Министерство образования и науки Российской Федерации

федеральное государственное автономное образовательное учреждение

высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа энергетики

Специальность <u>14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг»</u> НОЦ И.Н.Бутакова

ДИПЛОМНАЯ РАБОТА

Тема работы Расчет изменения запаса реактивности с учетом европиевого выгорающего поглотителя в первой кампании реактора ВВЭР-1200

УДК 621.039.577.621.039.8.546.65

Студент							
Группа		ФИО	Подпись	Дата			
5052	Дан	илов Владимир А	лексеевич				
Руководитель	уководитель						
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Доцент НОЦ		АВ Кузьмин	ктн лоцент				
И.Н.Бутакова ИІ	ШЭ Г		Rithin, dodoni				
Консультант							
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Ассистент НО И.Н.Бутакова ИІ	Ц ШЭ	А.И. Кудров	_				
•		КОНСУЛЬТ	АНТЫ:				
По разделу «Финан	совый мене	джмент, ресурсоэ	ффективность и рес	сурсосбережен	ие»		
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Доцент ОСГН Ш	БИП	В.В. Гузырь	к.э.н., доцент				
По разделу «Социа	льная ответс	твенность»					
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Ассистент ООД ШБИП		.Л. Мезенцева	_				
По разделу «Автом	По разделу «Автоматизация технологических процессов»						
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Доцент НОЦ И.Н.Бутакова ИШЭ		Ю.К. Атрошенко к.т.н. доце					
Нормоконтроль							
Должность		ФИО	Ученая степень, звание	Подпись	Дата		
Ст. преподаватель НОЦ И.Н.Бутакова ИШЭ		М.А. Вагнер –					
ДОПУСТИТЬ К ЗАЩИТЕ:							
Руководитель ООП		ФИО	Ученая степень, звание	Подпись	Дата		
14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг»		А.В. Воробьев	к.т.н., доцент				
Томск 2021 г.							

 $1 \, \text{омск} - 2021 \, \text{г.}$

Запланированные результаты обучения выпускника образовательной программы 14.05.02 Атомные станции: проектирование, эксплуатация и

инжиниринг

Код	Результат освоения ООП	Требования ФГОС ВО, СУОС, критериев АИОР, и/или заинтересованных сторон
P1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач.	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P2	Способен определять круг задач в рамках поставленной цели и выбирать оптимальные способы их решения, исходя из действующих правовых норм и имеющихся ресурсов и ограничений.	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
Р3	Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P4	Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке и иностранном(ых) языке(ах) для академического и профессионального взаимодействия	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
Р5	Способен воспринимать межкультурное разнообразие общества в социально- историческом, этическом и философском контекстах.	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P6	Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни.	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
Р7	Способен поддерживать должный уровень физической подготовленности для обеспечения полноценной социальной и профессиональной деятельности.	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P8	Способен создавать и поддерживать безопасные условия жизнедеятельности, в том числе при возникновении чрезвычайных ситуаций	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
Р9	Способен решать задачи профессиональной деятельности с использованием базовых знаний естественнонаучных дисциплин и информационных технологий, соблюдать основные требования информационной	Компетенции ФГОС ВО, СУОС ТПУ, CDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI,

Код	Результат освоения ООП	Требования ФГОС ВО, СУОС, критериев АИОР, и/или заинтересованных сторон	
	безопасности, в том числе защиты государственной тайны.	требования работодателей к компетенциям выпускников	
P10	Способен использовать научно-техническую информацию, отечественный и зарубежный опыт для реализации исследований в области создания, модернизации и эксплуатации ядерных энергетических установок	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P11	Способен проводить математическое моделирование физических процессов и аппаратов технологического оборудования АС, в том числе на базе пакетов автоматизированного проектирования и исследований	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P12	Способен формулировать цели и задачи исследований в области создания и повышения эффективности эксплуатации АС, выбирать методику и средства проведения научных исследований, выполнять и анализировать результаты НИОКР, участвовать в испытаниях оборудования	Компетенции ФГОС ВО, СУОС ТПУ, CDIO Syllabus, AИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P13	Способен участвовать в организации безопасной экономичной эксплуатации реакторной установки, оборудования и технологических систем энергоблока атомной электростанции, анализировать технологические процессы, режимные ограничения, алгоритмы управления и зашиты AC, проводить контроль параметров сред	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P14	Способен участвовать в проектировании элементов оборудования и технологических систем атомных станций с учетом требований ядерной, радиационной, пожарной, промышленной и экологической безопасности и с использованием современных информационных технологий	Компетенции ФГОС ВО, СУОС ТПУ, CDIO Syllabus, AИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P15	Способен применять и разрабатывать техническую документацию в соответствии с требованиями государственных, отраслевых и ведомственных стандартов и осуществлять проектно-конструкторскую деятельность в соответствии с техническим заданием в области профессиональной деятельности	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P16	Способен проводить технико-экономический анализ и оценку конкурентоспособности и экономической эффективности проектируемых систем, оборудования и АС в целом	Компетенции ФГОС ВО, СУОС ТПУ, CDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников	
P17	Способен анализировать и рассчитывать ядерно-физические и нейтронно-физические процессы термодинамические,	Компетенции ФГОС ВО, СУОС ТПУ, CDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI,	

Код	Результат освоения ООП	Требования ФГОС ВО, СУОС, критериев АИОР, и/или заинтересованных сторон
	теплогидравлические, физико-химические и технологические процессы на атомной станции	требования работодателей к компетенциям выпускников
P18	Способен провести оценку ядерной и радиационной безопасности, организовывать мероприятия по обеспечению ядерной, радиационной, технической, пожарной безопасности, выполнению требований охраны труда в процессе производства электрической и тепловой энергии на атомных станциях, в том числе при обращении с ядерным топливом	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P19	Способен организовать работу малых коллективов исполнителей, планировать работу персонала, разрабатывать оперативные планы работы первичных производственных подразделений, организовывать рабочие места	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P20	Способен участвовать в проведении испытаний основного и вспомогательного оборудования атомных станций и ядерных энергетических установок, проводить физические эксперименты на этапах физического энергетического пуска энергоблока с целью определения нейтронно- физических параметров реакторной установки и AC в целом	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P21	Способен проводить измерения электрических и неэлектрических величин применительно к объектам профессиональной деятельности, выполнять работы по стандартизации и подготовке к сертификации технических средств	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P22	Способен формулировать цели и задачи исследования, выбирать критерии оценки, выявлять приоритеты решения задач в сфере ядерной энергетики и технологий, теоретического и экспериментального исследования при решении профессиональных задач	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников
P23	Способен анализировать технологии монтажа, ремонта и демонтажа оборудования АС (и ЯЭУ) применительно к условиям сооружения, эксплуатации и снятия с эксплуатации энергоблоков АС	Компетенции ФГОС ВО, СУОС ТПУ, СDIO Syllabus, АИОР, согласованные с требованиями международных стандартов EUR-ACE и FEANI, требования работодателей к компетенциям выпускников

Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего

образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Инженерная школа энергетики Специальность: <u>14.05.02 Атомные станции: проектирование, эксплуатация и</u> <u>инжиниринг</u>

НОЦ И.Н.Бутакова

У Т В Е Р Ж Д А Ю: Руководитель ООП А.В. Воробьев

(Подпись)

(Дата)

ЗАДАНИЕ

на выполнение выпускной квалификационной работы

В форме:

дипломной работы

(бакалаврской работы, /работы, магистерской диссертации)

Студенту:

Группа	ФИО
5052	Данилову Владимиру Алексеевичу
5052	данилову владимиру Алексеевичу

Тема работы:

Расчет изменения запаса реактивности с учетом европиевого выгорающего поглотителя в первой кампании реактора ВВЭР-1200 Утверждена приказом директора (дата, номер) 16.12.2020, №351-38/с

утверждена приказом директора (дата, номер)

Срок сдачи студентом выполненной работы: 24.01.2021

ТЕХНИЧЕСКОЕ ЗАДАНИЕ:

Исходные данные к работе	Объектом исследования является реактор ВВЭР-
(наименование объекта исследования или проектирования;	1200. Цель работы – определения влияния
произвооительность или нагрузка, режим работы (непрерывный, периодический, циклический и т. д.); вид	обогащения и вида выгорающего поглотителя на
сырья или материал изделия; требования к продукту,	кривую изменения запаса реактивности реактора.
изоелию или процессу; осооые треоования к осооенностям функционирования (эксплуатации) объекта или изделия в	Задачи данной работы: определение
плане безопасности эксплуатации, влияния на	теплофизических и нейтронно-физических
окружающую среоу, энергозатратам; экономический анализ и т. д.).	характеристик топливной сборки, расчет
	кинетики выгорания нуклидов, расчет кинетики
	изменения запаса реактивности.

Перечень подлежащих исследования	о, 1. Теплогидравлический расчет реактора
проектированию и разработке	2. Нейтронно-физический расчет реактора
вопросов	методом четырех сомножителей
(аналитический обзор по литературным источникам с	3. Расчет кампании реактора методом четырех
целью выяснения оостижении мировои науки техники в рассматриваемой области; постановка задачи	сомножителей
исследования, проектирования, конструирования;	4. Расчет кампании реактора многогрупповым
содержание процедуры исследования, проектирования, конструирования: обсуждение результатов выполненной	методом в программе WIMS
работы; наименование дополнительных разделов,	5. Анализ результатов расчета
подлежащих разработке; заключение по работе).	
Перечень графического материала	1. Функциональная схема автоматического
(с точным указанием обязательных чертежей)	контроля и регулирования мошности
	2. Графики зависимости запаса
	реактивности от момента кампании
	3 Блок схема расчетной программы
KOHOVEL TOUTLE DO DOCHOROM DE HIVORI	
(с указанием разделов)	той квалификационной работы
Раздел	Консультант
Финансовый менеджмент	
Социальная	
ответственность	
Автоматизация	
технологических процессов	
Названия разделов, которые должни	ы быть написаны на русском и иностранном
языках:	

Дата выдачи задания на выполнение выпускной	24.06.2020
квалификационной работы по линейному графику	

Задание выдал руководитель:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент НОЦ	А.В. Кузьмин	к.т.н., доцент		24.06.2020
И.Н.Бутакова ИШЭ				

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5052	Данилов Владимир Алексеевич		24.06.2020

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И **РЕСУРСОСБЕРЕЖЕНИЕ»**

Стуленту.

студ е шу.	
Группа	ΦͶΟ
5052	Данилов Владимир Алексеевич

Инженерная школа энергетики		Научно-образовательный ц	ентр И.Н. Бутакова
Уровень образования	Специалист	Направление/специальность	14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Исходные данные к разделу «Финансовый менеджмент, ресурсоэффективность и				
ресурсосбережение»:				
1. Стоимость ресурсов научного исследования (НИ):	Стоимость электроэнергии за 1 кВт·ч – 3,56			

1. Cronwoord pecypeob may more needed building (111).	croindern shekiposheprini su i kbi i 5,50			
материально-технических, энергетических, финансовых,	руб.			
информационных и человеческих				
2. Нормы и нормативы расходования ресурсов	Масса топлива в реакторе – 87 тонн			
3. Основные характеристики работы исследуемых систем,	Тепловая мощность реактора – 3200 MBт			
	Срок службы реактора – 60 лет			
	Средняя длительность перегрузки топлива -25			
дней				
Перечень вопросов, подлежащих исследованию, проектированию и разработке:				

Перечень вопросов, подлежащих исследованию, проектированию и разработке:

Сравнение экономических аспектов двух разных конструкторских решений	Сравнение длительности кампании реактора ВВЭР-1200 при использовании топлива различного обогащения.
Определение затрат на обслуживание системы при том или	Определение затрат на покупку ядерного
ином конструкторском решении	топлива различного обогащения
Оценка технико-экономических характеристик	Определение экономической выгоды от
	использования высокообогащенного топлива

Дата выдачи задания для раздела по линейному графику

24.10.2020

Задание выдал консультант:

Должность	ФИО	Ученая степень, звание	Подпись	Дата
Доцент ОСГН	В.В. Гузырь	к.э.н., доцент		24.10.2020

Задание принял к исполнению студент:

Группа	ФИО	Подпись	Дата
5052	В.А. Данилов		24.10.2020

ЗАДАНИЕ ДЛЯ РАЗДЕЛА «СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ»

Студенту:

Группа	ФИО
5052	Данилов Владимир Алексеевич

Школа	Инженерная школа энергетики	Отделение (НОЦ)	НОЦ И.Н.Бутакова
Уровень образования	Специалитет	Направление/специальность	14.05.02 Атомные станции: проектирование, эксплуатация и инжиниринг

Тема ВКР:

Расчет изменения состава выгорающего поглотителя в реакторе ВВЭР-1200			
Исходные данные к разделу «Социальная ответственность»:			
 Характеристика объекта исследования (вещество, материал, прибор, алгоритм, методика, рабочая зона) и области его применения 	Объект исследования: выгорающий поглотитель в реакторе типа ВВЭР-1200 Область применения: Атомная энергетика		
Перечень вопросов, подлежащих исследованию, проекти	рованию и разработке:		
 1. Правовые и организационные вопросы обеспечения безопасности: специальные (характерные при эксплуатации объекта исследования, проектируемой рабочей зоны) правовые нормы трудового законодательства; организационные мероприятия при 	НП-001-15 Общие положения обеспечения безопасности атомных станций		
компоновке рабочей зоны. 2. Производственная безопасность: 2.1. Анализ выявленных вредных и опасных факторов 2.2. Обоснование мероприятий по снижению воздействия	Вредные факторы: -наличие электромагнитных полей промышленных частот отклонение показателей микроклимата; - отклонение показателей микроклимата; повышенный уровень ионизирующего излучения; повышенный уровень шума - повышенный уровень шума недостаток освещения Опасные факторы: -движущиеся машины и механизмы, подвижные части производственного оборудования. - - возможность поражения действием электрического тока - струи жидкости под давлением - возможность падения с высоты - чрезмерно высокая температура материальных объектов;		
3. Экологическая безопасность:	Атмосфера: радиоактивные газоаэрозольные выбросы. Гидросфера: сброс сточных вод. Литосфера: обращение с ОЯТ		
4. Безопасность в чрезвычайных ситуациях:	Возможные ЧС: утечка радиации, пожар, Наиболее типичная ЧС: пожар		

Дата выдачи задан	Дата выдачи задания для раздела по линейному графику 24.10.2020					
Задание выда.	Задание выдал консультант:					
Должность	ФИО	Ученая степень, звание	Подпись	Дата		
Ассистент	Мезенцева И.Л.	-		24.10.2020		
Задание принял к и	сполнению студент:					
Группа	ФИО	ФИО				
5052	Данилов Владимир Ал	Данилов Владимир Алексеевич				

Реферат

Выпускная квалификационная работа состоит из 115 страниц, 12 рисунков, 20 таблиц, 42 источников, 4 приложений.

Ключевые слова: реактор, активная зона, ядерное топливо, нуклидный состав, выгорание, реактивность.

Объектом исследования является реактор ВВЭР-1200.

Цель работы – разработка методики расчета изменение запаса реактивности в течение первой топливной кампании.

Задачи данной работы: определение теплофизических и нейтроннофизических характеристик топливной сборки, расчет кинетики выгорания нуклидов, расчет кинетики изменения запаса реактивности в течении первой кампании.

В результате исследования получены зависимости изменения запаса реактивности от времени при различных начальных загрузках топлива и выгорающего поглотителя.

Область применения: курсовые работы, методические указания по физике ядерных реакторов

Выпускная квалификационная работа выполнена в текстовом редакторе Microsoft Word 2016, численные решения и графики выполнены в программе MathCad 15, рисунки выполнены с помощью программы KOMПAC-3D V16, микроскопические сечения взаимодействия нейтронов извлечены из базы данных JENDL 4.0 с помощью программы JANIS 4.0, формулы записаны во встроенном редакторе формул Microsoft Word 2016.

Определения и обозначения

- АС атомная станция
- АЗ –активная зона
- АКНП аппаратура контроля нейтронного потока
- АРМ автоматическое регулирование мощности
- АЭС атомная электростанция
- БД блок детектирования
- БИК блок ионизационных камер
- БЩУ блочный щит управления
- ВП выгорающий поглотитель
- ДУ дифференциальное уравнение
- ЗКД зона контролируемого доступа
- НЭ нормальная эксплуатация
- ОР орган регулирования
- ОЯТ отработавшее ядерное топливо
- ПДУ предельно допустимый уровень
- СИЗ средства индивидуальной защиты
- СУЗ система управления и защиты
- ТВС тепловыделяющая сборка
- ТВЭЛ тепловыделяющий элемент
- УНО устройство накопления и обработки
- ЭМИ электромагнитное излучение
- ЭМП электромагнитное поле
- ЭП электрическое поле
- ЯР ядерный реактор

1	$\Psi U P A. 562527.005113$	1
		Ли
При	ложение Б	. 95
При	ложение А	. 84
Спи	сок используемых источников	. 8(
Закл	ючение	. 79
8.	3 Экологическая безопасность	. 72
8.	2 Производственная безопасности	. 65
8.	1 Правовые и организационные вопросы обеспечения безопасности	. 64
8 Co	щиальная ответственность.	. 64
7.	2 Расчет эффективности использования высокообогащенного топлива	. 6
7.	1 SWOT-анализ	. 6
7 Φi	инансовый менеджмент, ресурсоэффективность и ресурсосбережение	. 6
6.	3 Разработка функциональной схемы.	. 5
6.	2 Выбор технических средств автоматизации и контроля	. 5
6.	1 Принципы регулирования мощности	. 5
6 Ar	втоматизация технологических процессов	. 5
5.	2 Результаты расчетов с помощью WIMSD-5В.	. 5
5.	1 Описание программы	. 5
5 Pe	шение задачи с помощью WIMSD-5В	. 5
4 Pa	счет кампании реактора	.4
3.	3 Расчет реактора с европиевым ВП.	. 3
3.	2 Расчет реактора с гадолиниевым ВП.	. 2
3.	1. Расчет ядерных концентраций	. 2
3 He	ейтронно-физический расчет реактора	. 2
2.	2 Расчет эффективной температуры топлива	. 1
2.	1 Расчет объемов ячейки	. 1
2 Te	плогидравлический расчет	. 1
1 06	бзор литературы	. 1
Вве	дение	. 1
Опр	еделения и обозначения	. 1
		• 1

Оглавление

Приложение В 112
Приложение Г 115
ФЮРА.421000.005 С2 Схема автоматизации АСР мощности реактора.
ФЮРА.000000.005 1 Блок схема программы расчета кривой запаса

реактивности методом 4х сомножителей.

ФЮРА.000000.005 2 График кривой запаса реактивности.

	_			_	
					ФЮРА,562527,005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

Введение

Реакторы типа ВВЭР обладают высокой степенью надежности и безопасности, но с экономической точки зрения они имеют существенный недостаток: они не имеют возможности осуществлять перегрузку топлива на мощности и требуют останова.

Одним из путей увеличения длительности кампании реактора является повышение обогащения топлива по U²³⁵, однако это приводит к избыточной реактивности в начале кампании [1].

Использование выгорающего поглотителя позволяет скомпенсировать начальную избыточную реактивность и выровнять энерговыделение в A3 реактора, тем самым увеличить продолжительность топливного цикла и оптимизировать использование топлива, что крайне важно с экономической точки зрения использования AЭC [2]

Выгорающий поглотитель может быть расположен в отдельных стержнях или же может быть гомогенно добавлен в топливо в отдельных твэлах. В случае гетерогенного размещения, в области потоков нейтронов выше, чем в топливе, ВП будет выгорать с более высокой скоростью, чем при гомогенном размещении, также скорость выгорания гетерогенно размещенного ВП можно регулировать степенью разбавления его бериллием для изменения его блокэффекта. Сильный блок эффект при слабом разбавлении бериллием не позволяет тепловым нейтронам проникать внутрь стержня и поглотитель «обгорает» по периферии.

Это значит, что можно расположить ВП так, чтобы скорость высвобождения реактивности при выгорании была примерно равна суммарным потерям реактивности от шлакования и выгорания топлива. Однако на практике, в связи с нестационарностью процессов в реакторе, рассчитать такое размещение ВП невозможно.

В качестве поглотителей нейтронов в ядерных реакторах широко используются гадолиний, эрбий, кадмий, бор, самарий и европий [3].

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Гадолиний отличает крайне высокое поглощение тепловых нейтронов. Сечение поглощения тепловых нейтронов природного гадолиния достигает величины 46 000 барн, у изотопа *Gd*¹⁵⁷ – 255 000 барн [7].

Природная смесь бора содержит 19% изотопа B^{10} и 81% B^{11} . Природная смесь поглотителя имеет сечение поглощения около 750 барн, смесь обогащенная по изотопу B^{10} до 75% – 4010 барн.

Европий в природе состоит из двух изотопов, Eu^{151} и Eu^{153} , их микросечения захвата тепловых нейтронов и процентное содержание соответственно равны 9167 барн и 47,44%; 312 барн и 52,23%.

Продуктами «сгорания» бора и гадолиния являются слабые шлаки, обладающие малым сечением поглощения. В отличии от них, при поглощении нейтрона европием рождается новый изотоп с высоким сечением поглощения, образуя цепочку из 7 изотопов, 5 из котрых нестабильны и в ходе бета-распада образуют новые изотопы гадолиния, также обладающих высоким сечением поглощения.

Изотоп	σ_{c0} , барн	<i>T</i> _{1/2} , с	λ , c ⁻¹
¹⁵¹ Eu	9167,2	стабилен	-
¹⁵² Eu	12750,9	4,27200 · 10 ⁸	$1,622 \cdot 10^{-9}$
¹⁵³ Eu	312,618	стабилен	-
¹⁵⁴ Eu	1352,63	2,71400 · 10 ⁸	$2,554 \cdot 10^{-9}$
¹⁵⁵ Eu	3760,36	1,50000 · 10 ⁸	4,6 · 10 ⁻⁹
¹⁵⁶ Eu	100,028	1,31200 · 10 ⁶	$5,283 \cdot 10^{-7}$
¹⁵⁷ Eu	190,	54648,0	$1,268 \cdot 10^{-5}$

Таблица 1 – Свойства изотопов европия

Таблица 2 – Свойства изотопов гадолиния

Изм.

Лист

№ док∨м.

