

Рис. 1. Установка гидрогенизации тяжелого нефтяного сырья

процессов гидрогенизации ТНС. Установка отличается простотой и универсальностью (рисунок 1).

Основным аппаратом является реактор периодического действия (P1), в который загружается предварительно подготовленная смесь исходного сырья и катализатора. Реакционную массу выдерживают при температуре 400–450 °C в течение 15–60 минут, после чего полученный

продукты разделяют в сепараторе (СВД1). Продукты реакции анализируют на газовом хроматографе «Хроматек-Кристалл 5000.2»

Установка апробирована на следующих видах сырья — мазут, газойль. Дальнейшей задачей является сравнение различных технологических режимов процесса и подбор оптимальных условий.

Список литературы

- 1. Государственная программа Российской Федерации «Энергоэффективность и развитие энергетики» в редакции от 30.03.2018.
- 2. Аналитический центр при правительстве РФ. Метаморфозы на рынках нефтепродук-

тов. [Электронный ресурс] / Энергетический бюллетень, 2016.-N233.- Режим доступа: http://ac.gov.ru/files/publication/a/7908.pdf.

ОЦЕНКА ТЕРМОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК УГЛЕВОДОРОДОВ, ВХОДЯЩИХ В СОСТАВ ДИЗЕЛЬНЫХ ФРАКЦИЙ, ПРИ ИЗМЕНЕНИИ ТЕМПЕРАТУРЫ

А.А. Павлова, А.С. Мамец Научный руководитель – к.т.н., н.с. Е.В. Францина

Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина 30, aap129@tpu.ru

С помощью термодинамических расчётов можно определить вероятность и условия наиболее эффективного осуществления различных производственных процессов, оценить влияние и устойчивость вещества при изменении всевозможных технологических параметров, рассчитать выход продуктов реакции [1]. Целью данной работы является расчет термодинамических характеристик углеводородов дизельных фракций различного строения, таких как энтропия ($\Delta_r S_\tau^{\circ}$), энтальпия ($\Delta_r H_\tau^{\circ}$), энергия Гиббса ($\Delta_r G_\tau^{\circ}$), при изменении температуры и постоянном давлении; анализ полученных данных.

Таблица 1. Сравнение изменения энтальпии молекул углеводородов дизельных фракций при изменении температуры

	1 21			
	$\Delta_{\mathrm{r}}\mathrm{H}_{\mathrm{ au}}^{\circ}$, кДж/моль			
Углеводород	T=248 K,	T=273 K,	T=298 K,	
	р=1 атм	р=1 атм	р=1 атм	
бутан	221,02	223,10	225,35	
бутилбензол	340,91	316,49	291,01	
бутилциклогексан	513,27	517,43	522,01	

Расчет термодинамических характеристик был произведен при помощи программного пакета Gaussian, предназначенного для расчета структуры и свойств молекулярных систем [2]. Принцип расчета основан на широком спектре реализованных квантово-химических методик для моделирования молекулярных систем. Данные, рассчитанные в программе, представлены в таблицах 1, 2 и 3.

Из таблицы 1 можно заметить закономерность изменения энтальпии образования углеводородов при повышении температуры: значение энтальпии молекул возрастает равномерно, что связано с эндотермическими эффектами – при образовании молекул происходит поглощение теплоты. С ростом температуры изменение энтальпии образования углеводородов происходит линейно.

В таблице 2 представлена зависимость изменения энтропии образования углеводородов от температуры: значение энтропии также возрастает равномерно. При увеличении температуры возрастает колебательная и вращательная энергия атомов и молекул, что приводит к увеличению энтропии.

Список литературы

1. Духанин Г.П. Термодинамические расчеты химических реакций: учеб. пособие / Г.П. Духанин, В.А. Козловцев/Волг-ГТУ.—Волгоград, 2010.—96 с.

Таблица 2. Сравнение изменения энтропии молекул углеводородов дизельных фракций при изменении температуры

	$\Delta_{r}S_{\tau}^{\circ}$, кДж/(моль • К)			
Углеводород	T=248 K,	T=273 K,	T=298 K,	
	р=1 атм	р=1 атм	р=1 атм	
бутан	0,294	0,302	0,309	
бутилбензол	0,406	0,421	0,435	
бутилциклогексан	0,408	0,424	0,439	

Таблица 3. Сравнение изменения энергии Гиббса углеводородов дизельных фракций при изменении температуры

	$\Delta_{_{ m r}} G_{_{ m au}}^{ \circ}$, кДж/моль			
Углеводород	T=248 K,	T=273 K,	T=298K,	
	р=1 атм	р=1 атм	р=1 атм	
бутан	148,14	140,69	133,05	
бутилбензол	441,73	431,38	420,68	
бутилциклогексан	412,10	401,70	390,90	

С повышением температуры величина изменения энергии Гиббса уменьшается линейно (таблица 3), что свидетельствует об увеличении вероятности образования молекул.

Таким образом, в ходе данной работы были рассмотрены закономерности влияния температуры на изменение термодинамических характеристик углеводородов дизельных фракций с использованием квантово-химических расчетов на базе программного пакета Gaussian.

Работа выполнена при поддержке Российского научного фонда (Проект №18-79-00095) в Национальном исследовательском Томском политехническом университете.

2. Серба П.В., Блинов Ю.Ф., Мирошниченко С.П. Квантово-химические расчеты в программе Gaussian.— Таганрог: Изд-во ТТИ ЮФУ, 2012.—100 с.