, iss. 2. — P. 282-291.

2. Sun C. Evdokimov K.E., Konishchev M.E., Pichugin V.F., Pustovalova A.A., Ivanova N.M., Sun C., Determination of the Electron Density and Electron Temperature in A Magnetron Discharge Plasma Using Optical Spectroscopy and the Collisional-Radiative Model of Argon // Russian Physics Journal. — 2017. — Vol. 60, iss. 5. — P. 765-775.

3. **Zhilei Sun** Zhilei Sun, K E Evdokimov, M E Konishchev, O S Kuzmin and V F Pichugin, Effect of post annealing on properties of N-doped TiO_2 films deposited by reactive magnetron sputtering // Journal of Physics: Conf. Series **1281** (2019) 012083.

4. **Zhilei Sun** V.F. Pichugin, A.A. Pustovalova, K E Evdokimov, M E Konishchev, O S Kuzmin, E L Boytsova, Nataliia Beshchasna, Anton Ficai, D M Aubakirova and Zhilei Sun, Structural features and nitrogen positions in titanium

oxynitride films grown in plasma of magnetron discharge // Journal of Physics: Conf. Series 1281 (2019) 012062, doi:10.1088/1742-6596/1281/1/012062.

5. **Zhilei Sun** Zhilei Sun, V.F. Pichugin, K.E. Evdokimov, M.E. Konishchev, M.S. Syrtanov, V.N. Kudiiarov, Ke Li, S.I. Tverdokhlebov. Effect of nitrogen-doping and post annealing on wettability and band gap energy of TiO_2 thin film // Applied Surface Science 500 (2020) 144048.

6. **Zhilei Sun** Natalia Beshchasna, Muhammad Saqib, Honorata Kraskiewicz, Łukasz Wasyluk, Oleg Kuzmin, Oana Cristina Duta, Denisa Ficai, Zeno Ghizdavet, Alexandru Marin, Anton Ficai, Zhilei Sun, Vladimir F. Pichugin, Joerg Opitz and Ecaterina Andronescu. Recent Advances in Manufacturing Innovative Stents // Pharmaceutics **2020**, 12, 349; doi:10.3390/pharmaceutics12040349.

Список цитируемой литературы

1. V. Madhavi, P. Kondaiah, G. Mohan Rao, Influence of silver nanoparticles on titanium oxide and nitrogen doped titanium oxide thin films for sun light photocatalysis // Applied Surface Science. – 2018. – T. 436. – C. 708–719.

2. Prabitha B. Nair, V.B. Justinvictor, Georgi P. Daniel, K. Joy, V. Ramakrishnan, P.V. Thomas, Effect of RF power and sputtering pressure on the structural and optical properties of TiO_2 thin films prepared by RF magnetron sputtering // Applied Surface Science. – 2011. – T. 257. – C. 10869–10875.

3. Hong Li, Xiutong Wang, Yi Liu, Baorong Hou, Ag and SnO₂ co-sensitized TiO_2 photoanodes for protection of 304SS under visible light // Corrosion Science. – 2014. – T. 82. – C. 145–153.