Изотоп	σ_{c0} , барн	<i>T</i> _{1/2} , c
¹⁵² Gd	734,966	стабилен (очень высокий период полураспада)
¹⁵³ Gd	0,0	$2,07706 \cdot 10^7$
¹⁵⁴ Gd	85,0534	стабилен
¹⁵⁵ Gd	60743	стабилен
¹⁵⁶ Gd	1,82729	стабилен
¹⁵⁷ Gd	253254	стабилен

		ФЮРА.562527.005ПЗ
Подпись	Пата	

В России перевод энергоблоков ВВЭР-1000 на 18-месячный топливный цикл с повышением мощности до 104% от номинальной начался в 2008 году на 1 блоке Балаковской АЭС. В 2014 активная зона была полностью укомплектована разработанными Курчатовским институтом TBC-2M с применением уран-гадолиниевых выгорающих поглотителей.

Целью данной работы является освоение метода расчета изотопного состава выгорающего поглотителя и изменения реактивности в ходе первой кампании реактора.

1 Обзор литературы

Возможность использования европиевого ВП в реакторах типа ВВЭР была рассмотрена в работе [4]. Из-за большого значения сечения поглощения гадолиния, его размещают в небольшом количестве твэлов, а путем подбора весового содержания гадолиния добиваются того, чтобы он полностью выгорал за одну кампанию. Европий, в отличие от гадолиния, имеет небольшое значение сечения поглощения, его необходимо размещать в большом количестве твэлов.

Результаты расчетов в программном комплексе SERPENT 2.1.30 показали, что использование европия снижает значение коэффициента размножения в течении всей кампании, что позволяет снизить объем жидкостного регулирования реактивности.

Также использование европиевого ВП смещает спектр реактора в сторону быстрых нейтронов на протяжении всей кампании, это способствует более интенсивной генерации изотопов Pu^{239} и Pu^{241} , что способствует улучшению энерговыделения реактора.

Однако использование европия также несет рад отрицательных эффектов:

1) Из-за накопления радиоактивного изотопа Eu^{154} и изотопов плутония может потребоваться увеличение времени выдержки ОЯТ в бассейне выдержки.

2) увеличение расхода природного урана из-за снижения глубины выгорания топлива, этот эффект может быть нивелирован увеличением обогащения и дальнейшей повторной переработкой топлива.

Изм.	Лист	№ докум.	Подпись	Дата

В работах [5] и [6] были получены графики зависимости k_{∞} от выгорания для различных вариантов загрузки европиевого, гадолиниевого выгорающих поглотителей или их смеси. Использование европиевого поглотителя значительно снижает долю борного регулирования, однако снижает значение k_{∞} в конце кампании. Наилучшеми же характеристиками и условиями для обеспечения безопасности обладают смешанные варианты использования ВП.

Дальнейшее развитие технологий водо-водяных реакторов направлено на применение различных выгорающих поглотителей и оптимизацию их размещения в твэлах активной зоне с целью замещения «жидкостной» системы компенсации избыточной реактивности. [5]

						Лист
					ФЮРА.562527.005ПЗ	17
Изм.	Лист	№ докум.	Подпись	Дата		17

2 Теплогидравлический расчет

Таблица 1 – Исходные данные

Номинальная тепловая мощность, МВт	Q	3200
Номинальное давление первого контура, МПа	$P_{a.3.}$	16,2
Количество ТВС	N_{TBC}	163
Обогащение по U^{235} , %	<i>C</i> ₅	4,9
Расход теплоносителя через а.з., <i>м³ / ч</i>	$V_{a.3.}$	88000
Температура теплоносителя на входе/выходе	$T_{_{e\!X}}$ / $T_{_{e\!b\!h\!X}}$	298.2/328.6
в/из а.з., ^{<i>o</i>} С		
Шаг твс, см	a_{TBC}	23.6
Высота топливного столба, см	$H_{a.3.}$	373
Количество твэлов и твэгов в ТВС, шт.	N _{твэл}	312
Шаг между твэлами, см	а _{твэл}	1.275
Наружный диаметр оболочки твэла (твэга), см	$d_{\scriptscriptstyle m {\scriptscriptstyle G} {\scriptscriptstyle m >} {\scriptscriptstyle m Л}}^{\scriptscriptstyle Hap}$	0.910
Внутренний диаметр оболочки твэла (твэга), см	$d_{\scriptscriptstyle m e imes ho}^{\scriptscriptstyle m {\it BH}}$	0.773
Материал оболочки твэла (твэга)		Э-110
Материал топлива		UO_2
Наружный диаметр таблетки твэла, см	$d_{\scriptscriptstyle{mon,ubo}}^{\scriptscriptstyle{hap}}$	0.76
Диаметр центрального отверстия таблетки, см	$d_{\scriptscriptstyle{mon,nubo}}^{\scriptscriptstyle{\scriptscriptstyle{ m \it BH}}}$	0.12
Количество направляющих каналов	N _{н.к.}	18
Наружный/внутренний диаметр направляющего	$d_{\scriptscriptstyle H.\kappa.}^{\scriptscriptstyle Hap}$ / $d_{\scriptscriptstyle H.\kappa.}^{\scriptscriptstyle BH}$	1.3/1.1
канала, см		
Наружный/внутренний диаметр канала СВРД,	$d_{\scriptscriptstyle u.\kappa.}^{\scriptscriptstyle Hap}$ / $d_{\scriptscriptstyle u.\kappa.}^{\scriptscriptstyle BH}$	1.12/0.96
СМ		

Изм.	Лист	№ докум.	Подпись	Дата

2.1 Расчет объемов ячейки

Объем шестигранной ячейки ТВС на единицу высоты:

$$F_{_{\mathcal{H}_{\mathcal{H}}}} = a_{_{\mathcal{H}_{\mathcal{C}}}}^{2} \cdot \frac{\sqrt{3}}{2} = 23.6^{2} \cdot \frac{\sqrt{3}}{2} = 482.342 \ cm^{2}.$$

Объем циркониневой оболочки на единицу высоты:

$$F_{Zr} = \frac{\pi \left(d_{M63\pi}^{Hap \ 2} - d_{M63\pi}^{6H \ 2} \right)}{4} \cdot N_{M63\pi} + \frac{\pi \left(d_{H.\kappa}^{Hap \ 2} - d_{H.\kappa.}^{6H \ 2} \right)}{4} \cdot N_{H.\kappa.} + \frac{\pi \left(d_{H.\kappa}^{Hap \ 2} - d_{H.\kappa.}^{6H \ 2} \right)}{4} = \frac{\pi \left(0.910^2 - 0.773^2 \right)}{4} \cdot 312 + \frac{\pi \left(1.3^2 - 1.1^2 \right)}{4} \cdot 18 + \frac{\pi \left(1.12^2 - 0.96^2 \right)}{4} = 63.663 \ cm^2.$$

Объем горючего на единицу высоты:

$$F_{cop} = \frac{\pi \left(d_{mon, u go}^{hap} - d_{mon, u go}^{eh} - 2 \right)}{4} \cdot N_{mesn} = \frac{\pi \left(0.76^2 - 0.12^2 \right)}{4} \cdot 312 = 138.009 \ cm^2;$$

Объем гелия на единицу высоты:

$$F_{He} = \left[\frac{\pi \left(d_{Me3\pi}^{\theta H}^{2} - d_{Mon\pi u \theta o}^{Hap}\right)^{2}}{4} + \frac{\pi d_{Mon\pi u \theta o}^{\theta H}}{4}\right] \cdot N_{Me3\pi} = \left[\frac{\pi \left(0.773^{2} - 0.76^{2}\right)}{4} + \frac{\pi \cdot 0.12^{2}}{4}\right] \cdot 312 = 8.412 \text{ cm}^{2}.$$

Объем теплоносителя на единицу высоты:

$$F_{H_{2}O} = F_{_{\mathcal{R}^{\mathcal{H}}}} - F_{_{\mathcal{C}OP}} - F_{_{\mathcal{Z}r}} - F_{_{\mathcal{H}e}} =$$

= 482.342 - 63.663 - 138.009 - 8.412 = 272.258 cm².

Объем замедлителя на единицу высоты:

$$F_{_{3M}} = F_{_{H_2O}} + F_{_{Zr}} + F_{_{He}} = 272.258 + 8.412 + 63.663 = 344.333 \, \text{cm}^2.$$

2.2 Расчет эффективной температуры топлива

Определим эффективную температуру топлива средненапряженного твэла для дальнейших расчетов его свойств.

Массовый расход теплоносителя на входе в активную зону реактора:

$$G = \frac{V_{a.s.} \cdot \rho_{H_{20}}(P_{a.s.}, T_{ex})}{3600} = \frac{88000 \cdot 731.67}{3600} = 17885 \, \kappa 2 \, / \, c,$$

водяного пара и гелия получены с помощью библиотеки CoolProp.

						Лист
					ФЮРА.562527.005ПЗ	10
Изм.	Лист	№ докум.	Подпись	Дата		19

Средняя скорость теплоносителя в активной зоне реактора:

$$\overline{W} = \frac{G}{N_{TBC}F_{H_2O}\rho_{H_2O}(P_{a.s.},\overline{T})} = \frac{17885}{163 \cdot 272.258 \cdot 10^{-4} \cdot 698.71} = 5.768 \, \text{m/c},$$

где $\overline{T} = (T_{ex} + T_{ebix}) / 2 = (298.2 + 328.6) / 2 = 586.6 \ ^{o}C$ – средняя температура

теплоносителя.

Число Нуссельта определяется по следующей формуле [9, стр. 73]:

$$Nu = A \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4}$$

Относительный шаг решетки твэлов:

$$x = \frac{a_{m_{6,9,7}}}{d_{m_{6,9,7}}^{Hap}} = \frac{1.275}{0.91} = 1.401.$$

Гидравлический диаметр для бесконечной треугольной решетки [9, стр 31]:

$$d_{e} = d_{mean}^{hap} \cdot \left(\frac{2\sqrt{3}}{\pi}x^{2} - 1\right) = 0.91 \cdot \left(\frac{2\sqrt{3}}{\pi}1.401^{2} - 1\right) = 1.060 \text{ cm}.$$

Значение числа Рейнольдса:

Re =
$$\frac{d_e w}{v(P_{a.s.}, \overline{T})} = \frac{1.060 \cdot 5.768}{1.195 \cdot 10^{-5}} = 511440,$$

где $v(P_{a.s.}, \overline{T}) = 1.195 \cdot 10^{-5} \ m^2 \ / \ c$ — средняя кинематическая вязкость теплоносителя.

Число Прандтля: $\Pr(P_{a.s.}, \overline{T}) = 0.895$. $A = 0.0165 + 0.02 \cdot (1 - 0.91x^2) = 0.0165 + 0.02 \cdot (1 - 0.91 \cdot 1.401^2) = 0.02779$, $Nu = 0.02779 \cdot 511440^{0.8} \cdot 0.895^{0.4} = 1026$.

Коэффициент теплоотдачи теплоносителя к стенке твэла:

$$\alpha = \frac{Nu \cdot \lambda(P_{a.s.}, T)}{d_{z}} = \frac{1026 \cdot 0.543}{1.060} = 52568 \frac{Bm}{M^{2} \circ C}.$$

Средний тепловой поток на внешней стороне стенки твэла:

$$q_{f}^{hap} = \frac{Q}{N_{TBC}N_{m_{B3R}}H_{a.3.}\pi d_{m_{B3R}}^{hap}} = \frac{3200 \cdot 10^{6}}{163 \cdot 312 \cdot 373 \cdot 10^{-2} \cdot \pi \cdot 0.910 \cdot 10^{-2}} = 590076 \ Bm \ / \ m^{2}.$$

Перепад температуры в пограничном слое:

$$\Delta T_{\alpha} = \frac{q_f^{hap}}{\alpha} = \frac{590075.6}{52568} = 11.2 \ ^{\circ}C.$$

Температура на внешней стороне стенки твэла:

$$T_{me_{DR}}^{hap} = \overline{T} + \Delta T_{\alpha} = 586.6 + 11.2 = 597.8 \ K.$$

Средний тепловой поток на внутренней стороне стенки твэла:

$$q_{f}^{_{6H}} = \frac{Q}{N_{_{TBC}}N_{_{MG93}}H_{_{a.3.}}\pi d_{_{MG93}}^{^{_{6H}}}} = \frac{3200 \cdot 10^{^{6}}}{163 \cdot 312 \cdot 373 \cdot 10^{^{-2}} \cdot \pi \cdot 0.773 \cdot 10^{^{-2}}} = 694656 \ Bm \ / \ m^{2}.$$

Температура на внутренней стороне оболочки твэла рассчитывается итерационно, в первом приближении принимаем $T_{m_{69,7}}^{e_{H}} = T_{m_{69,7}}^{hap}$.

Теплопроводность циркониевого сплава Э-110 находится по следующей формуле [10, стр. 160]:

$$\lambda_{Zr}(T) = 23.5 - 0.0192 \cdot T + 1.68 \cdot 10^{-5} \cdot T^2.$$

В первой итерации получаем:

$$T_{m_{63\pi}}^{_{6H}} = T_{m_{63\pi}}^{_{Hap}} - \frac{q_f^{_{6H}} d_{m_{63\pi}}^{_{6H}}}{2\lambda_{Zr} \left(\overline{T_{Zr}}\right) \cdot \ln\left(d_{m_{63\pi}}^{_{6H}} / d_{m_{63\pi}}^{_{Hap}}\right)} = 597.8 - \frac{694656 \cdot 0.773 \cdot 10^{-2}}{2 \cdot \lambda_{Zr} \left(T_{m_{63\pi}}^{_{6H}}\right) \cdot \ln\left(0.910 / 0.773\right)} = 622.1 \, K.$$

На 2й итерации результат отличается на $0.002\% - T_{m_{B3Л}}^{\scriptscriptstyle GH} = 622.1 K.$

Примем допущение, что в газовом зазоре теплообмен осуществляется только теплопроводностью Температура на внутренней стороне оболочки твэла рассчитывается итерационно, в первом приближении принимаем $T_{mesn}^{eh} = T_{monument}^{hap}$:

$$T_{mon,nueo}^{Hap} = T_{me3n}^{eH} - \frac{q_f^{eH} d_{me3n}^{eH}}{2 \cdot \lambda_{He} \left(P_{a.3.}, \overline{T_{He}} \right) \cdot \ln \left(d_{mon,nueo}^{Hap} / d_{me3n}^{eH} \right)} = 622.1 - \frac{694656 \cdot 0.710 \cdot 10^{-2}}{2 \cdot 0.266 \cdot \ln \left(0.773 / 0.710 \right)} = 793.2 \ K.$$

После 5 итераций получаем значение температуры на внешней стороне топлива $T_{monлubo}^{hap} = 780.0 \ ^{o}C.$

Линейный тепловой поток в средненагруженном твэле:

		JIIIICHIIDIN	TOURIOD	on in	лок в среднени руженном поле.	
						Лист
					ФЮРА.562527.005ПЗ	21
Изм.	Лист	№ докум.	Подпись	Дата		21

$$q_{l} = \frac{Q}{N_{TBC}N_{m_{G9,l}}H_{a.3.}} = \frac{3200 \cdot 10^{6}}{163 \cdot 312 \cdot 373 \cdot 10^{-2}} = 16869 \ Bm \ / \ M.$$

Аналогично рассчитывается температура на внутренней стороне топлива. Теплопроводность *UO*₂ рассчитываем по формуле [10, стр. 40]:

$$\lambda_{UO_2}(\tau) = \frac{100}{7.5408 + 17.692 \cdot \tau + 3.6142 \cdot \tau^2} + 2.5 \cdot \exp\left(-\frac{16.35}{\tau}\right),$$

где $\tau = T / 1000$.

$$T_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \textit{BH}}} = T_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{Hap}}} + \frac{q_l}{4\pi \cdot \lambda_{UO_2} \left(\overline{T_{UO_2}}\right)} \cdot \left(1 - \frac{2d_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{BH}}}}{d_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{Hap}}} - 2} - d_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{BH}}} \cdot \ln\left(\frac{d_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{Hap}}}}{d_{\text{monsubo}}^{\scriptscriptstyle \text{\tiny \text{BH}}}}\right)\right).$$

На первой итерации:

$$T_{monливо}^{\rm {\tiny BH}} = T_{monливо}^{\rm {\tiny Hap}} + \frac{16869}{4\pi \cdot \lambda_{UO_2} \left(T_{monливо}^{\rm {\tiny Hap}}\right)} \cdot \left(1 - \frac{2 \cdot 0.12^2}{0.71^2 - 0.12^2} \cdot \ln\left(\frac{0.71}{0.12}\right)\right) = 1107.6 \ K.$$

После 5 итераций получаем значение температуры на внутренней стороне топлива $T_{monливo}^{_{6H}} = 1114.9 \ ^oC$.

Эффективная температура топлива:

$$T_{g\phi\phi} = T_{monnubo}^{hap} + 0.4 \cdot \left(T_{monnubo}^{gh} - T_{monnubo}^{hap}\right) = 780.0 + 0.4 \cdot \left(1114.9 - 780.0\right) = 914 \ K.$$

3 Нейтронно-физический расчет реактора.

3.1. Расчет ядерных концентраций.

Ядерная плотность нуклида или молекулы рассчитывается по формуле:

$$N_i = \frac{N_A \cdot \rho_i}{A_i},$$

где: ρ_i – плотность вещества $2 / c M^3$;

 $N_A = 0.6022 \cdot 10^{24}$ моль⁻¹ – число Авогадро;

 A_i – атомный вес нуклида или молекулы $\mathcal{Z}/MOЛb$.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Нуклид	Атомная масса, а.е.м	Нуклид	Атомная масса, а.е.м
U^{235}	235.0439	U^{238}	238.0508
O^{16}	15.9994	H^1	1.0078
Zr^{90}	89.9047	Zr^{91}	90.9056
Zr^{92}	91.9050	Zr^{94}	93.9063
Zr^{96}	95.9083	Eu^{151}	150.9199
Eu^{152}	151.9217	Eu^{153}	152.9212
Eu^{154}	153.9230	Eu^{155}	154.9229
Eu^{156}	155.9248	Gd^{154}	153.9209
Gd^{155}	154.9226	Gd^{156}	155.9221
Gd^{157}	156.9240	Gd^{158}	157.9241
Pu^{239}	239.0522	Pu^{240}	240.0538
Pu^{241}	241.0569	Xe^{135}	134.9072
He^4	4.0026	<i>Sm</i> ¹⁴⁹	148.9172

Таблица 2 – Массы изотопов

Вес молекулы диоксида урана:

$$\begin{split} M_{_{UO_2}} = c_5 A_{_U{}^{235}} + c_8 A_{_U{}^{238}} + 2A_{_O{}^{16}} = \\ = 0.049 \cdot 235.0439 + 0.951 \cdot 238.0508 + 2 \cdot 15.9994 = 269.9023 \, e \, / \, \text{моль}. \end{split}$$

где $c_8 = 1 - c_5 = 1 - 0.049 = 0.951$ доля U^{238} в смеси.

Концентрация молекул диоксида урана:

$$N_{UO_2} = c_5 \frac{N_A \cdot \rho_{UO_2}^{\circ \phi \phi}(T_{\circ \phi \phi})}{M_{UO_2}} = \frac{0.6022 \cdot 10^{24} \cdot 10.755}{269.9023} = 2.400 \cdot 10^{22} \text{ sdep / cm}^3.$$

Концентрация изотопа U^{235} :

$$N_{U^{235}} = c_5 N_{UO_2} = 0.049 \cdot 2.400 \cdot 10^{22} = 1.176 \cdot 10^{21} \text{ sdep / cm}^3.$$

Концентрация изотопа U^{238} :

 $N_{U^{238}} = c_8 N_{UO_2} = 0.951 \cdot 2.400 \cdot 10^{22} = 2.282 \cdot 10^{22} \text{ sdep / } cm^3.$

Зависимость плотности диоксида урана описывается выражением [10, стр.

31]:									
						Лист			
					ФЮРА.562527.005ПЗ	22			
Изм.	Лист	№ докум.	Подпись	Дата		23			

$$\rho_{UO_2}(T) = 0.99734 + 9.802 \cdot 10^{-6} \cdot T - 2.715 \cdot 10^{-10} \cdot T^2 + 4.291 \cdot 10^{-13} \cdot T^3$$

Эффективная плотность диоксидного топлива с центральным отверстием рассчитывается по формуле:

$$\rho_{UO_2}^{\phi\phi\phi}(T) = \rho_{UO_2}(T) \cdot \left(1 - \left(\frac{d_{montuleo}^{e_H}}{d_{montuleo}^{Hap}}\right)^2\right) = \rho_{UO_2}(T) \cdot \left(1 - \left(\frac{0.12}{0.71}\right)^2\right) = \rho_{UO_2}(T) \cdot 0.975.$$

Средняя температура гелия:

$$\overline{T_{He}} = \frac{T_{mon,rueo}^{Hap} + T_{me3,r}^{eH}}{2} = \frac{780 + 622.1}{2} = 701 \, K.$$

Ядерная плотность гелия:

$$N_{He^4} = \frac{N_A \cdot \rho_{He^4}(P_{a.3.}, \overline{T_{He}})}{A_{He^4}} = \frac{0.6022 \cdot 10^{24} \cdot 10.882 \cdot 10^{-3}}{4.0026} = 1.637 \cdot 10^{21} \text{ sdep / cm}^3.$$

Средняя температура циркония:

$$\overline{T_{Zr}} = \frac{T_{m_{6}3\pi}^{hap} + T_{m_{6}3\pi}^{gh}}{2} = \frac{597.8 + 622.1}{2} = 609.9 \ K$$

Плотность сплава Э-110 описывается выражением [10, стр. 159]:

$$\rho_{Zr}(T) = (6636 - 0.286 \cdot T) / 1000.$$

Процентное содержание изотопов циркония в естественной смеси:

$$c_{Zr^{90}} = 0.5146,$$

$$c_{Zr^{91}} = 0.5146,$$

$$c_{Zr^{92}} = 0.1123,$$

$$c_{Zr^{94}} = 0.1711,$$

$$c_{Zr^{96}} = 0.028.$$

Ядерная плотность Zr^{90} :

Подпись Дата

Изм.

Лист

№ докум.

$$N_{Zr^{90}} = c_{Zr^{90}} \frac{N_A \cdot \rho_{Zr}(\overline{T_{Zr}})}{A_{Zr^{90}}} = 0.5146 \cdot \frac{0.6022 \cdot 10^{24} \cdot 6.462}{89.9047} = 2.228 \cdot 10^{22} \text{ sdep / } cm^3,$$

$$N_{Zr^{91}} = 4.808 \cdot 10^{21} \text{ sdep / } cm^3,$$

$$N_{Zr^{92}} = 7.245 \cdot 10^{21} \text{ sdep / } cm^3,$$

$$N_{Zr^{94}} = 7.211 \cdot 10^{21} \text{ sdep / } cm^3,$$

$$N_{z_r^{96}} = 1.136 \cdot 10^{21}$$
 ядер / см³.

Атомный вес молекулы воды:

$$M_{H_2O} = 2 \cdot A_{H^1} + A_{O^{16}} = 2 \cdot 1.0078 + 15.9994 = 18.015 \, c \, / \,$$
моль

Ядерная концентрация молекул воды:

$$N_{H_2O} = \frac{N_A \cdot \rho_{H_2O}(P_{a.3.}, \overline{T})}{M_{H_2O}} = \frac{0.6022 \cdot 10^{24} \cdot 698.7 \cdot 10^{-3}}{4.0026} = 2.336 \cdot 10^{22} \text{ sdep / cm}^3.$$

В рассматриваемой задаче решетка является однородной и все ячейки находятся в одинаковых условиях. Поэтому при решении можно ограничиться рассмотрением только одной ячейки. При этом влияние соседних учитывается условием симметрии или условием зеркального отражения на границе. Поперечный размер ячейки значительно меньше продольного. Поэтому в ячейке поток нейтронов есть функция 2х координат. Однако расчеты двумерных координат громоздки, поэтому делается еще одно допущение. Реальная ячейка, имеющая форму шестигранника, заменяется расчетной моделью – круговой одномерной, эквивалентной ячейкой Вигнера-Зейца.

Зейца, эквивалентная элементарной шестигранной (б);

1 – замедлитель, 2 – топливный блок, 3 – оболочка твэла, 4 – газовый

зазор

						Лист		
					ФЮРА.562527.005ПЗ	25		
Изм.	Лист	№ докум.	Подпись	Дата				
						,		

После гомогенизации ядерные концентрации замедлителя изменятся, а блока нет:

Средний логарифмический декремент энергии для i-го нуклида, за исключением водорода, рассчитывается по формуле:

$$\xi_i = 1 + \frac{(A_i - 1)^2}{2A_i} \ln\left(\frac{A_i - 1}{A_i + 1}\right).$$

Для водорода $\,\xi_{\scriptscriptstyle H^1}\,{=}\,1\,.$

И

Таблица 3 – Логарифмический декремент

Ну	/клид	ад Атомная масса, а.е.		Нуклид	Атомная масса, а.е.м	
U^2	235	0.00	85	U^{238}	0.0084	
O^1	16	0.12	00	H^1	1	
Zr	Zr^{90} 0.022		221 Zr^{91}		0.0218	
Zr	.92	0.02	16	Zr^{94}	0.0211	
Zr	.96	0.02	07	Eu^{151}	0.0132	
Ει	u ¹⁵²	0.01	31	<i>Eu</i> ¹⁵³	0.0130	
						Лисп
Лист	№ докул	и. Подпись Дат	Φ_{i}	ФЮРА.562527.005ПЗ		26

Продолжение таблицы 3

Eu^{154}	0.0129	Eu^{155}	0.0128
Eu^{156}	0.0128	Gd^{154}	0.0129
Gd^{155}	0.0128	Gd^{156}	0.0128
Gd^{157}	0.0127	Gd^{158}	0.0126
Pu^{239}	0.0083	Pu^{240}	0.0083
Pu^{241}	0.0083	Xe^{135}	0.0148
He^4	0.4251	Sm^{149}	0.0134

Принимаем допущение, что рассеяние изотропно, средний косинус угла рассеяния рассчитываем по формуле:

$$\mu_i = \frac{2}{3A_i}.$$

Таблица 4 – Средний косинус угла рассеяния

пуклид	Атомная масса, а.е.м	Нуклид	Атомная масса, а.е.м
U^{235}	0.0028	U^{238}	0.0028
O^{16}	0.0417	H^1	0.6615
Zr^{90}	0.0074	Zr^{91}	0.0073
Zr^{92}	0.0073	Zr^{94}	0.0071
Zr^{96}	0.0070	Eu^{151}	0.0044
Eu^{152}	0.0044	Eu^{153}	0.0044
Eu^{154}	0.0043	Eu^{155}	0.0043
Eu^{156}	0.0043	Gd^{154}	0.0043
Gd^{155}	0.0043	Gd^{156}	0.0043
Gd^{157}	0.0042	Gd^{158}	0.0042
Pu^{239}	0.0028	Pu^{240}	0.0028
Pu^{241}	0.0028	Xe^{135}	0.0049
He^4	0.1666	Sm^{149}	0.0045

3.2 Расчет реактора с гадолиниевым ВП.

Выгорающий поглотитель гомогенно распределен в топливе. Т.к. ВП в условиях задачи распределен в каждом твэле и его концентрация мала, изменением плотности пренебрегаем. Концентрация гадолиниевого выгорающего поглотителя $c_{Gd_2O_3} = 0.00045\%$.

Ядерная концентрация Gd_2O_3 :

$$N_{Gd_2O_3} = c_{Gd_2O_3}N_{UO_2} = 0.00045 \cdot 2.4 \cdot 10^{22} = 1.080 \cdot 10^{19} \text{ sdep / cm}^3.$$

Концентрация изотопа Gd^{154} :

$$N_{Gd^{154}} = 2c_{Gd^{154}}N_{Gd_2O_3} = 2 \cdot 0.0218 \cdot 1.080 \cdot 10^{19} = 4.709 \cdot 10^{17} \text{ sdep / cm}^3.$$

Аналогично рассчитываются концентрации для остальных изотопов:

$$\begin{split} N_{Gd^{155}} &= 3.197 \cdot 10^{18} \; \textit{sdep} \; / \; \textit{cm}^3, \\ N_{Gd^{156}} &= 4.422 \cdot 10^{18} \; \textit{sdep} \; / \; \textit{cm}^3, \\ N_{Gd^{157}} &= 3.380 \cdot 10^{18} \; \textit{sdep} \; / \; \textit{cm}^3, \\ N_{Gd^{158}} &= 5.366 \cdot 10^{18} \; \textit{sdep} \; / \; \textit{cm}^3. \end{split}$$

Ядерная концентрация кислорода:

$$N_{O^{16}} = 2N_{UO_2} + 3N_{Gd_2O_3} = 2 \cdot 2.400 \cdot 10^{22} + 3 \cdot 1.080 \cdot 10^{19} = 4.803 \cdot 10^{22} \text{ sdep / cm}^3.$$

3.2.1 Расчет температуры нейтронного газа

Для расчета методом четырех сомножителей проводится усреднение сечений приведенных в библиотеке ядерных данных JENDL 4.0. Усреднение проводится с нормировкой на спектр Максвелла по формуле:

$$\overline{\sigma} = \frac{\int_{0}^{\infty} \Phi(E)\sigma(E)dE}{\int_{0}^{\infty} \Phi(E)dE},$$

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Лист 28 где $\Phi(E) = \frac{E}{E_t} \exp\left(\frac{-E}{E_t}\right)$ - спектр Максвелла, характеризующий

распределение нейтронов в тепловой области, где $E_t = kT_{H\Gamma}$, $k = 8.617 \cdot 10^{-5} \Rightarrow B \cdot K$ - постоянная Больцмана, $T_{H\Gamma}$ – температура нейтронного газа.

Расчет интегралов в числителе и знаменателе проводится методом Симпсона с неравномерным шагом. Метод Симпсона заключается в аппроксимации реальной функции параболой, проходящей через 3 точки.

Рассмотрим расчет:

Рисунок 2 – описание метода Симпсона

Коэффициенты a, b, c в уравнении параболы $f(x) = ax^2 + bx + c$ можно определить решив систему из 3х уравнений:

$$\begin{cases} f(x_i) = ax_i^2 + bx_i + c \\ f(x_{i+1}) = ax_{i+1}^2 + bx_{i+1} + c \\ f(x_{i+2}) = ax_{i+2}^2 + bx_{i+2} + c \end{cases}$$

Переходим к новой системе координат такой, что

$$x_i = 0,$$

 $x_{i+1} - x_i = h,$
 $x_{i+2} - x_i = k$

Тогда система примет вид:

$$\begin{cases} f(0) = c \\ f(h) = ah^2 + bh + c \\ f(k) = ak^2 + bk + c \end{cases}$$

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Лист

Из второго уравнения выразим *b* и подставим это значение в 3е уравнение и выразим *a* :

$$b = \frac{f(h)}{h} - ah - \frac{f(0)}{h},$$

$$f(k) = ak^{2} + \left(\frac{f(h)}{h} - ah - \frac{f(0)}{h}\right)k + \frac{f(0)}{h},$$

$$f(k) - \frac{f(h) - f(0)}{h}k - \frac{f(0)}{h} = a\left(k^{2} - hk\right),$$

$$a = \frac{f(k) - \frac{f(h) - f(0)}{h}k - \frac{f(0)}{h}}{\left(k^{2} - hk\right)}.$$

Площадь под параболой будет равна:

$$S_{i} = \int_{0}^{k} \left(ax^{2} + bx + c\right) dx = \frac{a}{3}k^{3} + \frac{b}{2}k^{2} + ck.$$

Суммируя S_i получим значения определенного интеграла.

В реальных средах распределение тепловых нейтронов не совпадает в точности с распределением Максвелла, поскольку имеет место поглощение тепловых нейтронов, спектр сдвигается в сторону больших энергий. Для оценки сдвига максимума спектра вводится понятие температуры нейтронного газа:

$$T_{_{_{HZ}}} = T_0 \cdot \left[1 + C \cdot \frac{\sum \Sigma_a}{\sum \xi \Sigma_s} \right].$$

*ξ*Σ_s – усредненная замедляющая способность гомогенизированной эквивалентной ячейки;

Σ_a – усредненное макроскопическое сечение поглощения, гомогенизированное по эквивалентной ячейке;

C = 1.4 – эмпирическая константа для водо-водяных реакторов [11, стр. 82].

Для расчета температуры нейтронного газа сечения элементов блока усредняются по средней температуре теплоносителя.

Лист

30

					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

Макроскопические нейтронные сечения i-реакции j-нуклида рассчитываются по формуле:

$$\Sigma_i^j = \sigma_i^j N_j.$$

Таблица 5 – Макроскопические сечения при расчете температуры нейтронного газа

Нуклид	Σ_c, CM^{-1}	Σ_a, CM^{-1}	Σ_s, cm^{-1}	$\xi \Sigma_s, CM^{-1}$				
U^{235}	0.06919	0.46962	0.01740	0.00015				
U^{238}	0.03870	0.03870	0.21179	0.00177				
O^{16}	6e-06	6e-06	0.18736	0.02247				
Zr^{90}	0.00003	0.00003	0.02167	0.00048				
Zr^{91}	0.00070	0.00070	0.00973	0.00021				
Zr^{92}	0.00019	0.00019	0.00955	0.00021				
Zr^{94}	0.00004	0.00004	0.00820	0.00017				
Zr^{96}	3e-06	3e-06	0.00129	0.00005				
Gd^{154}	0.00002	0.00002	3e-06	0				
Gd^{155}	0.07551	0.07551	0.00011	0				
Gd^{156}	5e-06	5e-06	0.00002	0				
Gd^{157}	0.34845	0.34845	0.00137	0.00005				
Gd^{158}	7e-06	7e-06	1.8e-05	0				
He^4	0	0	3.2e-05	0.00001				
H_2O	0.00770	0.00770	0.99697	0.93356				
Суммарное сечение поглошения равно $\Sigma \Sigma = 0.94099 cm^{-1}$.								

Суммарная рассеивающая способность $\sum \xi \Sigma_s = 0.95909 \ cm^{-1}$.

$$T_{\mu\nu} = 586.6 \cdot \left[1 + 1.4 \cdot \frac{0.94099}{0.95909} \right] = 1392 \ K$$

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Лист

3.2.2 Расчет энергии сшивки

Для нахождения эффективных сечений необходимо найти энергию сшивки спектров Максвелла и Ферми. Энергия сшивки E_{cp} находится путем решения трансцендентного уравнения:

$$\frac{x_{zp}^{2} \exp\left(-x_{zp}\right)}{1 - \left(1 - x_{zp}\right) \exp\left(-x_{zp}\right)} = \frac{\overline{\Sigma_{a}}}{\overline{\xi} \Sigma_{s}}.$$

Для решения уравнения необходимо задать значение x_{cp} , усреднить значения сечений, рассчитать $\frac{\overline{\Sigma_a}}{\xi \Sigma_s}$ и сравнить с левой частью уравнения, в случае

расхождения выбирается другое значение x_{cp} .

Усреднение сечений проводится с помощью 3 функций код которых прописан в приложении:

Функция Maxwell(E) описывает спектр Максвелла, функция Simps(x,y) производит численное интегрирование таблично заданное функции y(x), в случае если массивы чисел x и y имеют четное чилсо элементов, последний шаг интегрирования производится методом трапеций.

Функция Sigma_sr(folder, nuc, E_gr, T) обращается к папке folder в которой хранятся данные из библиотеки ядерных констант JENDL 4.0, открывает файл с название nuc, соответствующее рассчитываемому нуклиду. Т.к. в файлах приведены данные для энергий в диапазоне $[10^{-5}, 2 \cdot 10^8]$ верхняя энергия должна быть ограничена значением E_gr. В случае, если значение E_gr не представлено в таблице, проводится интерполирование. Затем с помощью функции Simps(x,y) производится вычисление числителя и знаменателя в формуле расчет эффективного сечений. В качестве результата действия функции Sigma_sr(folder, nuc, E_gr, T) возвращается значение интегрального сечения.

Рассчитанное значение $x_{ep} = 2.9336$. Граничная энергия спектра Максвелла $E_{ep} = kT_{He}x_{ep} = 8.617 \cdot 10^{-5} \cdot 1392 \cdot 2.9336 = 0.35147$ эВ, где $k = 8.617 \cdot 10^{-5}$ эВ / K – постоянная Больцмана.

						Лист
					ФЮРА.562527.005ПЗ	32
Изм.	Лист	№ докум.	Подпись	Дата		52

3.2.3 Расчет макроскопических сечений

Таблица 6 – Макроскопические эффективные сечения при расчете температуры нейтронного газа.

Нуклид	Σ_f, CM^{-1}	Σ_a, cm^{-1}	Σ_s, cm^{-1}	$\xi \Sigma_s, CM^{-1}$	Σ_{tr}, CM^{-1}
U^{235}	0.26810	0.342906	0.017135	0.000145	0.360258
U^{238}	_	0.028611	0.211360	0.001772	0.239805
O^{16}	_	0.000004	0.185978	0.022308	0.179560
Zr^{90}	_	0.00002	0.021642	0.000478	0.021529
Zr^{91}	_	0.000515	0.009713	0.000212	0.010134
Zr^{92}	_	0.000141	0.009538	0.000206	0.009612
Zr^{94}	_	0.000031	0.008189	0.000173	0.008170
Zr^{96}	_	0.000002	0.001290	0.000027	0.001284
Gd^{154}	_	0.000015	0.000003	0	0.000018
Gd^{155}	_	0.029497	0.000062	0.000006	0.029597
Gd^{156}	_	0.000003	0.000021	0	0.000024
Gd^{157}	_	0.137766	0.000741	0.000008	0.139102
Gd^{158}	_	0.000005	0.000017	0	0.000022
He^4	_	0	0.000031	0.000013	0.000027
H_2O	_	0.005637	0.919156	0.856215	0.593318

3.2.4 Расчет числа вторичных нейтронов

Величина $v_{_{3\phi\phi}}$ по определению равна числа вторичных нейтронов на один поглощенный топливом первичный тепловой нейтрон [7, стр 300]:

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

$$v_{_{9}\phi\phi} = \frac{2.416 \cdot 0.28856}{0.33937} = 2.033.$$

3.2.5 Расчет коэффициента размножения на быстрых нейтронах

Коэффициент размножения на быстрых нейтронах – это по определению отношение числа всех быстрых нейтронов к числу быстрых нейтронов, рожденных при делении на тепловых нейтронах. Деление в быстрой области идет как на нечетных делящихся нуклидах, так и на четных, однако 95% деления в быстрой области происходит на ядрах U^{238} .

Величиной пористости блока называют отношение концентрации ядер U^{238} в рассматриваемом блоке к концентрации ядер U^{238} в блоке металлического урана:

$$b = \frac{N_{U^{238}}}{4.783 \cdot 10^{22}} = \frac{2.282 \cdot 10^{22}}{4.783 \cdot 10^{22}} = 0.4772.$$

*U*²³⁸ Имеет высокий порог деления больше 1 МэВ, поэтому любой нейтрон, испытавший столкновений с замедлителем, станет подпороговым.

Вероятность нейтрона испытать первое столкновение внутри блока прямо пропорциональна его диаметру и описывается эмпирической зависимостью с точностью 0,02% [12, стр. 139]:

$$p_U = 0.125 \cdot d_{monnulue}^{hap} = 0.125 \cdot 0.76 = 0.095.$$

Коэффициент размножения на быстрых нейтронах в одиночном изолированном блоке рассчитывается по формуле:

$$\mu_t = 1 + \frac{0.092 \cdot P \cdot b}{1 - 0.52 \cdot P \cdot b} = 1 + \frac{0.092 \cdot 0.095 \cdot 0.4772}{1 - 0.52 \cdot 0.095 \cdot 0.4772} = 1.00043.$$

Для тесной решетки твэлов необходимо также учитывать перекрестный эффект размножения на быстрых нейтронах, этот эффект учитывает полуэмпирическая формула Батя-Цыганкова [12, стр. 142]:

$$\mu = \mu_t + \frac{1.192 - \mu_t}{1 + 2.3 \frac{2N_{H_2O}}{N_{U^{238}}} \cdot \frac{F_{H_2O}}{F_{zop}}} = \frac{1.192 - \mu_t}{1 + 2.3 \frac{2 \cdot 1.847 \cdot 10^{22}}{2.282 \cdot 10^{22}} \cdot \frac{272.258}{138.009}} = 1.0268.$$

					ФЮРА.562527.005ПЗ	Лист
						24
Изм.	Лист	№ докум.	Подпись	Дата		54

3.2.6 Расчет коэффициента использования тепловых нейтронов

По определению коэффициент использования тепловых нейтронов – это отношения числа тепловых нейтронов, поглощенных топливом, к числу тепловых нейтронов, поглощенных в ячейке

Для вычисления коэффициента использования тепловых нейтронов необходимо определить величину внутреннего и внешнего блок-эффектов:

Внутренний блок-эффект характеризуется величиной *F* и рассчитывается по формуле [13, стр. 263]:

$$F = \frac{\chi_{\textit{гор}} d_{\textit{monливо}}^{\textit{hap}}}{4} \cdot \frac{I_0(\chi_{\textit{гор}} d_{\textit{monливо}}^{\textit{hap}} / 2)}{I_1(\chi_{\textit{гор}} d_{\textit{monливо}}^{\textit{hap}} / 2)} = \frac{d_{\textit{monливо}}^{\textit{hap}}}{4L_{\textit{гор}}} \cdot \frac{I_0\left(\frac{d_{\textit{monливo}}^{\textit{hap}}}{2L_{\textit{гор}}}\right)}{I_1\left(\frac{d_{\textit{monливo}}^{\textit{hap}}}{2L_{\textit{гор}}}\right)}.$$

 I_0 , I_1 – модифицированные функции Бесселя первого и второго порядков. $\chi = \frac{1}{L}$ – материальный параметр среды; $L = \sqrt{3\Sigma_{tr}\Sigma_a}^{-1}$ – длина диффузии

$$L_{20p} = 0.8819,$$

 $L_{3M} = 8.0725.$

Подставив полученные значения получим F = 1.0223.

Внешний блок-эффект характеризуется величиной Е [14, стр 23]:

$$E = 1 + \frac{1}{2} \left(\frac{d_{g_{q_{q_{1}}}}}{2L_{_{3M}}} \right)^{2} \left(\ln \left(\frac{d_{g_{q_{1}}}}{d_{mon,nueo}}^{\mu ap}} \right) - 0.75 \right),$$
$$d_{g_{q_{1}}} = \sqrt{\frac{4F_{g_{q_{1}}}}{N_{_{me3,n}}\pi}} = \sqrt{\frac{482.34}{312 \cdot \pi}} = 1.403 \, cm,$$
$$E = 1 + \frac{1}{2} \left(\frac{1.403}{2 \cdot 8.0725} \right)^{2} \left(\ln \left(\frac{1.403}{0.76} \right) - 0.75 \right) = 1.0003.$$

Коэффициент использования тепловых нейтронов топливом рассчитывается по формуле:

$$\theta_{rop} = \frac{\Sigma_a^{U^{235}}}{\Sigma_a^{rop}} = \frac{0.339365}{0.549623} = 0.6174,$$

	_			_	
					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

Лист 35 Коэффициент использования тепловых нейтронов в ячейке рассчитывается по формуле:

$$\theta' = \frac{F_{zop} \Sigma_a^{zop}}{F_{zop} \Sigma_a^{zop} E + F_{_{3M}} \Sigma_a^{_{3M}} F} = \frac{138.009 \cdot 0.549623}{138.009 \cdot 0.549623 \cdot 1.0003 + 344.333 \cdot 0.006276 \cdot 1.0223} = 0.9714.$$

Коэффициент использования тепловых нейтронов в реакторе:

 $\theta = \theta_{200} \theta' = 0.6174 \cdot 0.9714 = 0.5998.$

3.2.7 Расчет вероятности избежать резонансного захвата

В гетерогенных реакторах топливо располагается отдельно от замедлителя. В твэле замедление идет слабо, поэтому нейтроны резонансных энергий рождаются в основном в процессе замедления в замедлителе, т.е. поступают в блок извне. Резонансные нейтроны имеют высокую вероятность быть поглощенными на периферии блока и не могут проникнуть вглубь топлива, поэтому центральная его часть «выключается» из резонансного захвата.

Длина свободного пробега нейтрона в кольцевом блоке рассчитывается по формуле [13, стр 251]:

$$\bar{l} = \frac{\left(d_{monnuleo}^{hap} - d_{monnuleo}^{\theta h} - 2\right)}{d_{monnuleo}^{hap} - 2} = \frac{0.760^2 - 0.12^2}{0.760^2} = 0.741.$$

Средний пробег нейтрона в замедлителе до столкновения его с блоком [13, стр 253]:

$$\overline{l_m} = \frac{F_{\text{3M}}}{F_{\text{cop}}} \overline{l} = \frac{344.333}{138.009} \cdot 0.741 = 1.849.$$

Коэффициент для определения поправки Петрова:

$$\eta = \frac{1}{1 + \overline{l_m} \Sigma_s^{_{3M}}} = \frac{1}{1 + 1.849 \cdot 1.1534} = 0.3192.$$

Поправку Петрова для цилиндрического блока определяем по графику [13, стр 253]:

$$R(\eta) = 0.84.$$

Поправка Егиазарова учитывающая Доплер эффект [13, стр 254]:

		_	_			Лист
					ФЮРА.562527.005ПЗ	26
Изм.	Лист	№ докум.	Подпись	Дата		- 50
$$D_t = 0.775 \cdot \left(1 + 17.5 \cdot 10^{-3} \sqrt{T_{3\phi\phi}}\right) = 0.775 \cdot \left(1 + 17.5 \cdot 10^{-3} \sqrt{914}\right) = 1.185.$$

Вероятность избежать резонансного захвата:

$$\begin{split} & \varphi = \\ \exp \left(\frac{-0.366R(\eta)N_{m837}\sqrt{b}\sqrt{d_{m0n1060}^{\mu ap}\left(d_{m0n1060}^{\mu ap}^{2} - d_{m0n1060}^{6\mu}\right)} + 0.184b\left(d_{m0n1060}^{\mu ap}^{2} - d_{m0n1060}^{6\mu}\right)}{\left(\xi\Sigma_{s}\right)_{3M}F_{3M}} \right) \\ = \frac{-0.366\cdot84\cdot312\cdot\sqrt{0.4772}\cdot\sqrt{0.76\cdot\left(0.76^{2} - 0.12^{2}\right)} + 0.184\cdot0.4772\cdot\left(0.76^{2} - 0.12^{2}\right)}{0.87754\cdot344.333} \\ = 0.8232. \end{split}$$

3.2.8 Расчет эффективного коэффициента размножения

Коэффициент размножения бесконечной среды рассчитывается по формуле 4-х сомножителей:

$$k_{\infty} = v_{abb} \mu \theta \varphi = 2.033 \cdot 1.0268 \cdot 0.5998 \cdot 0.8232 = 1.0306.$$

Для расчет эффективного коэффициента размножения необходимо рассчитать вероятность утечки тепловых и замедляющихся нейтронов.

Квадрат длины диффузии с учетом гетерогенности определяется по формуле [7, с.309]:

Возраст тепловых нейтронов в тесной решетке:

$$\begin{aligned} \tau &= 27.3 \cdot \frac{\left(1 + \frac{F_{zop}}{F_{H_2O}} + \frac{F_{Zr}}{F_{H_2O}}\right)^2}{\left(\rho_{H_2O}(P_{a.3.}, \overline{T}) + 0.82 \frac{F_{zop}}{F_{H_2O}} + 0.4 \frac{F_{Zr}}{F_{H_2O}}\right)^2} = \\ &= 27.3 \cdot \frac{\left(1 + \frac{138.009}{272.258} + \frac{63.663}{272.258}\right)^2}{\left(0.6987 + 0.82 \frac{138.009}{272.258} + 0.4 \frac{63.663}{272.258}\right)^2} = 56.6977 \ cm. \end{aligned}$$

Длина миграции нейтрона:

$$M = \sqrt{\tau + L_{_{H_{Y}}}^{^{2}}} = \sqrt{56.6977 + 5.1525^{^{2}}} = 11.5246 \, cm.$$

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Эффективная добавка для железоводного отражателя рассчитывается по формуле:

$$\delta = 7.2 + 0.1(M^2 - 40) = 7.2 + 0.1 \cdot (11.5246^2 - 40) = 11.5 \, cm.$$

Радиус активной зоны:

$$R_{a.3.} = \sqrt{\frac{N_{TBC}F_{gq}}{\pi}} = \sqrt{\frac{163 \cdot 482.342}{\pi}} = 158.2 \, cm.$$

Геометрические параметры активной зоны:

$$\alpha_r = \frac{2.405}{R_{a.3.} + \delta} = \frac{2.405}{158.2 + 11.5} = 0.0142,$$
$$\alpha_z = \frac{\pi}{H_{a.3.} + 2\delta} = \frac{\pi}{373 + 2 \cdot 11.5} = 0.0079,$$
$$\alpha = \sqrt{\alpha_r^2 + \alpha_z^2} = \sqrt{0.0142^2 + 0.0079^2} = 0.0163$$

Вероятность утечки теплового нейтрона:

$$P_{L} = \frac{1}{1 + \alpha^{2} L_{g_{4}}^{2}} = \frac{1}{1 + 0.0163^{2} \cdot 5.1525^{2}} = 0.9930.$$

Вероятность утечки замедляющегося нейтрона:

$$P_{\tau} = \exp(-\alpha^2 \tau) = \exp(-0.0163^2 \cdot 56.6977) = 0.9851.$$

Эффективный коэффициент размножения реактора на мощности:

 $k_{ab\phi} = k_{\infty} P_L P_{\tau} = 1.030 \cdot 0.9930 \cdot 0.9852 = 1.0082.$

3.3 Расчет реактора с европиевым ВП.

Расчет проводится аналогично. Концентрация оксида европия равна концентрации гадолиниевого поглотителя в предыдущем пункте $c_{Eu_2O_3} = 0.00045\%$.

Ядерная концентрация Eu_2O_3 :

$$N_{Eu_2O_3} = c_{Eu_2O_3}N_{UO_2} = 0.00045 \cdot 2.400 \cdot 10^{22} = 1.080 \cdot 10^{19} \text{ sdep / cm}^3$$

Концентрация изотопов Eu^{151} , Eu^{153} :

$$N_{Eu^{151}} = 2c_{Eu^{151}}N_{Eu_2O_3} = 2 \cdot 0.4744 \cdot 1.080 \cdot 10^{19} = 1.0247 \cdot 10^{19} \text{ sdep / } cm^3,$$

					ФЮРА.562
Изм. Л	lucm	№ докум.	Подпись	Дата	

ФЮРА.562527.005ПЗ

$$N_{Eu^{153}} = 2c_{Eu^{153}}N_{Eu_2O_3} = 2 \cdot 0.5223 \cdot 1.080 \cdot 10^{19} = 1.1282 \cdot 10^{19} \text{ sdep / cm}^3,$$

Ядерная концентрация кислорода:

$$N_{O^{16}} = 2N_{UO_2} + 3N_{Eu_2O_3} = 2 \cdot 2.400 \cdot 10^{22} + 3 \cdot 1.080 \cdot 10^{19} = 4.800 \cdot 10^{22} \text{ sdep} / cm^3.$$

3.3.1 Расчет температуры нейтронного газа

Таблица 7 – Макроскопические сечения при расчете температуры нейтронного газа.

Нуклид	Σ_c, CM^{-1}	Σ_a, CM^{-1}	Σ_s, cm^{-1}	$\xi \Sigma_s, CM^{-1}$
U^{235}	0.06919	0.46962	0.01740	0.00015
U^{238}	0.03870	0.03870	0.21179	0.00177
O^{16}	6e-06	6e-06	0.18736	0.02247
Zr^{90}	0.00003	0.00003	0.02167	0.00048
Zr^{91}	0.00070	0.00070	0.00973	0.00021
Zr^{92}	0.00019	0.00019	0.00955	0.00021
Zr^{94}	0.00004	0.00004	0.00820	0.00017
Zr^{96}	3e-06	3e-06	0.00129	0.00005
Eu^{151}	0.00002	0.04385	3e-06	0
Eu^{153}	0.06712	0.00210	0.00010	0
He^4	0	0	3.2e-05	0.00001
H_2O	0.00770	0.00770	0.99697	0.93356

Суммарное сечение поглощения равно $\sum \Sigma_a = 0.56294 \ cm^{-1}$.

Суммарная рассеивающая способность $\sum \xi \Sigma_s = 0.95905 \ cm^{-1}$.

$$T_{\mu z} = 586.6 \cdot \left[1 + 1.4 \cdot \frac{0.56294}{0.95905} \right] = 1069 \ K.$$

Рассчитанное значение $x_{zp} = 3.35156$. Граничная энергия спектра Максвелла $E_{zp} = kT_{HZ}x_{zp} = 8.617 \cdot 10^{-5} \cdot 1069 \cdot 3.35156 = 0.34595$ эВ.

					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

3.3.2 Расчет макроскопических сечений

Таблица 8 – Макроскопические эффективные сечения при расчете температуры нейтронного газа.

Нуклид	Σ_f, CM^{-1}	Σ_a, CM^{-1}	Σ_s, cm^{-1}	$\xi \Sigma_s, CM^{-1}$	Σ_{tr}, CM^{-1}
U^{235}	0.314338	0.371729	0.017214	0.000146	0.360258
U^{238}	—	0.031228	0.211573	0.001773	0.239805
O^{16}	—	0.000004	0.186171	0.022331	0.179453
Zr^{90}	—	0.000022	0.021648	0.000478	0.021533
Zr^{91}	—	0.000564	0.009713	0.000212	0.010219
Zr^{92}	_	0.000154	0.009541	0.000206	0.009636
Zr^{94}	_	0.000034	0.008191	0.000173	0.008175
Zr^{96}	_	0.000002	0.001290	0.000027	0.001284
Eu^{151}	_	0.032643	0.000034	0	0.032675
Eu^{153}	_	0.001621	0.000110	0.000001	0.001733
He^4	_	0	0.000031	0.000013	0.000027
H_2O	_	0.006173	0.937255	0.874211	0.667361

3.3.3 Расчет числа вторичных нейтронов

Число вторичных нейтронов

$$v_{a\phi\phi} = \frac{\int_{0}^{E_{ap}} v_f(E) \Sigma_f(E) \Phi(E) dE}{\int_{0}^{E_{ap}} \Sigma_a(E) \Phi(E) dE} = \frac{\sum v_f^k \Sigma_f^k}{\sum \Sigma_a^k} = \frac{v_f^{U^{235}} \Sigma_f^{U^{235}}}{\Sigma_a^{U^{235}}},$$

$$v_{a\phi\phi} = \frac{2.416 \cdot 0.314338}{0.371729} = 2.043.$$

3.3.4 Расчет коэффициента размножения на быстрых нейтронах

Пористость блока:

$$b = \frac{N_{U^{238}}}{4.783 \cdot 10^{22}} = \frac{2.282 \cdot 10^{22}}{4.783 \cdot 10^{22}} = 0.4772.$$

					$\phi(ODA) = c + c + c + c + c + c + c + c + c + c$
					$\Psi (0 F A, 302327, 003113)$
Изм	Пист	No JOKAN	Подпись	Пата	
V13IVI.	Jucin	Nº OONYM.	TIOOTIGED	дата	

Вероятность нейтрона испытать первое столкновение внутри блока:

$$p_U = 0.125 \cdot d_{monnulloo}^{hap} = 0.125 \cdot 0.76 = 0.095.$$

Коэффициент размножения на быстрых нейтронах в одиночном изолированном блоке:

$$\mu_t = 1 + \frac{0.092 \cdot P \cdot b}{1 - 0.52 \cdot P \cdot b} = 1 + \frac{0.092 \cdot 0.095 \cdot 0.4772}{1 - 0.52 \cdot 0.095 \cdot 0.4772} = 1.00043.$$

Для тесной решетки твэлов:

$$\mu = \mu_t + \frac{1.192 - \mu_t}{1 + 2.3 \frac{2N_{H_2O}}{N_{U^{238}}} \cdot \frac{F_{H_2O}}{F_{zop}}} = \frac{1.192 - \mu_t}{1 + 2.3 \frac{2 \cdot 1.847 \cdot 10^{22}}{2.282 \cdot 10^{22}} \cdot \frac{272.258}{138.009}} = 1.0268.$$

3.3.5 Расчет коэффициента использования тепловых нейтронов Внутренний блок-эффект:

$$F = \frac{\chi_{cop} d_{mon,ueo}^{hap}}{4} \cdot \frac{I_0(\chi_{cop} d_{mon,ueo}^{hap} / 2)}{I_1(\chi_{cop} d_{mon,ueo}^{hap} / 2)} = \frac{d_{mon,ueo}^{hap}}{4L_{cop}} \cdot \frac{I_0\left(\frac{d_{mon,ueo}^{hap}}{2L_{cop}}\right)}{I_1\left(\frac{d_{mon,ueo}^{hap}}{2L_{cop}}\right)}$$

Длина диффузии в топливе и замедлителе:

Изм.

$$L_{zop} = 1.0700,$$

 $L_{3M} = 7.3071.$

Подставив полученные значения получим F = 1.0157. Внешний блок-эффект:

$$E = 1 + \frac{1}{2} \left(\frac{d_{g_{q_{q_{1}}}}}{2L_{_{3M}}} \right)^{2} \left(\ln \left(\frac{d_{g_{q_{1}}}}{d_{mon,nueo}}^{Hap}} \right) - 0.75 \right),$$
$$d_{g_{q_{1}}} = \sqrt{\frac{4F_{g_{q_{1}}}}{N_{_{mo3,n}}\pi}} = \sqrt{\frac{482.34}{312 \cdot \pi}} = 1.403 \, cm,$$
$$E = 1 + \frac{1}{2} \left(\frac{1.403}{2 \cdot 7.3071} \right)^{2} \left(\ln \left(\frac{1.403}{0.76} \right) - 0.75 \right) = 1.0004.$$

Коэффициент использования тепловых нейтронов в топливе рассчитывается по формуле:

					Лист
				ФЮРА.562527.005ПЗ	41
Лист	№ докум.	Подпись	Дата		41

$$\theta_{cop} = \frac{\Sigma_a^{U^{235}}}{\Sigma_a^{cop}} = \frac{0.314338}{0.437220} = 0.8502.$$

Коэффициент использования тепловых нейтронов в ячейке рассчитывается по формуле:

$$\theta' = \frac{F_{zop} \Sigma_a^{zop}}{F_{zop} \Sigma_a^{zop} E + F_{3M} \Sigma_a^{3M} F} = \frac{138.009 \cdot 0.538804}{138.009 \cdot 0.437220 \cdot 1.0004 + 344.333 \cdot 0.006954 \cdot 1.0157} = 0.9609.$$

Коэффициент использования тепловых нейтронов в реакторе:

$$\theta = \theta_{200} \theta' = 0.8502 \cdot 0.9609 = 0.8169.$$

3.3.6 Расчет вероятности избежать резонансного захвата

Длина свободного пробега нейтрона в кольцевом:

$$\bar{l} = \frac{\left(d_{monnueo}^{\mu ap} - d_{monnueo}^{\rho \mu}\right)}{d_{monnueo}^{\mu ap}} = \frac{0.760^2 - 0.12^2}{0.760^2} = 0.741.$$

Средний пробег нейтрона в замедлителе до столкновения его с блоком:

$$\overline{l_m} = \frac{F_{3M}}{F_{rop}} \overline{l} = \frac{344.333}{138.009} \cdot 0.741 = 1.849.$$

Коэффициент для определения поправки Петрова:

$$\eta = \frac{1}{1 + \overline{l_m} \Sigma_s^{_{3M}}} = \frac{1}{1 + 1.849 \cdot 1.1738} = 0.3154.$$

Поправку Петрова для цилиндрического блока определяем по графику [13, стр 253]:

$$R(\eta) = 0.84.$$

Поправка Егиазарова учитывающая Доплер эффект [13, стр 254]:

$$D_{t} = 0.775 \cdot \left(1 + 17.5 \cdot 10^{-3} \sqrt{T_{g\phi\phi}}\right) = 0.775 \cdot \left(1 + 17.5 \cdot 10^{-3} \sqrt{914}\right) = 1.185.$$

Вероятность избежать резонансного захвата:

Изм.	Лист	№ докум.	Подпись	Дата

$$\begin{split} \varphi &= \\ \exp \left(\frac{-0.366R(\eta)N_{m_{63,7}}\sqrt{b}\sqrt{d_{mon,7000}^{nap}(d_{mon,7000}^{nap-2} - d_{mon,7000}^{s_{H}-2})} + 0.184b(d_{mon,7000}^{nap-2} - d_{mon,7000}^{s_{H}-2})}{(\xi \Sigma_{s})_{_{3M}}F_{_{3M}}} \right) \\ &= \frac{-0.366 \cdot 84 \cdot 312 \cdot \sqrt{0.4772} \cdot \sqrt{0.76 \cdot (0.76^{2} - 0.12^{2})} + 0.184 \cdot 0.4772 \cdot (0.76^{2} - 0.12^{2})}{0.89765 \cdot 344.333} \\ &= 0.8268. \end{split}$$

3.3.7 Расчет эффективного коэффициента размножения

Коэффициент размножения бесконечной среды:

$$k_{\infty} = v_{\varphi\phi\phi} \mu \theta \varphi = 2.042 \cdot 1.0268 \cdot 0.8169 \cdot 0.8268 = 1.4170.$$

Квадрат длины диффузии с учетом:

$$L_{g_{4}} = \sqrt{\theta L_{cop} + (1 - \theta)L_{g_{3}}} = \sqrt{0.8169 \cdot 1.0700 + (1 - 0.8169) \cdot 7.3071} = 3.2726.$$

Возраст тепловых нейтронов в тесной решетке:

$$\tau = 27.3 \cdot \frac{\left(1 + \frac{F_{zop}}{F_{H_2O}} + \frac{F_{Zr}}{F_{H_2O}}\right)^2}{\left(\rho_{H_2O}(P_{a.3.}, \overline{T}) + 0.82\frac{F_{zop}}{F_{H_2O}} + 0.4\frac{F_{Zr}}{F_{H_2O}}\right)^2} = 27.3 \cdot \frac{\left(1 + \frac{138.009}{272.258} + \frac{63.663}{272.258}\right)^2}{\left(0.6987 + 0.82\frac{138.009}{272.258} + 0.4\frac{63.663}{272.258}\right)^2} = 56.6977 \text{ cm}.$$

Длина миграции нейтрона:

$$M = \sqrt{\tau + L_{_{H_{Y}}}^{2}} = \sqrt{56.6977 + 3.2726^{2}} = 8.2102 \, cm$$

Эффективная добавка для железоводного отражателя рассчитывается по формуле:

$$\delta = 7.2 + 0.1(M^2 - 40) = 7.2 + 0.1 \cdot (8.2102^2 - 40) = 9.9 \, cm.$$

Радиус активной зоны:

$$R_{a.3.} = \sqrt{\frac{N_{TBC}F_{_{\mathcal{R}^{\prime}}}}{\pi}} = \sqrt{\frac{163 \cdot 482.342}{\pi}} = 158.2 \, cm.$$

Геометрические параметры активной зоны:

					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

$$\alpha_r = \frac{2.405}{R_{a.s.} + \delta} = \frac{2.405}{158.2 + 9.9} = 0.0143,$$
$$\alpha_z = \frac{\pi}{H_{a.s.} + 2\delta} = \frac{\pi}{373 + 2 \cdot 9.9} = 0.0080,$$
$$\alpha = \sqrt{\alpha_r^2 + \alpha_z^2} = \sqrt{0.0143^2 + 0.0080^2} = 0.0164.$$

Вероятность утечки теплового нейтрона:

$$P_L = \frac{1}{1 + \alpha^2 L_{gy}^2} = \frac{1}{1 + 0.0164^2 \cdot 3.2726^2} = 0.9971.$$

Вероятность утечки замедляющегося нейтрона:

$$P_{\tau} = \exp(-\alpha^2 \tau) = \exp(-0.0164^2 \cdot 56.6977) = 0.9849.$$

Эффективный коэффициент размножения реактора на мощности:

$$k_{abb} = k_{\infty} P_L P_{\tau} = 1.4170 \cdot 0.9971 \cdot 0.9849 = 1.3915.$$

Реактивность:

$$\rho = 1 - \frac{1}{k_{ab\phi}} = 1 - \frac{1}{1.3915} = 0.2814.$$

Начальная реактивность данной загрузки чрезвычайно велика и не может быть использована на практике с точки зрения безопасности, поэтому европий необходимо использовать в сочетании с другими ВП.

4 Расчет кампании реактора

Принимаем допущение, что период полураспада европия-152 очень велик, а продукты распада обладают сравнительно невысоким сечение захвата тепловых нейтронов ~ 100 барн поэтому считаем его стабильным. Реакции типа (n, 2n), (n, 3n), (n, α), (n, p) не рассматривались, так как эти реакции пороговые, и порог выше тепловых энергий. Для данных изотопов $\sigma_{c0} = \sigma_{a0}$.

Матпостановка для выгорающих поглотителей выглядит следующим образом.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

$$\begin{cases} \frac{dN_{Eu^{151}}}{dt} = -\sigma_c^{Eu^{151}} N_{Eu^{151}}(t)\overline{\Phi}, \\ \frac{dN_{Eu^{152}}}{dt} = \sigma_c^{Eu^{151}} N_{Eu^{151}}(t)\overline{\Phi} - \sigma_c^{Eu^{152}} N_{Eu^{152}}(t)\overline{\Phi} - \lambda_{Eu^{152}} N_{Eu^{152}}(t), \\ \frac{dN_{Eu^{153}}}{dt} = \sigma_c^{Eu^{153}} N_{Eu^{152}}(t)\overline{\Phi} - \sigma_c^{Eu^{153}} N_{Eu^{153}}(t)\overline{\Phi}, \\ \frac{dN_{Eu^{154}}}{dt} = \sigma_c^{Eu^{153}} N_{Eu^{153}}(t)\overline{\Phi} - \sigma_c^{Eu^{154}} N_{Eu^{154}}(t)\overline{\Phi} - \lambda_{Eu^{154}} N_{Eu^{154}}(t), \\ \frac{dN_{Eu^{154}}}{dt} = \sigma_c^{Eu^{154}} N_{Eu^{154}}(t)\overline{\Phi} - \sigma_c^{Eu^{155}} N_{Eu^{155}}(t)\overline{\Phi} - \lambda_{Eu^{155}} N_{Eu^{155}}(t), \\ \frac{dN_{Eu^{156}}}{dt} = \sigma_c^{Eu^{154}} N_{Eu^{154}}(t)\overline{\Phi} - \sigma_c^{Eu^{156}} N_{Eu^{156}}(t)\overline{\Phi} - \lambda_{Eu^{155}} N_{Eu^{155}}(t), \\ \frac{dN_{Eu^{157}}}{dt} = \sigma_c^{Eu^{154}} N_{Eu^{154}}(t)\overline{\Phi} - \sigma_c^{Eu^{157}} N_{Eu^{157}}(t)\overline{\Phi} - \lambda_{Eu^{157}} N_{Eu^{157}}(t), \\ \frac{dN_{Gd^{154}}}{dt} = \lambda_{Eu^{154}} N_{Eu^{154}}(t)\overline{\Phi} - \sigma_c^{Gd^{157}} N_{Eu^{157}}(t)\overline{\Phi} - \lambda_{Eu^{157}} N_{Eu^{157}}(t), \\ \frac{dN_{Gd^{155}}}{dt} = \sigma_c^{Gd^{154}} N_{Gd^{154}}(t)\overline{\Phi} - \sigma_c^{Gd^{157}} N_{Gd^{154}}(t)\overline{\Phi}, \\ \frac{dN_{Gd^{157}}}{dt} = \sigma_c^{Gd^{154}} N_{Gd^{154}}(t)\overline{\Phi} + \lambda_{Eu^{155}} N_{Eu^{155}}(t) - \sigma_c^{Gd^{155}} N_{Gd^{155}}(t)\overline{\Phi}, \\ \frac{dN_{Gd^{157}}}{dt} = \lambda_{Eu^{157}} N_{Eu^{157}}(t) - \sigma_c^{Gd^{157}} N_{Gd^{157}}(t)\overline{\Phi}. \end{cases}$$

Матпостановка для топлива Xe^{135} , I^{135} , Sm^{149} и Pm^{149} [15],[12]:

						Лист
					ФЮРА.562527.005ПЗ	15
Изм.	Лист	№ докум.	Подпись	Дата		43

$$\begin{cases} \frac{dN_{U^{235}}}{dt} = -\sigma_a^{U^{235}} N_{U^{235}}(t)\overline{\Phi}, \\ \frac{dN_{U^{238}}}{dt} = -\sigma_a^{U^{238}} N_{U^{238}}(t)\overline{\Phi} - \\ -(1-\varphi) \Big(v_{U^{235}} \sigma_a^{U^{235}} N_{U^{235}}(t) + v_{pu^{239}} \sigma_a^{Pu^{239}} N_{pu^{239}}(t) + v_{pu^{241}} \sigma_a^{Pu^{241}} N_{pu^{241}}(t) \Big) \overline{\Phi} \mu e^{-\alpha^2 \tau}, \\ \frac{dN_{Pu^{239}}}{dt} = \sigma_a^{U^{238}} N_{U^{238}}(t) \overline{\Phi} - \sigma_a^{Pu^{239}} N_{Pu^{239}}(t) \overline{\Phi} + \\ +(1-\varphi) \overline{\Phi} \mu e^{-\alpha^2 \tau} \Big(v_{U^{235}} \sigma_a^{U^{235}} N_{U^{235}}(t) + v_{pu^{239}} \sigma_a^{Pu^{239}} N_{Pu^{239}}(t) + v_{pu^{241}} \sigma_a^{Pu^{241}} N_{Pu^{241}}(t) \Big), \\ \frac{dN_{Pu^{240}}}{dt} = \sigma_a^{Pu^{239}} N_{Pu^{239}}(t) \overline{\Phi} - \sigma_a^{Pu^{240}} N_{Pu^{240}}(t) \overline{\Phi}, \\ \frac{dN_{Pu^{241}}}{dt} = \sigma_a^{Pu^{239}} N_{Pu^{230}}(t) \overline{\Phi} - \sigma_a^{Pu^{240}} N_{Pu^{240}}(t) \overline{\Phi}, \\ \frac{dN_{Pu^{241}}}{dt} = \sigma_a^{Pu^{239}} N_{Pu^{230}}(t) \overline{\Phi} - \lambda_{I^{135}} N_{I^{135}}(t), \\ \frac{dN_{Nu^{241}}}{dt} = y_{I^{135}} \sigma_f^{U^{235}} N_{U^{235}}(t) \overline{\Phi} + \lambda_{I^{135}} N_{I^{135}}(t) - \sigma_a^{Nu^{135}} N_{Xe^{135}}(t) \overline{\Phi}, \\ \frac{dN_{Nu^{149}}}{dt} = \lambda_{Pu^{135}} N_{Pu^{135}}(t) - \sigma_a^{Sm^{149}} N_{Sm^{149}}(t) \overline{\Phi}, \\ \frac{dN_{Pm^{149}}}{dt} = y_{Pm^{149}} \sigma_f^{U^{235}} N_{U^{235}}(t) \overline{\Phi} - \lambda_{Pm^{135}} N_{Pm^{135}}(t), \end{cases}$$

Система дифференциальных уравнений решалась численным методом Рунге-Кутты 4-го порядка, суть которого заключается в 4х-кратном использовании формулы Эйлера на каждом шаге вычислений. Для решения системы ДУ необходимо для каждого уравнения рассчитать 4 коэффициента и после рассчитать значение функции в следующей узловой точке. Шаг сетки по времени равномерный $\tau = 0.2$ сутки. Значения выходов изотопов йода, ксенона приведены в [12, стр 272, стр 290] $y_{xe^{135}} = 0.003$; $y_{I^{135}} = 0.06$; $y_{Pm}^{149} = 0.011$.

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2). \end{cases}$$

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

$$\begin{split} k_1 &= f_1(x_i, y_{1,i}, y_{2,i}), \\ m_1 &= f_2(x_i, y_{1,i}, y_{2,i}), \\ k_2 &= f_1(x_i + h/2, y_{1,i} + k_1/2, y_{2,i} + m_1/2), \\ m_2 &= f_2(x_i + h/2, y_{1,i} + k_1/2, y_{2,i} + m_1/2), \\ k_3 &= f_1(x_i + h/2, y_{1,i} + k_2/2, y_{2,i} + m_2/2), \\ m_3 &= f_2(x_i + h/2, y_{1,i} + k_2/2, y_{2,i} + m_2/2), \\ k_4 &= f_1(x_i + h/2, y_{1,i} + k_3, y_{2,i} + m_3), \\ m_4 &= f_2(x_i + h/2, y_{1,i} + k_3, y_{2,i} + m_3), \\ y_{1,i+1} &= y_{1,i} + (k_1 + 2k_2 + 2k_3 + k_4)h/6, \\ y_{2,i+1} &= y_{2,i} + (m_1 + 2m_2 + 2m_3 + m_4)h/6. \end{split}$$

Решение задачи проводилось с помощью программы написанной на языке python с использование библиотек CoolProp, Numpy, Pandas, os, scipy и matplotlib. Листинг приведен в приложении Б. Расчет были проведены для нескольких вариантов обогащения, видов и концентрации выгорающих поглотителей, приведенных в таблице 9

Значение среднего потока нейтрона на каждом этапе рассчитывалось по формуле [15, стр. 205]:

$$\overline{\Phi} = \frac{Q}{E_f \Sigma_f V_{cop}}$$

где: Q = 3200 MBm – тепловая мощность реактора;

 $E_f = 200 M_{\Im}B = 3.204 \cdot 10^{-19} M \square \mathcal{H} = -$ Энергия выделяющаяся в а.з. реактора в одном акте деления;

$$V_{zop} = m_{UO_2} / \rho_{UO_2} (T_{s\phi\phi}) = 1710 \cdot N_{mec} N_{mesn} / \rho_{UO_2} (T_{s\phi\phi}) = 1710 \cdot 163 \cdot 312 / 10.755 = 808578 \, cm^3.$$

Потери реактивности от шлакования [12, стр. 260]:

$$\rho_{uunak} = (15.1 + 52.8z)\theta \cdot 10^{-3},$$

где *z* – степень выгорания

$$dz = \sigma_a^5 \Phi dt$$

Т.к. значения сечений и потоков изменяются на каждом шаге:

$$z_{i+1}=z_i+\sigma_{ai+1}^5\Phi_{i+1}\tau,$$

где τ – шаг по времени.

					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

Потери реактивности от отравления реактора ксеноном и самарием рассчитывались по формуле [12, стр. 288, стр 291]:

$$\rho_{Sm} = \theta \cdot \frac{\sigma_a^{Sm^{149}} N_{Sm^{149}}}{\sigma_a^{U^{235}} N_{U^{235}}},$$
$$\rho_{Xe} = \theta \cdot \frac{\sigma_a^{Xe^{135}} N_{Xe^{135}}}{\sigma_a^{U^{235}} N_{U^{235}}}.$$

Суммарный запас реактивности в реакторе:

$$\rho_{\Sigma} = \rho - \rho_{{\scriptscriptstyle U\! J\! a}\kappa} - \rho_{{\scriptscriptstyle S\! m}} - \rho_{{\scriptscriptstyle X\! e}}.$$

Таблица 9 – Варианты начальных загрузок

Вариант	Концентрации изотопов
V_1	$4.9\% \left(U^{235} \right)$
V_2	$4.9\% \left(U^{235} ight)$ и $0.0004\% \left(Gd_2 O_3 ight)$
V_3	$4.9\% (U^{235})$ и $0.0004\% (Eu_2O_3)$
V_4	$4.9\% (U^{235})$ и 0.00035% (Gd_2O_3) с 0.0003% (Eu_2O_3)
V5	$6\%(U^{235})$ и 0.0005% (Gd_2O_3) с 0.00035% (Eu_2O_3)
V_6	6,7% (U^{235}) и 0.00062% (Gd_2O_3) с 0.0004% (Eu_2O_3)

Результаты расчетов сведены в таблицу 10 и представлены на рисунке 3.

					<i>ФЮРА 562527 005П</i> 3
Изм.	Лист	№ докум.	Подпись Д	ļama	\$161 A.302321.003113

Таблица	10 -	Результаты	расчета	изменения	запаса	реактивности	методом
четырех	сомно	жителей.					

t, cym	V1	V2	V3	V4	V5	V6
0	0,3278	0,0391	0,2803	0,0325	0,0301	0,0215
20	0,2599	0,2305	0,2159	0,2012	0,2023	0,1954
40	0,2571	0,2474	0,2155	0,2174	0,2282	0,2299
60	0,2551	0,2512	0,2165	0,2226	0,2356	0,2395
80	0,2530	0,2513	0,2174	0,2249	0,2391	0,2441
100	0,2507	0,2499	0,2182	0,2257	0,2407	0,2464
120	0,2482	0,2479	0,2187	0,2258	0,2413	0,2475
140	0,2457	0,2455	0,2189	0,2255	0,2413	0,2480
160	0,2430	0,2429	0,2187	0,2247	0,2410	0,2479
180	0,2402	0,2401	0,2181	0,2236	0,2403	0,2476
200	0,2374	0,2373	0,2172	0,2223	0,2394	0,2470
220	0,2344	0,2344	0,2160	0,2206	0,2384	0,2462
240	0,2314	0,2313	0,2145	0,2187	0,2371	0,2453
260	0,2284	0,2283	0,2127	0,2166	0,2357	0,2442
280	0,2252	0,2251	0,2107	0,2143	0,2341	0,2430
300	0,2220	0,2219	0,2084	0,2118	0,2324	0,2417
320	0,2187	0,2187	0,2059	0,2091	0,2306	0,2402
340	0,2154	0,2153	0,2033	0,2063	0,2286	0,2386
360	0,2120	0,2120	0,2005	0,2033	0,2265	0,2369
380	0,2086	0,2085	0,1975	0,2003	0,2243	0,2352

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 3 – Результаты расчет изменения запаса реактивности методом четырех сомножителей

Из расчетов можно сделать вывод, что использование европиевого выгорающего поглотителя позволяет увеличить начальное обогащение урана на 1,8% и увеличить длительность кампании без возрастания величины выбега реактивности.

5 Решение задачи с помощью WIMSD-5В

5.1 Описание программы

Программа WIMSD-5В предназначена для нейтронно-физического расчета ячеек различных конфигураций. Программа использует 69-групповую библиотеку ядерных констант, содержащей данные 129 нуклидов включая топливо, замедлитель, конструкционные материалы и продукты распада [16].

Достоинствами этой программы являются: простота ввода исходных данных, подробный вывод результатов, возможность свертки многогрупповых констант в систему констант с малым числом групп.

Расчет распределения нейтронного потока в пространстве проводится в несколько этапов:

1. рассчитывается детальный спектр в 69 группах в каждой из зон, типичной для ячейки: в топливе, оболочке, теплоносителе и замедлителе;

Изм.	Лист	№ докум.	Подпись	Дата	

2. осуществляется свертка сечений к заданному малогрупповому приближению, в котором рассчитываются детальные пространственные распределения нейтронов по ячейке;

3. проводится модификация полученного решения с учетом утечки;

4. малогрупповые потоки разворачиваются в 69-групповое представление и рассчитываются скорости реакций для заданных изотопов.

На первом этапе используется метод вероятности первых столкновений (ВПС) для решения уравнения переноса нейтронов в интегральной форме. На последующих этапах – метод дискретных ординат – DSN.

С помощью программы рассчитывается выгорание топлива с заданным шагом по времени, в течение которого энерговыделение в кассетах считается неизменным.

5.2 Результаты расчетов с помощью WIMSD-5B.

Расчет проводился для бесконечной решетки бесконечных цилиндрических ячеек, радиусы которых рассчитаны были в пункте 3.

Рисунок 4 – Рассчитываемая ячейка

Изм.	Лист	№ докум.	Подпись	Дата

t, cym	$Q, MBm / m_U$	V1	V2	V3	V4	V5	V6
10	368	0,2720	0,0429	0,2334	0,0434	0,0557	0,0588
30	1104	0,2661	0,2121	0,2281	0,1928	0,1865	0,1768
50	1840	0,2587	0,2405	0,2257	0,2181	0,2252	0,2232
70	2576	0,2543	0,2450	0,2235	0,2229	0,2346	0,2371
90	3312	0,2499	0,2447	0,2210	0,2234	0,2373	0,2416
110	4048	0,2454	0,2422	0,2182	0,2220	0,2374	0,2428
130	4784	0,2408	0,2386	0,2150	0,2194	0,2362	0,2425
150	5520	0,2361	0,2345	0,2115	0,2161	0,2342	0,2413
170	6256	0,2314	0,2301	0,2079	0,2125	0,2315	0,2393
190	6992	0,2267	0,2255	0,2041	0,2086	0,2286	0,2370
210	7728	0,2220	0,2209	0,2002	0,2046	0,2254	0,2343
230	8464	0,2173	0,2163	0,1962	0,2005	0,2220	0,2314
250	9200	0,2126	0,2117	0,1922	0,1964	0,2186	0,2283
270	9936	0,2080	0,2071	0,1881	0,1921	0,2150	0,2252
310	11408	0,1967	0,1958	0,1778	0,1817	0,2061	0,2172
410	15088	0,1751	0,1743	0,1572	0,1610	0,1884	0,2010
510	18768	0,1541	0,1534	0,1367	0,1404	0,1706	0,1847
610	22448	0,1335	0,1328	0,1163	0,1200	0,1529	0,1684
710	27968	0,1129	0,1123	0,0958	0,0995	0,1353	0,1522
860	33488	0,0824	0,0819	0,0657	0,0694	0,1092	0,1281
1010	44528	0,0511	0,0506	0,0351	0,0386	0,0826	0,1038

программы WIMSD-5B

Рассчитаем погрешность расчета методом четырех сомножителей:

$$\Delta = \left| \rho^{wims} - \rho^{1 \, rpynn} \right|.$$

					ФЮРА.562527.005ПЗ	50	
Изм.	Лист	№ докум.	Подпись	Дата			

V1	V2	V3	V4	V5	V6
0,0340	0,0204	0,0255	0,0278	0,0398	0,0499

На рисунках 6, 7 приведено сравнение результатов расчета максимальная погрешность достигается для расчета загрузки V_5 , и равна 26% в конце расчета. Это обусловлено увеличением погрешности от шага к шагу при использовании числовых методов решения ДУ, а также значения сечений европия и гадолиния в год выпуска программы WIMS были рассчитаны с меньшей точностью, т.к. в расчете чистого урана погрешность не превышает 17%. Абсолютная погрешность расчета на начало кампании приведена в таблице 12.

Рисунок 6 – Сравнение результатов расчета методом четырех сомножителей и программой WIMS для загрузки V₁

Изм.	Лист	№ докум.	Подпись	Дата

Вывод: расчет методом четырех сомножителей реактора с использование уточненных значений эффективных сечений позволяет проводить достаточно точные оценочные расчеты активной зоны реактора, абсолютная погрешность в сравнении в 69-групповым методом максимально составляет 0,05, что обусловлено высокой степенью блокирования потока внутри топливного блока, при меньшем влиянии внутреннего блок-эффекта погрешность значительно ниже.

Изм.	Лист	№ докум.	Подпись	Дата	

6 Автоматизация технологических процессов

Целью данного раздела является описание автоматической системы регулирования мощности реактора и её структурной схемы, выбор технических средств, используемых в системе, а также разработка схемы автоматизации.

Объектом регулирования является ядерный реактор типа ВВЭР-1200. ВВЭР-1200 – корпусной реактор на тепловых нейтронах, теплоносителем и замедлителем которого – вода под давлением.

Ядерный реактор является динамической системой, в нем непрерывно протекают множество процессов, влияющих на реактивность: выгорание топлива и выгорающего поглотителя, отравление шлаками, наработка вторичного топлива, колебания ксенона. Автоматическая система регулирования мощности предназначена для поддержания мощности реактора (или локальной мощности) в соответствии с заданным значением.

6.1 Принципы регулирования мощности

В качестве импульса используется как сигналы ионизационных камер, так и сигналы теплотехнических параметров. Т.к. ионизационные камеры подвержены выгоранию, а коэффициент пропорциональности между сигналом камер и мощности реактора меняется в широких пределах их используют на малых уровнях мощности. На больших уровнях мощности применяется регулирование по комбинированным схемам [40].

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 8 – Система автоматического регулирования энергоблока с реактором типа ВВЭР [1 стр 111]

На реакторах ВВЭР используется регулятор АРМ-5С, работающий в следующих режимах [41]:

- режим «Н» – астатическое поддержание мощности реактора в диапазоне $(3 \div 20)$ % $N_{_{HOM}}$ с зоной нечувствительности ± 1.5 % относительно заданного уровня.

- режим «Т» – астатическое поддержание давления второго контура в главном паровом коллекторе (ГПК) с зоной нечувствительности 49 кПа. Диапазон уставки – от 5.4 до 7.2 МПа.

- режим «С» – стерегущий режим ограничения давления второго контура при повышении давления на 196 кПа от заданного.

- режим «К» – компромиссный. Это режим поддержания давления в ГПК при $N < 80\% N_{_{HOM}}$, при $N > 80\% N_{_{HOM}}$ регулятор поддерживает заданную среднюю температуру теплоносителя на входе и выходе реактора.

Структурная схема регулятора мощности реактора представлена на рисунке 2.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 9 – Структурная схема АРМ [41]

6.2 Выбор технических средств автоматизации и контроля

Комплекс АКНПЗ предназначен для контроля нейтронной мощности и периода изменения нейтронной мощности реактора во всех режимах его работы. Комплекс формирует сигналы превышения заданных значений периода мощности, выдает сигналы в систему управления и защиты реактора и в устройства регулирования реактора АРМ-5С, РОМ-2, осуществляет

В настоящее время в России изготавливаются 2 комплекта оборудования АКНП: на заводе «Сигнал» в городе Обнинск производятся датчики серии БДПНЗ, а на заводе «СКУ-атом» в г. Москва выпускаются датчики серии БДПН-0.

Для АКНП необходимо 4 комплекта датчиков нейтронов: для пускового, промежуточного и энергетического уровней мощности, и для периода перегрузки топлива. Для диапазона источника могут быть использованы датчики БДПН3-15А1 и БДПН-06, для пускового – БДПН3-16А1 и БДПН-01, для рабочего БДПН3-17А1 и БДПН-01, в момент перегрузки топлива БДПН-16Р и БДПН-07

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 13 – Сравнение характеристик аппаратуры контроля нейтронного потока

Пусковой	БДПН3-16А1	УДПН-01
диапазон	$2.5 \cdot 10^3 \div 2.5 \cdot 10^8 \ cm^{-2} \cdot c^{-1}$	$1 \div 1 \cdot 10^6 \ cm^{-2} \cdot c^{-1}$
Энергетический	БДПН3-17А1	УДПН-05
диапазон	$2.5 \cdot 10^5 \div 2.5 \cdot 10^9 \ cm^{-2} \cdot c^{-1}$	$1 \cdot 10^4 \div 2 \cdot 10^9 \ cm^{-2} \cdot c^{-1}$
Диапазон	БДПН-16Р	УДПН-07
источника	$0.25 \div 2.5 \cdot 10^5 \ cm^{-2} \cdot c^{-1}$	$1 \div 1 \cdot 10^6 \ cm^{-2} \cdot c^{-1}$
Перегрузка	БДПН3-15А1	УДПН-03
топлива	$0.25 \div 2.5 \cdot 10^5 \ cm^{-2} \cdot c^{-1}$	$4 \cdot 10^{-2} \div 4 \cdot 10^3 \ cm^{-2} \cdot c^{-1}$

Так как комплект серии УДПН-0, применяемый в комплексе АКНП-3, имеет большую чувствительность в пусковом диапазоне, который отвечает за наиболее ответственный момент работы реактора, выбираем его.

Таблица 14 – Основные характеристики устройств детектирования

II	Harrison		Т	II
паименование	паименов	ание составных	тип счетчика	Чувствительность
	частей			
УДПН-01	Блок	детектирования	Тип камеры - КНК15	0,05 ± 0,01 имп.см2
	БДПН-01			/нейтр
	Блок	преобразования		
	БПХ-01			
УДПН-05	Блок	детектирования	Камера КНК17-1	$(3,3 \pm 0,3) \cdot 10-4$
	БДПН-05			имп.см2 /нейтр
	Блок	преобразования		
	БПХ-02-02	1		
УДПН-03	Блок	детектирования	Борный счетчик	5,0 ± 0,5 имп.см2
	БДПН-03		CHM11	/нейтр
	Блок	преобразования		
	БПХ-03			
УДПН-07	Блок	детектирования	Камера КНК15	0,5 ± 0,1 имп.см2
	БДПН-06			/нейтр
	Блок	преобразования		
	БПХ-07			

После датчиков нейтронного потока сигнал должен быть усилен и преобразован. Для этого в комплексе АКНП-3 используются блоки усиления

Изм.	Лист	№ докум.	Подпись	Дата

БУСИ-51 и блоки преобразования БПНЗ-05, в комплексе АКНП завода «СКУатом» блок связи устройств детектирования со шкафами накопления и обработки АКНП БПХ-01.

Затем сигнал поступает в устройства накопления и обработки информации (УНО-02И). В УНО-02И осуществляется функциональное преобразование импульсной информации, формирование дискретных сигналов аварийной защиты и предупредительной сигнализации, переключения диапазонов, аналоговых сигналов для APM-5C и POM-2, записи на самопишущие потенциометры, передачи на УВС и на пульт оператора БЩУ.

6.3 Разработка функциональной схемы.

В разрабатываемой функциональной схеме приборы располагаются на 3х уровнях: по месту, щит КИП и А и пульт оператора.

Приборами по месту являются датчики контроля нейтронного потока и приводы органов СУЗ.

Данные полученные от блоков детектирования нейтронного потока в реакторе BBЭP-1200 передаются через сумматор на шкаф устройства накопления и обработки информации УНО-02И.

СУЗ Положение органов изменяется шагового С помошью электромагнитного исполнительного привода ШЭМ-М, положение органов СУЗ ИП261 цифровым индикатором отслеживается положения имеюшим отображение положения OP по зонам цифрами 0÷9, и изменением цветности при изменении режимов работы.

Для переключения режима управления органами СУЗ с автоматического режима на ручной пульт оператора оснащен блоком ручного управления БРУ-32

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

7 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение.

Цель этого раздела является рассчитать экономическую эффективность увеличения обогащения топлива и использование европиево-гадолиниевого выгораюшего поглотителя для реактора ВВЭР-1200.

7.1 SWOT-анализ

SWOT – Strengths (сильные стороны), Weaknesses (слабые стороны), Opportunities (возможности) и Threats (угрозы) – представляет собой комплексный анализ научно-исследовательского проекта. SWOT-анализ применяют для исследования внешней и внутренней среды проекта.

	Сильные стороны научно-	Слабые стороны научно-
	исследовательского проекта	исследовательского
	С1. Исследуемая технология	проекта
	позволит увеличить	Сл1. Невозможность
	энергоэффективность атомной	проверки результата на
	отрасли.	практике
Возможности	Результаты анализа	Результаты анализа
В1. Использование	интерактивной матрицы	интерактивной матрицы
расчетом для атомной	проекта полей «Сильные	проекта полей «Слабые
промышленности.	стороны и возможности»:	стороны и возможности»:
В2. Увеличение	1. Использование новых	1.Экономическая выгода от
эффективности АЭС	материалов приведет к	использования новых
приведет к снижению	увеличению эффективности	материалов может не окупить
стоимости	АЭС.	их стоимость
электроэнергии		
ВЗ. Использование		
полученного для		
других научных		
исследований		
Угрозы	Результаты анализа	Результаты анализа
У1. Исследуемая	интерактивной матрицы	интерактивной матрицы
технология увеличит	проекта полей «Сильные	проекта полей «Слабые
активность ОЯТ.	стороны и угрозы»:	стороны и угрозы»:
	1. Увеличение длительности	1. Возрастет доза облучения
	кампании снизит число	персонала при перегрузке
	перегрузок, что приведет к	топлива
	снижению общей дозу	2. Необходимо пересмотреть
	персонала.	конструкцию бассейна
		выдержки ОЯТ
Проведенный SV	WOT-анализ показал, что исс	ледуемая технология требу

Таблица 15 – SWOT-анализ исследования использования европиевого ВП

Проведенный SWOT-анализ показал, что исследуемая технология требует дополнительных расчетов по исследованию радиационной безопасности ОЯТ, но может значительно увеличить эффективность как существующих АЭС, так и новых проектов.

Изм.	Лист	№ докум.	Подпись	Дата

Рисунок 10 – Результаты расчета реактивности для вариантов загрузки $V_{\rm 2}$ и $V_{\rm 6}$

Длительность кампании из графика получим для загрузки $V_2 - T_{V_2} = 1260 \, суток$ для $V_6 - T_{V_6} = 1640 \, суток$. С учетом перегрузки топлива длительность 25 суток рассчитаем общее число перегрузок реактора за 60 лет:

$$N^{V_2} = \frac{60 \cdot 365}{T_{V_2} + 25} = \frac{60 \cdot 365}{1260 + 25} = 16.91,$$
$$N^{V_6} = \frac{60 \cdot 365}{T_{V_6} + 25} = \frac{60 \cdot 365}{1640 + 25} = 13.15.$$

Из расчета программой WIMS получены значения глубины выгорания для каждой загрузки: $B_{V_2} = 48 \ MBm \cdot cym \ / m; B_{V_6} = 70 \ MBm \cdot cym \ / m.$

Рассчитаем экономическую выгоду увеличения обогащения топлива в сочетании с использованием европиево-гадолиниевого выгорающего поглотителя. Средняя стоимость топлива с обогащением 4.9% и с обогащением 6.7% составляет согласно [19]:

$$\begin{split} c_{4.9} &= 1360 \frac{\partial on}{\kappa^2} \approx 106000 \frac{py\delta}{\kappa^2}, \\ c_{6.7} &= 1920 \frac{\partial on}{\kappa^2} \approx 149000 \frac{py\delta}{\kappa^2}. \end{split}$$

					ФК
Изм.	Лист	№ докум.	Подпись	Дата	

Доля ядерной концентрации гадолиниевого выгорающего поглотителя при гомогенной загрузке V₂ составляет 0,04%. для загрузки V₆ доля гадолиниевого ВП 0,06% и европиевого 0,035%.

Стоимость килограмма диоксида гадолиния в среднем [20] $c_{Gd,O_3} = 1560 \ py6 \ / \ \kappa c$, килограмма диоксида европия [21] $c_{Eu,O_3} = 2340 \ py6 \ / \ \kappa c$.

Издержки на покупку 1 кг гомогенной смеси топлива и ВП для перегрузки в течение всей работы реактора:

$$\begin{split} H_{V_2} &= N^{V_2} \Biggl(c_{4.9} + \frac{M_{UO_2}}{M_{Gd_2O_3}} 0.0004 \cdot c_{Gd} \Biggr), \\ H_{V_6} &= N^{V_6} \Biggl(c_{6.7} + \frac{M_{UO_2}}{M_{Gd_2O_3}} \cdot 0.0006 \cdot c_{Gd} + \frac{M_{UO_2}}{M_{Eu_2O_3}} \cdot 0.00035 \cdot c_{Eu} \Biggr), \\ H_{V_2} &= 16.91 \cdot \Biggl(106000 + \frac{M_{UO_2}}{M_{Gd_2O_3}} 0.0004 \cdot 1560 \Biggr) = 1792468 \ py6, \\ H_{V_6} &= 13.15 \cdot \Biggl(149000 + \frac{M_{UO_2}}{M_{Gd_2O_3}} \cdot 0.0006 \cdot 1560 + \frac{M_{UO_2}}{M_{Eu_2O_3}} \cdot 0.00035 \cdot 2460 \Biggr) = 1966819 \ py6. \end{split}$$

Удельные издержки от увеличения обогащения топлива за время эксплуатации реактора:

$$\Delta H_{\Sigma} = H_{V_6} - H_{V_2} = 174350 \ pyo \ / \kappa c.$$

Мощность расчетной ячейки была принята *q* = 0.0368 *MBm / кг*. Тогда количество энергии, выработанное 1 кг топлива за весь срок службы реактора:

$$Q_{V_2} = N^{V_2} T_{V_2} q = 16.91 \cdot 1260 \cdot 0.0368 = 790.31 MBm \cdot cym,$$

$$Q_{V_6} = N^{V_6} T_{V_6} q = 13.15 \cdot 1640 \cdot 0.0368 = 796.65 MBm \cdot cym.$$

Изменение состава топлива приводит к увеличению удельной энерговыработки 1 кг топлива за весь срок эксплуатации на величину:

$$\Delta Q_{yo} = Q_{V_6} - Q_{V_2} = 796.65 - 790.31 = 6.341 \, MBm \cdot cym.$$

Пист

Рассчитаем точку рентабельности повышения обогащения топлива. Прибыль от повышения обогащения будет равна 0 при стоимости электроэнергии:

						Jidom
					ФЮРА.562527.005ПЗ	62
Изм.	Лист	№ докум.	Подпись	Дата		02

$$c_{30} = \Delta Q_{y\partial} / \Delta H = 6.341 \cdot 24000 / 174350 = 1.15 \ pyo / (\kappa Bm \cdot u).$$

При текущей одноставочной стоимости электроэнергии $c_{_9} = 3.66 \ \kappa Bm \cdot чac$ [18] прибыль от использования высокообогащенного топлива за время эксплуатации составит:

$$\Pi_{o \delta u \mu} = \Delta Q_{y \partial} \cdot c_{\mu} - \Delta H_{\Sigma} = 6.341 \cdot 24000 \cdot 3.66 - 174350 = 382643 \text{ pyb.}$$

В год увеличение удельной прибыли от повышения обогащения составит:

$$\Pi_{200} = \Pi_{00} / 60 = 382643 / 60 = 6377 \, py 6.$$

При загрузке стандартной загрузке реактора ВВЭР-1200 *G* = 87 *монн* общее увеличение прибыли от использования нового вида топлива:

$$\Pi_{200,CVMM} = \Pi_{200} \cdot 87000 = 6377 \cdot 87000 = 555$$
 млн. руб.

Других затрат, помимо увеличения стоимости топлива, повышение обогащение не влечет, т.к. не требует модернизации оборудования или изменения штата АЭС.

Вывод: оценочные расчеты показывают, что повышение обогащение топлива и использование европиево-гадолиниевого выгорающего поглотителя является экономически выгодным и увеличивает прибыль АЭС на 555 млн. руб в год, однако применение новых технологий в ядерной энергетике требует глубоко анализа и обоснования безопасности. Оценить трудозатраты на такое исследование не представляется возможным, однако можно оценить какой объем работ может окупить 1 год использования высокообогащенного топлива. При средней зарплате сотрудника НИИ в Москве равной 70 000 руб. (с учетом 30% отчислений во внебюджетные фонды – 91 000 руб), прибыль за от повышения обогащения способна окупить 976 000 человеко-часов трудозатрат, что составляет год работы 490 человек (при 40-часовой рабочей неделе). При применении данной технологии на нескольких реакторах прибыль возрастет кратно числу блоков, что позволит в разы уменьшить срок окупаемости средств, затраченных на научно-исследовательские работы.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

8 Социальная ответственность. Введение

Объектом исследования является выгорающий поглотитель в реакторе ВВЭР-1200. В качестве ВП использовались оксиды гадолиния и европия, а также их смеси. Исследование их влияния на изменения реактивности проводилось путем численного решения ДУ описывающих изменения изотопного состава и вычисления реактивности реактора методом четырех сомножителей и программой WIMSD-5B, использующей 69-групповую систему констант.

Расчеты показывают, что использование европиевого ВП позволяет увеличить обогащение топлива и, следовательно, возрастает продолжительность кампании реактора, а число перегрузок снижается, что приведет к росту КИУМ блока, и уменьшению коллективной дозы.

8.1 Правовые и организационные вопросы обеспечения безопасности

Общие положения критериев безопасности атомной электростанции на всех этапах ее существования описаны в нормативно-правовом акте "Общие положения обеспечения безопасности атомных станций" (НП-001-15) [22].

АС считается безопасной если при всех режимах эксплуатации нет превышения установленных доз облучения персонала и населения, нормативов по выбросам сбросам.

Безопасность АЭС должна обеспечиваться за счет последовательной реализации глубокоэшелонированной защиты, основанной на применении системы физических барьеров на пути распространения ионизирующего излучения и радиоактивных веществ в окружающую среду, и системы технических и организационных мер по защите барьеров и сохранению их эффективности, а также по защите персонала, населения и окружающей среды.

Глубокоэшелонированная защита состоит из 5 уровней:

1 – Условия размещения AC, установка санитарно-защитной зоны, разработка проектной документации на основе консервативного подхода с соблюдением регламентов и иных нормативных документов, поддержание исправности систем безопасности, подбор обеспечение необходимого уровня квалификации персонала

						Лист
					ФЮРА.562527.005ПЗ	64
Изм.	Лист	№ докум.	Подпись	Дата		04

2 – Предотвращение проектных аварий системами НЭ.

3 – Предотвращение запроектных аварий системами безопасности.

4 – Управление проектными авариями

5 – Противоаварийное планирование, подготовка и осуществление мероприятий по защите персонала и населения.

Основные требования к квалификации персонала АЭС представлены в [26-27], в этих документах также прописаны периодичность проверки знаний, порядок приему на работу и порядок подготовки кадров. В РД ЭО 0577-2004 [28] прописаны условия организации труда. Обслуживание АС осуществляется оперативным персоналом, организованным в вахты и работающим по сменам.

Общие требования к содержанию территории, помещений и рабочих мест приведены в [29 п. 5]

Согласно приказу Минтруда от 24 января 2014 года N33 [34], отнесение условий труда по классам ионизирующего излучениям проводится по показателям приведенным в приложении Б, работники реакторного цеха имеют 2 класс условий труда, что не предусматривает дополнительных выплат или увеличения продолжительности отпуска.

Таблица 16 – Вредные и опасные факторы по ГОСТ 12.0.003-2015						
	Этапы рабо	Нормативные				
Разработка	Разработка Изготовление Эксплуатация		документы			
			СанПиН			
			2.2.4.3359-16			
			Санитарно-			
			Calimitaphio			
+	+	+	эпидемиологические			
			требования к			
			1			
			физическим факторам			
			на рабочих местах			
	е и опасны Разработка +	е и опасные факторы по Этапы рабо Разработка Изготовление + + +	е и опасные факторы по ГОСТ 12.0.00 Этапы работ Разработка Изготовление Эксплуатация + + + +			

8.2 Производственная безопасности

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Продолжение таблицы 16						
Повышенный уровень				СанПиН 2.6.1.2523-09 Нормы радиационной		
ионизурующего		+	+	безопасности НРБ-		
излучения				99/2009.		
Отсутствие или				СП		
недостатки				52.13330.2011		
необходимого				Ботостронноо и		
освещения.	-	—	+	стественное и		
освещения,				искусственное		
				освещение		
Опасные факторы						
Возможность падения				СанПиН		
с высоты				2.2.4.3359-16		
работающего;				Couutopuo		
Пвижущиеся				Санитарно-		
механизмы:				эпидемиологические		
Чрезмерно высокая	_	+	+	требования к		
температура				физическим факторам		
материальных				¢nish leekini quiktopuli		
объектов;				на рабочих местах		
Возможность						
поражения						
электрическим током,						

8.2.1 Анализ выявленных вредных факторов проектируемой производственной среды

Повышенный уровень ионизирующего излучения

Ионизирующее излучение – это любое излучение, которое вызывает ионизацию среды, т.е. протекание электрических токов в этой среде, в том числе и в организме человека. Это приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Основные пределы доз для оперативного персонала [23] представлены в таблице #.

Изм.	Лист	№ докум.	Подпись	Дата

Таблица 17 – Основные пределы доз

Нормируемые величины	Персонал (группа А)*
Эффективная доза	20 мЗв в год в среднем за любые
	последовательные 5 лет, но не более
	50 мЗв в год
Эквивалентная доза за год в:	
- хрусталике глаза	150 мЗв
-коже	500 мЗв
- кистях и стопах	500 мЗв

* Пределы доз для персонала группы Б равны ¹/₄ значений для персонала группы А

Основным организационно-техническим принципом обеспечения радиационной безопасности является строгое соблюдение персоналом режима зон. Здания и сооружения АС должны быть разделены на две зоны:

- зону контролируемого доступа (ЗКД) - производственные помещения, где осуществляется обращение с источниками излучения и возможно воздействие радиационных факторов на персонал группы А. Доступ в помещения ЗКД должен осуществляться через санпропускник;

- зону свободного доступа (далее - ЗСД) - вспомогательные и административные помещения.

Помещения ЗКД разделены на 3 категории в зависимости от степени возможного радиационного воздействия [24]:

I категория - необслуживаемые помещения, II категория - периодически обслуживаемые помещения, III категория - помещения постоянного пребывания персонала.

Помещения ЗКД должны иметь эффективную биологическую защиту, иметь систему приточной и вытяжной вентиляции, коммуникации для подачи воды и моющих растворов, иметь трапы и уклоны для стока воды в спецканализацию, поверхности стен покрыты материалами слабо сорбирующими веществами, а стены реакторного отделения должны быть покрыты экранами из нержавеющей стали

Изм.	Лист	№ докум.	Подпись	Дата

Нормативными актами [24] установлены, что на АС должны быть предусмотрена автоматизированная система учета результатов индивидуального дозиметрического контроля

Для снижения облучаемости персонала в проектах и при эксплуатации АС необходимо предусматривать [24]:

материалов, использование конструкционных содержащих минимальное количество химических элементов, образующих долгоживущие радиоактивные продукты коррозии;

- очистку теплоносителя от продуктов деления и коррозии на установках, работающих по замкнутому циклу;

- контроль водно-химического режима;

- наименьшую протяженность трубопроводов с минимально возможным количеством запорной арматуры и разъемных соединений;

- проверку герметичности работающего оборудования;

- проведение дезактивации наружных и внутренних поверхностей оборудования, контактирующих с радиоактивными средами;

- предотвращение неорганизованных протечек радиоактивных сред в помещения АС и окружающую среду через уплотнения насосов, арматуры и другого оборудования;

- компоновку оборудования в боксах с учетом минимизации времени по его обслуживанию в процессе эксплуатации;

- наличие специальных мест хранения выемных и демонтированных частей оборудования;

- стендовую (макетную) отработку персоналом ремонтных операций и другие возможные меры снижения доз облучения персонала при выполнении радиационно-опасных работ.

Наличие электромагнитных полей промышленных частот

	электромагнитное излучение – это сила, которая проявляется, когда ток проходит через любое электрическое устройство, воздействующая на всё, что								
						Лист			
					ФЮРА.562527.005ПЗ	68			
Изм.	Лист	№ докум.	Подпись	Дата		00			

находится около него, в том числе и на человека, который также является источником электромагнитного излучения.

Слабое электромагнитное излучение с низкой мощностью и высокой частотой опасно для человека, провоцирует развитие различных заболеваний, особенно в тех звеньях организма, которые до этого уже были чем-то ослаблены.

Оценка и нормирование ЭМП осуществляется раздельно по напряженности электрического (*E*), в В/м, и магнитного (*H*), в А/м, полей в зависимости от времени воздействия [27].

ПДУ напряженности электрического и магнитного поля при воздействии в течение всей смены составляет 500 В/м и 50 А/м, соответственно.

ПДУ напряженности электрического и магнитного поля при продолжительности воздействия до 2 часов за смену составляет 1000 В/м и 100 А/м, соответственно.

Мероприятия по снижению влияния ЭМП на организм человека:

– соблюдение безопасных расстояний от электросетей;

– заземление электрооборудования, приборов;

– использованием оборудования с меньшими уровнями энергопотребления.

Средства коллективной защиты от ЭМП включают в себя:

оградительные устройства;

- защитные покрытия;

- герметизирующие устройства;

– знаки безопасности.

Отклонение показателей микроклимата

Микроклимат производственных помещений – это совокупность параметров (давление, температура, скорость движения воздуха, тепловое излучение, влажность в помещении), которые в процессе труда человека оказывают влияние на тепловую стабильность его организма.

Изм.	Лист	№ докум.	Подпись	Дата

Требования к микроклимату на рабочем месте регламентируются по [26]. Для категории работ на БЩУ (категория Ia) допустимые параметры микроклимата представлены в таблицах 2 и 3:

Для осуществления требуемых параметров микроклимата предусмотрены следующие средства защиты:

- спецодежда;
- кондиционирование и вентиляция помещения;
- сокращение смены.

Таблица 18 – Оптимальные параметры микроклимата на рабочих местах производственных помещений

Период года	Категория работ	Температура воздуха, °С	Влажность воздуха, %	Скорость движения воздуха, м/с
Холодный	I a	22-24	60-40	0,1
Теплый	I a	23-25	60-40	0,1

Таблица 19 – Допустимые параметры микроклимата на рабочих местах производственных помещений

Период года	Категория работ	Температура во	оздуха, °С		Скорость движения воздуха, м/с	
		Диапазон Диапазон ниже выше оптимальных оптимальн	Диапазон выше	Влажность	Диапазон ниже	Диапазон
				воздуха, %		выше
					оптимальных	оптимальных
			оптимальных		температур	температур
Холодный	Ia	20.0-21.9	24.1-25.0	15-75	< 0.1	< 0.1
Теплый	Ia	21.0-21.9	25.1-28.0	15-75	< 0.1	< 0.2

Таблица 20 – Допустимые величины интенсивности теплового облучения поверхности тела работающих от производственных источников

Облучаемая	поверхность	Интенсивность теплового облучения, Вт/м, не
тела, %	_	более
50 и более		35
25-50		70
менее 25		100

Благоприятные условия состояния микроклимата на рабочем месте оператора могут поддерживаются при помощи системы вентиляции и

Изм.	Лист	№ докум.	Подпись	Дата

кондиционирования воздуха в теплый период времени и системой отопления в холодный.

Повышенный уровень шума

Шум – это беспорядочное сочетание звуков различной частоты и интенсивности. При длительном воздействии шума на организм происходят нежелательные явления: снижается острота слуха и зрения, повышается кровяное давление, снижается внимание.

Источниками шума на БЩУ является работа компьютеров, вентиляции и соседствующее оборудование турбинного цеха.

Для производственных помещений ПДУ шума регламентируется, согласно [26], величиной 80 дБА при режиме усреднения шумомера S.

При значениях выше допустимого уровня необходимо предусмотреть СКЗ и СИЗ.

СКЗ:

устранение причин шума или существенное его ослабление в источнике образования;

- экраны шумопоглощающие;

СИЗ:

применение спецодежды, спецобуви и защитных средств органов слуха: наушники, беруши.

8.2.2 Опасные факторы на производстве

На АЭС могу присутствовать следующие опасные факторы:

- вращающиеся и движущиеся машины и механизмы,
- возможность поражения действием электрического тока
- возможность появления свищей, выбросов воды, пара и масел
- возможность падения с высоты
- чрезмерно высокая температура материальных объектов

Для предотвращения воздействия на человека опасных факторов работники, вновь принимаемые на AC или назначаемые на новую должность, должны пройти проверку знаний в объеме, необходимом для занимаемой должности, не

Изм.	Лист	№ докум.	Подпись	Дата

позднее, чем через два месяца после назначения на должность. Допуск к самостоятельной работе или дублированию работников, не прошедших проверку знаний в установленные сроки, запрещается. Порядок организационных мероприятий, обеспечивающих безопасность работ указан в [39]

Согласно [31] Машины, механизмы и другое производственное оборудование, транспортные средства, технологические процессы, материалы и химические вещества, средства индивидуальной и коллективной защиты работников, в том числе иностранного производства, должны соответствовать государственным нормативным требованиям охраны труда и иметь декларацию о соответствии и (или) сертификат соответствия.

Запрещается применение в производстве вредных или опасных веществ, материалов, продукции, товаров и оказание услуг, для которых не разработаны методики и средства метрологического контроля и токсикологическая (санитарно-гигиеническая, медико-биологическая) оценка которых не проводилась.

Основным организационным мероприятием, обеспечивающим безопасность работ, является система наряд-допуском и распоряжений. В соответствии с этой системой выполняются все работы, требующие проведение технических мероприятий по подготовке рабочего места.

Требования охраны труда при работе электро и тепломеханическим оборудованием перечислены в [39]

8.3 Экологическая безопасность

Ограничение жидких сбросов и газоаэрозольных выбросов АЭС

Российскими нормативными документами (НРБ, Сан. Правила проектирования) для ограничения техногеннного облучения для условий нормальной эксплуатации (НЭ) АЭС установлены основные пределы доз облучения населения:

- не более 70 мЗв за период жизни (70 лет);

- не более 1 мЗв в год в среднем за любые последовательные 5 лет облучения, но не более 5 мЗв в год.

						Лист
					ФЮРА.562527.005ПЗ	72
Изм.	Лист	№ докум.	Подпись	Дата		12
В СП АС-03 [23] для проектируемых и строящихся АЭС устанавливаются также целевые пределы по суммарному облучение населения от газоаэрозольных выбросов в атмосферу и жидких сбросов:

- квота, равная 100 мкЗв/год, независимо от количества энергоблоков на промышленной площадке, рассматриваемая как верхняя граница возможного облучения населения от радиационных факторов при оптимизации радиационной защиты населения в режиме нормальной эксплуатации АЭС; при этом устанавливаются одинаковые квоты на газоаэрозольные выбросы и жидкие сбросы - 50 мкЗв/год;

- минимально значимая доза, равная 10 мкЗв/ год, рассматриваемая как нижняя границы дозы облучения населения от отдельного радиационного фактора при оптимизации радиационной защиты населения в режиме НЭ.

Уменьшение облучения населения за счет жидких сбросов достигается с помощью контроля технологических процессов ограничения поступления радионуклидов в систему поверхностных вод. Особо нормами и правилами запрещается сброс жидких радиоактивных отходов в хозяйственно-бытовую и ливневую канализацию, водоемы, поглощающие ямы, колодцы, скважины, на поля орошения, поля фильтрации, системы подземного орошения и на поверхность земли.

Обращение с отработавшим ядерным топливом

В нормативном документе [24] содержатся требования, предъявляемые к конструкции хранилищ и расположения отработавшего ядерного топлива при его хранении в воде.

Для обеспечения безопасности хранилище должно быть оборудовано системами:

охлаждения воды;

– водоочистки;

- технологического контроля;

радиационного контроля;

вентиляции и др.

Изм. Ј	Пист	№ докум.	Подпись	Дат

ФЮРА.562527.005ПЗ

Для исключения разгерметизации, разрушения твэлов, выбросов радиоактивных веществ от отработавшего ядерного топлива надо отводить остаточное тепло. Кроме того, установлен ряд требования и ограничений, направленный на исключение опорожнения хранилища.

8.4 Безопасность в чрезвычайных ситуациях

Утечка радиации

Основные мероприятия по защите персонала и населения в случае аварии приведены в [24 пункт 4,5].

До завоза ядерного топлива на атомную станцию должны быть разработаны, утверждены, обеспечены ресурсами и готовы к осуществлению планы мероприятий по защите персонала и населения в случае аварии на AC, учитывающие радиационные последствия запроектных аварий.

Планы мероприятий должны предусматривать меры на случай одновременного возникновения запроектных аварий на нескольких блоках AC, расположенных на площадке AC, которые сопровождаются нарушениями инфраструктуры вне площадки AC (например, блокированием подъездных путей, нарушениями электроснабжения AC, нарушениями связи).

План мероприятий по защите персонала в случае аварии на AC разрабатывается администрацией AC в соответствии с требованиями федеральных норм и правил в области использования атомной энергии.

План мероприятий по защите населения в случае аварии на AC должен предусматривать координацию действий объектовых и территориальных сил органов по чрезвычайным ситуациям субъектов Российской Федерации и органов местного самоуправления, а также министерств и ведомств, участвующих в реализации мероприятий по защите населения и в ликвидации последствий аварии.

Планами мероприятий по защите персонала и населения в случае аварии на AC должны быть установлены уровни аварийной готовности и уровни вмешательства, определено, кто, при каких условиях, по каким средствам связи, какие организации оповещает об аварии и начале осуществления этих планов.

Изм.	Лист	№ докум.	Подпись	Дат

ФЮРА.562527.005ПЗ

Планами должны быть предусмотрены технические и организационные меры их реализации.

До завоза ядерного топлива на AC должны быть созданы и поддерживаться в постоянной готовности защищенные пункты управления противоаварийными действиями, оснащенные необходимым оборудованием, приборами и средствами связи, из которых осуществляется в случае аварии руководство реализацией планов в соответствии с пунктами 4.5.6 и 4.5.7 настоящих Общих положений.

При управлении запроектной аварией должны предприниматься действия для возвращения блока AC в контролируемое состояние, при котором прекращается цепная реакция деления, обеспечиваются постоянное охлаждение топлива и удержание радиоактивных веществ в установленных границах; действия по предотвращению развития запроектной аварии и ослаблению ее последствий, в том числе по защите герметичного ограждения реакторной установки от разрушения и поддержанию его работоспособности.

Пожар

Согласно правилам пожарной безопасности [28] АС удовлетворяет требованиям пожарной безопасности, если:

- радиационное воздействие на персонал, население и окружающую среду в случае пожара не приведет к превышению установленных доз облучения персонала и населения, нормативов по выбросам и сбросам, содержанию радиоактивных веществ в окружающей среде;

- реализована защита персонала от воздействия опасных факторов пожара.

Для каждой AC необходимо разработать комплекс организационных и технических мероприятий по обеспечению ее пожарной безопасности, предусматривающий:

- защиту систем (элементов), важных для безопасности AC, от воздействия опасных факторов пожара;

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

- обеспечение управления системами безопасности, перевода реактора в подкритичное состояние, удержание реактора в подкритичном состоянии, отвод тепла от реактора в условиях пожара;

- контроль за состоянием реакторной установки во время и после пожара;

- защиту персонала и личного состава подразделений пожарной охраны от превышения установленных доз облучения и нормативов по выбросам и содержанию радиоактивных веществ в окружающей среде в процессе и после пожара;

- защиту персонала от воздействия опасных факторов пожара.

Согласно [29] помещение БЩУ к категории пожароопасных помещений. Горючими материалами на БЩУ выступают: строительные материалы, изоляция электрооборудования, мебель.

Причиной возгорания могут быть: ошибки персонала, неисправность проводки и электроприборов.

Помещение БЩУ оснащено ручными огнетушителями: 2 порошковых огнетушителя 2 углекислотных огнетушителя.

При возникновении пожара в здание необходимо:

• Покинуть здание использую основной или запасный выход;

• Сообщить пожарной охране о пришествии, оповестить руководство;

• При небольшом возгорании необходимо воспользоваться первичными средствами пожаротушения;

- Обесточить электроприборы;
- Эвакуировать персонал.

Пожар на АЭС является одним из наиболее важных факторов, так как его последствия могут являться исходным событием для аварии, при которой возможен выход радиоактивности за допустимые пределы. Помимо активной системы на АЭС разработана система пассивной противопожарной защиты.

На основании требований [28] пассивный принцип действия систем и элементов противопожарной защиты является приоритетным в обеспечении безопасности АЭС при пожаре, поэтому в проекте противопожарная защита

					ФЮРА 562527 005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

строится на основе принципа локализации пожара в пределах пожарной зоны, где он возник.

Система элементов пассивной противопожарной защиты пожарных зон предназначена для локализации пожара в пределах пожарной зоны, где он возник.

Система пассивной противопожарной защиты пожарных зон включает в себя:

совокупность оборудования и элементов границ пожарных зон, т.е.
 ограждающие конструкции границ пожарных зон (стены, перекрытия), включая
 двери, люки, вентиляционные клапаны, уплотнения коммуникационных
 проемов;

– оборудование локализации пожарных нагрузок, позволяющее обеспечить отделение элементов различных каналов систем безопасности друг от друга или от элементов систем нормальной эксплуатации, расположенных в общей пожарной зоне (кабельные короба в конструктивной огнезащите, кабельные каналы, выполненные в строительных конструкциях и т. п.);

– оборудование локализации проливов горючих жидкостей, если оно предназначено для защиты от пожара элементов систем безопасности.

СППЗ пожарных зон применяется для решения следующих задач:

– исключить одновременное воздействие пожара на оборудование и элементы основного и резервных вариантов безопасного аварийного останова и расхолаживания реакторной установки и, тем самым, обеспечить выполнение этими системами проектных функций в процессе и после пожара;

 обеспечить, при необходимости, локализацию и контроль радиоактивных выбросов в окружающую среду при пожаре;

 защитить персонал/население от превышения установленных доз облучения.

СППЗ пожарных зон выполняет функции основного барьера на пути распространения огня и опасных факторов пожара (высокие температуры, дым, токсичные продукты горения и др.) за пределы пожарной зоны, где он возник.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

При этом рассматривается полное свободное развитие пожара без учета воздействия на пожар систем пожаротушения, за исключением пассивных устройств самотушения проливов ГЖ.

Вывод: выполнение установленных нормативов и правил на производстве, способствует эффективному и безопасному управлению АЭС, уменьшению влияния вредных и опасных факторов на персонал и окружающую среду, улучшению производительности труда, снижению рисков и расходов, связанных с экологическим и трудовым законодательствами.

						Лист
					ФЮРА.562527.005ПЗ	78
Изм.	Лист	№ докум.	Подпись	Дата		

Заключение

В настоящей работе был проведен оценочный расчет кампании реактора ВВЭР-1200 методом четырех сомножителей с использованием эффективных микроскопических сечений полученных путем усреднения микроскопических сечений по спектру Максвелла методом Симпсона.

Была разработана программа на языке Python реализующая вышеназванный метод расчета. Полученные результаты были сопоставлены с результатами, полученными 69-групповым расчетом в программе WIMSD-5B. Полученные кривые изменения реактивности в ходе кампании имеют схожий характер с кривыми изменения реактивности полученными в работах [1, 4], максимальная абсолютная погрешность расчета реактивности методом четырех сомножителей в сравнении с 69-групповым на начало кампании равна 0,05, что является допустимым для оценочных расчетов.

Была проведена оценка экономической целесообразности увеличения начального обогащения топлива на 2% с применение выгорающего поглотителя, состоящего из смеси оксидов европия и гадолиния. Также были рассмотрены нормативно-правовые акты регулирующие вопросы обеспечения безопасности на АЭС и вопросы влияния АЭС на окружающую среду.

В настоящей работе была разработана функциональная схема контроля и регулирования нейтронной мощности реактора, состоящая из четырех каналов для соответствующих диапазонов мощности и выбрано необходимое оборудование.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

Список используемых источников

1. Аль Давахра Сааду. Использование выгорающих поглотителей в реакторах типа ВВЭР; автореф. дис. ... канд. техн. наук (05.14.03) / Аль Давахра Сааду; МИФИ. – М., 2006. – 143 с.

2. Michelangelo Durazzo, Humberto Gracher Riella. Studies on the Sintering Behaviour of UO2-Gd2O3 Nuclear Fuel. IYNC 2008 Interlaken, Switzerland, 20 – 26 September 2008 Paper No. 114

3. Андреев Б.М. Изотопы. Свойства, получение, применение / Б.М. Андреев, Д.Г. Арефьев, В.Ю. Баранов; научный ред. В.Ю. Баранова. – Т.2. – М.: ФИЗМАТЛИТ, 2005. – 728 с

4. Абу Сондос Махмуд Абдель Рахман Саламэх, В.М. Демин, В.И. Савандер. Оценка возможности использования Eu₂O₃ в качестве выгорающего поглотителя в реакторе ввэр-1200 © 2019 Национальный исследовательский ядерный университет «МИФИ», Москва, Россия.

5. Демин В.М., Савандер В.И., Абу Сондос Махмуд Абдель Рахман Саламэх. Влияние выгорающих поглотителей (Gd и Eu) на нейтронно-физические характеристики ТВС реакторов ВВЭР-1000. Ростовский научный журнал выпуск № 3 март 2019.

6. М.А. Абу Сондос, В.М. Демин, В.И. Савандер. Снижение объема борного регулирования запаса реактивности при использовании выгорающего поглотителя на основе (GD2O3) в топливе реактора ВВЭР-1200. Глобальная ядерная безопасность, 2019 №3(32), С. 56–65

7. Власичев Г.Н., Куликов Е.И., Сухарев Ю.П. оптимизация нейтроннофизических характеристик реакторной установки типа ВБЭР для энергоблоков плавучего базирования // Современные наукоемкие технологии. – 2017. – № 4. – С. 33-37;

6. Nuclear energy agency data bank. <u>http://www.oecd-nea.org/tools/abstract/detail/nea-1507/</u> – свободный. – Загл. с экрана. – Яз. англ. Дата обращения: 08.09.2020 г.

Изм.	Лист	№ докум.	Подпись	Дата

ФЮРА.562527.005ПЗ

 Бартоломей Г. Г., Бать Г. А., Байбаков В. Д., Алхутов М. С. Основы теории и методы расчета ядерных энергетических реакторов: учебное пособие для вузов – М., Энергоатомиздат, 1989. – 512 с.

8. Prentice Hall. John R. Lamarsh, Anthony J. Baratta. Introduction to Nuclear Engineering (3rd Edition). Year: 2001. Language: english.

Ю.С., Бобков 9. Кириллов П.Л., Юрьев В.Π. Справочник ПО теплогидравлическим расчетам: (Ядерные реакторы, теплообменники, парогенераторы). Под общ. ред. П.Л. Кириллова – М.: Издательство АТП, 1990 год. – 359 c.

10. Кириллов П. Л., Терентьева М. И., Денискина Н. Б.. Теплофизические свойства материалов ядерной техники. 2-е изд., испр. и доп. - М. : ИздАТ, 2007. - 194 с. - Библиогр. в конце разд. - Авт. на тит. л. и обл. не указаны. - ISBN 978-5-86656-207-7.

11. Бойко В. И., Кошелев Ф. П., Шаманин И. В., Колпаков Г. Н. Физический расчет ядерного реактора на тепловых нейтронах: учебное пособие – Томск: Томский политехнический университет, 2009. – 192 с.

12. Мерзликин Г.Я. Основы теории ядерных реакторов. Курс для эксплуатационного персонала АЭС. – Севастополь: СИЯЭиП, 2001.

13. Сойгин, М.Ф. Судовые ядерные реакторы. Теория и расчет. Издательство: Л.: Судостроение. Переплет: твердый; 608 страниц; 1967 г.

14. Кошелев Ф.П., Шаманин И.В. Нейтронно-физический и теплогидравлический расчет ректора на тепловых нейтронах. Учебное пособие.
 – Томск: Изд. ТПУ. 1996 – 80 с.

15. Саркисов А.А., Гусев Л.Б., Калинин Р.И.. Инженерные основы теории и эксплуатации судовых ядерных реакторов: учебное пособие для вузов. – М.: Издательский дом МЭИ, 2011. – 549 с.: ил.

16. M.J. Halsaal, C.J. Taubman. The '1986' WIMS Nuclear Data Library, United Kingdom Atomic Energy Authority, September 1986.

17. Бойцова Е.Л., Ворошилов Ф.А., Меньшикова Е.В.. Техникоэкономическое обоснование проектирование цеха химического производства:

					ФК
Изм.	Лист	№ докум.	Подпись	Дата	

учебное пособие; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2020. – 87с.

18. Официальный сайт Томскэнергосбыт (Дата обращения 10.11.2020) https://tomskenergosbyt.ru/individuals/tariffes.php. (Дата обращения 13.11.2020)

19. UxC. Uranium fuel cost calculation. <u>https://www.uxc.com/p/tools/</u> FuelCalculator.aspx (Дата обращения 13.11.2020)

20. Statista. Gadolinium oxide price worldwide from 2009 to 2025 <u>https://www.statista.com/statistics/450160/global-reo-gadolinium-oxide-price-forecast/) (Дата обращения 13.11.2020)</u>

21. Statista. Europium oxide price worldwide from 2009 to 2025https://www.statista.com/statistics/450158/global-reo-europium-oxide-price-forecast/(Дата обращения 13.11.2020)

22. НП001-15. Федеральные нормы и правила в области использования атомной энергии "Общие положения обеспечения безопасности атомных станций"

23. СанПиН 2.6.1.2523-09 Нормы радиационной безопасности НРБ-99/2009.

24. СанПин 2.6.1.24-03 Санитарные правила проектирования и эксплуатации атомных станций СП АС-03

25. ГОСТ 12.4.120-83 Система стандартов безопасности труда (ССБТ). Средства коллективной защиты от ионизирующих излучений. Общие технические требования.

26. СанПиН 2.2.4.3359-16 Санитарно-эпидемиологические требования к физическим факторам на рабочих местах

27. СанПиН 2.2.4/2.1.8.055-96 Электромагнитные излучения радиочастотного диапазона (ЭМИ РЧ). Санитарные правила и нормы

28. СП 13.13130.2009 Атомные станции требования пожарной безопасности

29. СП 12.13130.2009 Определение категорий помещений, зданий и наружных установок по взрывопожарной и пожарной опасности

30. Правила противопожарного режима в Российской Федерации постановление правительства РФ от 25 апреля 2012г.

					ΦЮΡΑ
Изм.	Лист	№ докум.	Подпись	Дата	

31. СТО 1.1.1.02.001.0673-2006 Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ФГУП концерн "РОСЭНЕРГОАТОМ"

32. ГОСТ 12.0.003-2015 Система стандартов безопасности труда (ССБТ). Опасные и вредные производственные факторы. Классификация

33. СП 52.13330.2011 Естественное и искусственное освещение.

34. Приказ Минтруда РФ от 24.01.2014 N 33H

35. Приказ Федерального агентства по атомной энергии от 15 февраля 2006 г. № 60: организация работы с персоналом на атомных станциях.

36. Приказ Минтруда России от 07.04.2014 N 212н (ред. от 12.12.2016) Об утверждении профессионального стандарта "Оператор реакторного отделения

37. Приказ ОАО «Концерн Росэнергоатом» от 8 октября 2012 г. № 9/932-П «Порядок формирования и подготовки специализированного резерва для замещения ключевых вакантных должностей на строящихся энергоблоках атомных станций»

38. РД ЭО 0577-2004 Типовые укрупненные нормативы численности персонала основной деятельности (промышленно-производственного персонала) атомных станций с реакторами типа ВВЭР, РБМК-1000 И БН-600

39. СТО 1.1.1.02.001.0673-2006 Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ФГУП концерн "Росэнергоатом"

40. Плютинский В.И., Погорелов В.И. Автоматическое управление и защита теплотехнических установок АЭС Учебник для техникумов. – М.: Энергоатомиздат, 1983.–296 с., ил.

41. Демченко В.А., Автоматизация и моделирование технологических процессов АЭС и ТЭС, Учебное пособие – Одесса: Астропринт, 2001. – 303 с., ил.

42. Сайт компании ООО «СКУ-Атом» URL http://sku-atom.ru (Дата обращения 06.12.2020)

Изм.	Лист	№ докум.	Подпись	Дата

Приложение А

Листинг программы по расчету состояния на начало кампании.

from CoolProp import CoolProp as CP import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy from scipy import special from scipy.integrate import simps import os % matplotlib inline print(np.random.random()) # Константы Na = 0.6023 * 10 ** 24 # Авогадро k bolc = 8.617 * 10 ** -5 # Постоянная Больцмана эВ E qr = 2 * 10 * 8# Параметры а.з [] P0 = 16.3 * 10 ** 6 # Па Q = 3200 # MBm N tvs = 163V tn = 88000 # M3/4 T1 in = 298.2 + 273.15 #K $T1_out = 328.6 + 273.15 \# K$ T1sr = (T1_in + T1_out) / 2 # Средняя температура # Параметры ТВС-2М т UO2 = 1710 # Масса топлива, г m UO2 Gd5 = 1690 # НИК КИ стр 14 m UO2 Gd8 = 1680 d0 = 0.12 # Центральное отверстие d_fuel = 0.76 # Топливо d in tvel = 0.773 # ТВЭЛ Сплав Э110 d_out_tvel = 0.91 # ТВЭЛ d_out_gr = 1.3 # Направляющий канал d_in_gr = 1.1 # Направляющий канал d in cr = 1.1 # Центральная трубка d out cr = 1.3 # Центральная трубка a_tvel = 1.275 # Шаг твэл а tvs = 23.6 #Шаг ТВС s = 23.4 # Размер под ключ N tvel = 312N qr = 18N cr = 1H_core = 373.0 # Высота топлива ФЮРА.562527.005ПЗ Подпись Дата Лист Изм. № докум.

```
# Свойства материалов
    ##Плотность
    def p_UO2(t):
      pO UO2 = 10.96
      if t < 923:
        K = 0.99734 + 9.802 * 10 ** -6 * t - 2.715 * 10 ** -10 * t ** 2 + 4.291 * 10 ** -13 * t ** 3
      else:
        K = 0.99672 + 1.179 * 10 ** -5 * t - 2.429 * 10 ** -9 * t ** 2 + 1.219 * 10 ** -13 * t ** 3
      f = 1 - (
             d0 / d_fuel) ** 2 # поправка на центральное отверстие Павлов В.И.
    Анализ нейтронно-физических характеристик топливной решетки ВВЭР-1000.
      return K * p0_UO2 * f # Теплофиз. свойства материалов ядер. техники кириллов
    cmp 39
    def p_Zr(t):
      return (6636 - 0.286 * t) / 1000 # Теплофиз. свойства материалов ядер. техники
    кириллов стр 159
    def p_H2O(t):
      return CP.PropsSI('D', 'P', P0, "T", t, 'water')
    def p_He(t):
      return CP.PropsSI('D', 'P', P0, "T", t, 'Helium')
    ##Теплопроводность
    def lyambda_Zr(t):
      if t >= 290 and t < 1100:
        return 23.5 - 0.0192 * t + 1.68 * 10 ** -5 * t ** 2
      elif t >= 1100 and t < 1600:
        return 1.5 + 0.02 * t # Теплофиз. свойства материалов ядер. техники кириллов
    cmp 160
    def lyambda UO2(t):
      T = t / 1000
      return 100 / (7.5408 + 17.692 * T + 3.6142 * T ** 2) + 6400 / T ** 2.5 * np.exp(
        -16.35 / T) # Теплофиз. свойства материалов ядер. техники кириллов стр 40
    def Pr(t):
      return CP.PropsSI('Prandtl', 'P', P0, "T", t, 'water')
    def lyambda_H2O(t):
      return CP.PropsSI('L', 'P', P0, "T", t, 'water')
    def lyambda_He(t):
                                                                                        Лист
                                            ФЮРА.562527.005ПЗ
                                                                                         85
Изм. Лист
            № докум.
                      Подпись Дата
```

```
return CP.PropsSI('L', 'P', P0, "T", t, 'Helium')
    # Расчет объемов
    f_cell = a_tvs ** 2 * np.sqrt(3) / 2
    f_Zr = np.pi / 4 * (d_out_tvel ** 2 - d_in_tvel ** 2) * N_tvel + np.pi / 4 * (d_out_gr ** 2 -
    d_in_gr ** 2) * (
           N_gr + N_cr
    f_fuel = (d_fuel ** 2 - d0 ** 2) * np.pi / 4 * N_tvel
    f_He = (d0 ** 2 + d_in_tvel ** 2 - d_fuel ** 2) * np.pi / 4 * N_tvel
    f_H2O = f_cell - f_Zr - f_fuel - f_He
    f moderator = f H2O + f He + f Zr
    d_cell = np.sqrt(4 * (f_cell / N_tvel) / np.pi) # np.sqrt( (a_tvel**2*np.sqrt(3)/2)*4/np.pi )
    # Размеры активной зоны
    R_core = np.sqrt(f_cell * N_tvs / np.pi)
    # Расчет эффективной температуры
    ##Расчет перепада температуры в пограничном слое
    G = V_{tn} / 3600 * p_H2O(T1_in) # \kappa z/c
    w_sr = G / (N_tvs * f_H2O * 10 ** - 4 * p_H2O(T1sr))
    x = a_tvel / d_out_tvel # Отноительный шаг
    d_g = d_out_tvel * (2 * np.sqrt(3) * x ** 2 / np.pi - 1) # Гидравлический диаметр
    Кириллов стр 31
    kin_visc = CP.PropsSI('V', "P", P0, 'T', T1sr, 'water') / p_H2O(T1sr)
    Re = d_g * 10 ** -2 * w_sr / kin_visc
    A_Nu = 0.0165 + 0.02 * (1 - 0.91 * x ** -2) * x ** 0.15
    Nu = A Nu * Re ** 0.8 + Pr(T1sr) ** 0.4 # Кириллов стр 73.
    alpha_Nu = Nu * lyambda_H2O(T1sr) / (d_g * 10 ** -2)
    qf_out = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * np.pi * d_out_tvel * 10 ** -4)
    delta_T_alpha = qf_out / alpha_Nu
    qf_in = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * np.pi * d_in_tvel * 10 ** -4) # Bm/m**2
    T_out_tvel = T1sr + delta_T_alpha
    # Температура на внутренней стороне оболочки
    T_in_tvel = T_out_tvel
    eps = 1
    while eps > 0.01:
      T_in_tvel2 = T_out_tvel - qf_in * d_in_tvel * 10 ** -2 / (2 * lyambda_Zr(T_in_tvel / 2 +
    T_out_tvel / 2)) * np.log(
         d_in_tvel / d_out_tvel)
      eps = abs(T_in_tvel2 - T_in_tvel)
      T_in_tvel = T_in_tvel2 \# K
    # Температура на внешней стороне топлива
    T out fuel = T in tvel
    eps = 1
    while eps > 0.01:
      T_out_fuel2 = T_in_tvel - qf_in * d_in_tvel * 10 ** -2 / (2 * lyambda_He(T_out_fuel / 2 +
    T_in_tvel / 2) * np.log(
         d_fuel / d_in_tvel)
      eps = abs(T_out_fuel2 - T_out_fuel)
                                                                                           Лист
                                             ФЮРА.562527.005ПЗ
                                                                                             86
                       Подпись Дата
Изм. Лист
            № докум.
```

```
T_out_fuel = T_out_fuel2 \# K
    # Температура на внутр. стороне топлива
    ql = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * 10 ** -2) # Bm/м**2
    T in fuel = T out fuel
    eps = 1
    while eps > 0.1:
      T_in_fuel2 = T_out_fuel + ql / (4 * np.pi * lyambda_UO2(T_in_fuel / 2 + T_out_fuel / 2))
    * (
              1 - 2 * d0 ** 2 / (d_fuel ** 2 - d0 ** 2) * np.log(d_fuel / d0))
      eps = abs(T_in_fuel2 - T_in_fuel)
      T in fuel = T in fuel 2 \# K
    # Эффективная температура
    T_eff = T_out_fuel + 0.4 * (T_in_fuel - T_out_fuel)
    # Массы изотопов
    A = {'U235': 235.0439, 'U238': 238.0508, 'O16': 15.9994, 'H1': 1.0078, 'Zr90': 89.9047,
    'Zr91': 90.9056.
       'Zr92': 91.9050, 'Zr94': 93.9063, 'Zr96': 95.9083, 'He4': 4.0026, 'Eu151': 150.9199,
    'Eu152': 151.9217.
       'Eu153': 152.9212, 'Eu154': 153.9230, 'Eu155': 154.9229, 'Eu156': 155.9248,
       'Gd154': 153.9209, 'Gd155': 154.9226, 'Gd156': 155.9221, 'Gd157': 156.9240,
    'Gd158': 157.9241.
       'Pu239': 239.0522, 'Pu240': 240.0538, 'Pu241': 241.0569, 'Xe135': 134.9072, 'Sm149':
    148.9172}
    # Среднелогарифмический декремент
    dzita = \{\}
    for nuc, a in A.items():
      if nuc == 'H1':
        dzita[nuc] = 1
      else:
        dzita[nuc] = 1 + (a - 1) ** 2 / (2 * a) * np.log((a - 1) / (a + 1))
    # Средний косинус угла рассеяния
    nu = {}
    for nuc, a in A.items():
      nu[nuc] = 2 / (3 * a)
    # Расчет ядерных концентраций
    c5 = 6 / 100
    c8 = 1 - c5
    M_UO2 = A['U235'] * c5 + c8 * A['U238'] + 2 * A['O16']
    M_H2O = 2 * A['H1'] + A['O16']
    N_UO2 = Na * p_UO2(T_eff) / M_UO2
    N U5 = c5 * N UO2
    N U8 = c8 * N UO2
    Tsr He = T out fuel /2 + T in tvel /2
    N_He = Na * p_He(Tsr_He) / 1000 / A['He4']
    Tsr_Zr = T_out_tvel / 2 + T_in_tvel / 2
                                                                                          Лист
                                             ФЮРА.562527.005ПЗ
                                                                                           87
                      Подпись Дата
Изм. Лист
            № докум.
```

 $N_Zr = Na * p_Zr(Tsr_Zr)$

N_H = 2 * Na * p_H2O(T1sr) / 1000 / M_H2O N_O_H2O = Na * p_H2O(T1sr) / 1000 / M_H2O

Концентрация выгорающих поглотителей

$$\begin{split} &\mathsf{N_tveg_8} = 24 * 9 + 13 * 12 \\ &\mathsf{N_tveg_5} = 24 * 12 \\ &\mathsf{c_Gd} = 0.0005 \ \# \ (N_tveg_8 * 0.08 + N_tveg_5 * 0.05)/(N_tvs*N_tvel) \\ &\mathsf{c_Eu} = 0.00035 \\ &\mathsf{N_Gd2O3} = 1 * \mathsf{c_Gd} * \mathsf{N_UO2} \ \# \ Na*p_UO2(T_eff)/(157.25*2+A['O16']*3) \\ &\mathsf{N_Eu2O3} = 1 * \mathsf{c_Eu} * \mathsf{N_UO2} \ \# \ Na*p_UO2(T_eff)/(151.96*2+A['O16']*3) \end{split}$$

N_O = 2 * N_UO2 + 3 * N_Gd2O3 + N_Eu2O3 # Концентрации изотопов ВП в естественной смеси

```
c Eu151 = 0.4744
    c Eu153 = 0.5223
    c Gd154 = 0.0218
    c Gd155 = 0.1480
    c Gd156 = 0.2047
    c Gd157 = 0.1565
    c Gd158 = 0.2484
    c Zr90 = 0.5146
    c Zr91 = 0.1123
    c Zr92 = 0.1711
    c_{Zr94} = 0.174
    c Zr96 = 0.028
    N_0 = {'O16': N_O, 'Zr90': c_Zr90 * N_Zr / A['Zr90'], 'Zr91': c_Zr91 * N_Zr / A['Zr91'],
        'Zr92': c_Zr92 * N_Zr / A['Zr92'], 'Zr94': c Zr94 * N Zr / A['Zr94'].
        'Zr96': c_Zr96 * N_Zr / A['Zr96'],
        'H2O': N_O_H2O, 'He4': N_He, 'Eu151': 2 * N Eu2O3 * c Eu151, 'Eu152': 0,
        'Eu153': 2 * N_Eu2O3 * c_Eu153, 'Eu154': 0, 'Eu155': 0, 'Eu156': 0,
        'Gd154': 2 * N Gd2O3 * c Gd154, 'Gd155': 2 * N Gd2O3 * c Gd155,
        'Gd156': 2 * N Gd2O3 * c Gd156, 'Gd157': 2 * N Gd2O3 * c Gd157,
        'Gd158': 2 * N_Gd2O3 * c_Gd158, 'U235': N_U5, 'U238': N_U8,
        'Pu239': 0, 'Pu240': 0, 'Pu241': 0, 'Xe135': 0, 'I135': 0, 'Sm149': 0, 'Pm149': 0}
    #Гомогенизация
    N_g = \{\}
    for nuc, N in N_0.items():
      if nuc == 'He4':
        N_g[nuc] = N_0[nuc] * f_He / f_moderator
      elif nuc.find('Zr') != -1:
        N_g[nuc] = N_0[nuc] * f_Zr / f_moderator
      elif nuc == 'H2O':
        N q[nuc] = N 0[nuc] * f H2O / f moderator
      else:
                                            ФЮРА.562527.005ПЗ
                      Подпись Дата
Изм. Лист
            № докум.
```

Лист

88

```
N_g[nuc] = N_0[nuc]
    Nuc = ['O16', 'Zr90', 'Zr91', 'Zr92', 'Zr94', 'Zr96', 'He4', 'Eu151', 'Eu152', 'Eu153',
    'Eu154'. 'Eu155'. 'Eu156'.
         'Gd154', 'Gd155', 'Gd156', 'Gd157', 'Gd158', 'U235', 'U238', 'Pu239', 'Pu240',
    'Pu241', 'Xe135', 'Sm149']
    Nuc_moderator = ['O16', 'Zr90', 'Zr91', 'Zr92', 'Zr94', 'Zr96', 'H2O', 'He4']
    Nuc_fuel = ['Eu151', 'Eu152', 'Eu153', 'Eu154', 'Eu155', 'Eu156',
            'Gd154', 'Gd155', 'Gd156', 'Gd157', 'Gd158', 'U235', 'U238', 'Pu239', 'Pu240',
    'Pu241', 'Xe135', 'Sm149']
    tau = 3600 * 24 * 0.1
    lyamda = {'Eu152': 1.622 * 10 ** -9, 'Eu154': 2.554 * 10 ** -9, 'Eu155': 4.6 * 10 ** -9,
    'Eu156': 5.283 * 10 ** -7,
           'Gd153': 3.925 * 10 ** -8.
           'I135': np.log(2) / (6.58 * 3600), 'Xe135': np.log(2) / (9.14 * 3600), 'Pm149': np.log(2)
    / (53.08 * 3600)}
    def Maxwell(E):
       return E / E_kt * np.exp(-E / E_kt)
    def Simps(x, y):
       S = 0
       if len(x) \% 2 == 0:
         S = (y[-1] + y[-2]) / 2 * (x[-1] - x[-2])
         n = 3
       else:
         n = 2
       for j in range(0, \text{len}(x) - n, 2):
         h = x[j + 1] - x[j]
         k = x[j + 2] - x[j]
         c = y[i]
         a = (y[j + 2] - y[j] + k / h^* (y[j] - y[j + 1])) / (k^{**} 2 - h^* k)
         b = y[j + 1] / h - a * h - y[j] / h
         S += a / 3 * k ** 3 + b / 2 * k ** 2 + c * k
       return S
    def Sigma_sr(folder, nuc, E_gr, T):
       global E_kt
       E_kt = k_bolc * T
       file path = folder + "\\" + nuc
       data = pd.read_csv(file_path)
       Energy_0 = np.array(data.Energy)
       sigma_0 = np.array(data.Cross_section)
       if E_gr < Energy_0[-1]:
         Energy = Energy_0[(Energy_0 <= E_gr)]
                                                                                                Лист
                                                ФЮРА.562527.005ПЗ
                                                                                                 89
Изм.
    Лист
             № докум.
                        Подпись Дата
```

```
sigma = sigma_0[:len(Energy)]
        if list(np.argwhere(Energy == E_gr)) == []:
           sigma_append = np.interp(E_gr, Energy, sigma)
           Energy = np.append(Energy, E_gr)
           sigma = np.append(sigma, sigma_append)
      else:
        Energy = Energy_0
        sigma = sigma 0
      numerator = Simps(Energy, sigma * Maxwell(Energy))
      denominator = Simps(Energy, Maxwell(Energy))
      integral_sigma = numerator / denominator
      return integral_sigma * 10 ** -24
    sigma_c_path = r'C:\Users\User\Desktop\python\Diplom\cross_sections\sigma_c'
    sigma s path = r'C:\Users\User\Desktop\python\Diplom\cross sections\sigma s'
    sigma f path = r'C:\Users\User\Desktop\python\Diplom\cross sections\sigma f'
    def f_gr(x):
      return (x ** 2 * np.exp(-x)) / (1 - (1 + x) * np.exp(-x))
    # Словари Макроскопический сечений
    Sigma_c = \{\}
   for nuc in Nuc:
      if nuc in Nuc fuel:
        Sigma_c[nuc] = N_g[nuc] * Sigma_sr(sigma_c_path, nuc, E_gr, T1sr)
      elif nuc in Nuc_moderator:
        Sigma_c[nuc] = N_g[nuc] * Sigma_sr(sigma_c_path, nuc, E_gr, T1sr)
    Sigma_c['H2O'] = (2 * Sigma_sr(sigma_c_path, 'H1', E_gr, T1sr) +
    Sigma_sr(sigma_c_path, "O16", E_gr, T1sr)) * N_g['H2O']
    Sigma_a = Sigma_c.copy()
   for nuc in os.listdir(sigma f path):
      Sigma a[nuc] += Sigma sr(sigma f path, nuc, E gr, T1sr) * N g[nuc]
    dzitaSigma_s = \{\}
   for nuc in Nuc:
      if nuc in Nuc fuel:
        dzitaSigma_s[nuc] = dzita[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr) *
    N_g[nuc]
      elif nuc in Nuc_moderator:
        dzitaSigma_s[nuc] = dzita[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr) *
    N g[nuc]
    dzitaSigma_s['H2O'] = (2 * dzita['H1'] * Sigma_sr(sigma_s_path, 'H1', E_gr, T1sr) +
    dzita['016'] * Sigma_sr(
      sigma_s_path, "O16", E_gr, T1sr)) * N_g['H2O']
    Sigma_s = \{\}
                                                                                        Лист
                                            ФЮРА.562527.005ПЗ
                                                                                         90
Изм. Лист
           № докум.
                      Подпись Дата
```

```
for nuc in Nuc:
      if nuc in Nuc fuel:
        Sigma_s[nuc] = N_g[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr)
      elif nuc in Nuc moderator:
        Sigma_s[nuc] = N_g[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr)
    Sigma_s['H2O'] = (2 * Sigma_sr(sigma_s_path, 'H1', E_gr, T1sr) +
    Sigma_sr(sigma_s_path, "O16", E_gr, T1sr)) * N_g['H2O']
    # Определение температуры нейтронного газа
    Sum_a = 0
    Sum dzita Sigma s = 0
   for i in Sigma a.values(): Sum a += i
   for i in dzitaSigma s.values(): Sum dzita Sigma s += i
   Tng = T1sr * (1 + 1.4 * Sum_a / Sum_dzita_Sigma_s)
    # Усреднение сечений
   a, b = 1, 0
   x_gr = np.random.randint(4, 9)
   delta = 1
   while abs(delta) > 0.001:
      sigma_a_sr = \{\}
      Sigma_a_sr = {}
      sigma f sr = \{\}
      Sigma_f_sr = {}
      sigma_s_sr = {}
      Sigma_s_sr = {}
      E_gr = k_bolc * Tng * x_gr
      for nuc in Nuc:
        sigma_a_sr[nuc] = Sigma_sr(sigma_c_path, nuc, E_gr, Tng)
        if nuc in os.listdir(sigma f path):
           sigma_f_sr[nuc] = Sigma_sr(sigma_f_path, nuc, E_gr, Tng)
           Sigma f sr[nuc] = N g[nuc] * sigma f sr[nuc]
           sigma a sr[nuc] += sigma f sr[nuc]
        Sigma_a_sr[nuc] = N_g[nuc] * sigma_a_sr[nuc]
      Sigma_a_sr['H2O'] = (2 * Sigma_sr(sigma_c_path, 'H1', E_gr, Tng) +
    Sigma_sr(sigma_c_path, "O16", E_gr, Tng)) * N_g[
        'H2O']
      for nuc in Nuc:
        sigma_s_sr[nuc] = Sigma_sr(sigma_s_path, nuc, E_gr, Tng)
        Sigma_s_sr[nuc] = sigma_s_sr[nuc] * N_g[nuc]
      Sigma_s_sr['H2O'] = (2 * Sigma_sr(sigma_s_path, 'H1', E_gr, Tng) +
    Sigma_sr(sigma_s_path, "O16", E_gr, Tng)) * N_g[
        'H2O']
      for nuc in Nuc:
                                                                                        Лист
                                            ФЮРА.562527.005ПЗ
                      Подпись Дата
    Лист
Изм.
           № докум.
```

91

```
dzitaSigma_s[nuc] = dzita[nuc] * Sigma_s_sr[nuc]
      dzitaSigma_s['H2O'] = (2 * dzita['H1'] * Sigma_sr(sigma_s_path, 'H1', E_gr, Tng) +
    dzita['O16'] * Sigma_sr(
        sigma_s_path, "O16", E_gr, Tng)) * N_g['H2O']
      Sum_Sigma_a_sr = 0
      for i in Sigma_a_sr.values(): Sum_Sigma_a_sr += i
      right = Sum_Sigma_a_sr / Sum_dzita_Sigma_s
      delta = f_gr(x_gr) - right
      if delta > 0:
        a, b = x_gr, b \# x_gr = x_gr - delta
      else:
        a, b = a, x_gr
      x_gr = a / 2 + b / 2 \# x_gr + delta
    Sigma_tr_sr = {}
    for nuc in Sigma_a_sr.keys():
      if nuc == 'H2O':
        Sigma_tr_sr[nuc] = 69 * np.sqrt(293 / Tng) * N_g[nuc] * 10 ** -24
      else:
        Sigma_tr_sr[nuc] = (Sigma_a_sr[nuc] + Sigma_s[nuc] * (1 - nu[nuc]))
    # Число вторичных нейтронов
    v = {'U235': 2.416, 'Pu239': 2.862, "Pu241": 2.924}
    v_eff = (v['U235'] * Sigma_f_sr['U235'] + v['Pu239'] * Sigma_f_sr['Pu239'] + v['Pu241'] *
    Sigma_f_sr['Pu241']) / (
           Sigma_a_sr['U235'] + Sigma_a_sr['Pu239'] + Sigma_a_sr['Pu241'])
    #К-т размножения на быстрых нейтронах ти
    N_U238_0 = 4.783 * 10 ** 22
    P = d fuel * 0.125
    b = N_g['U238'] / N_U238_0
    mu_t = 1 + 0.092 * P * b / (1 - 0.52 * P * b) #Коэффициент размножения в одиночном
    блоке
    global mu
    mu = mu_t + (1.192 - mu_t) / (1 + 2.3 * 2 * N_g['H2O'] / N_g['U238'] * f_H2O / f_fuel)
    #К-т размножения использования тепловый нейтронов tetta
    Sum_Sigma_a_fuel = 0
    for nuc in Nuc_fuel: Sum_Sigma_a_fuel += Sigma_a_sr[nuc] # Сумма сечения
    поглощения в топливе
    Sum_Sigma_tr_fuel = 0
    for nuc in Nuc_fuel: Sum_Sigma_tr_fuel += Sigma_tr_sr[nuc] # Сумма транспортного
    сечения в топливе
                                                                                       Лист
                                            ФЮРА.562527.005ПЗ
                                                                                        92
                      Подпись Дата
Изм. Лист
           № докум.
```

Sum_Sigma_a_moderator = 0 for nuc in Nuc_moderator: Sum_Sigma_a_moderator += Sigma_a_sr[nuc] # Сумма сечения поглощения в замедлителе

Sum_Sigma_tr_moderator = 0

for nuc in Nuc_moderator: Sum_Sigma_tr_moderator += Sigma_tr_sr[nuc] # Сумма транспортного сечения в замедлителе

Sum_Sigma_s_moderator = 0

for nuc in Nuc_moderator: Sum_Sigma_s_moderator += Sigma_s_sr[nuc] # Сумма транспортного сечения в замедлителе

L_fuel = (3 * Sum_Sigma_a_fuel * Sum_Sigma_tr_fuel) ** (-1 / 2) # Длина диффузии топлива

L_moderator = (3 * Sum_Sigma_a_moderator * Sum_Sigma_tr_moderator) ** (-1 / 2) # Длина диффузии ячейки

F0 = d_fuel / (4 * L_fuel) * scipy.special.iv(0, d_fuel / (2 * L_fuel)) / scipy.special.iv(1, d_fuel / (

2 * L_fuel)) # Коэффициент экранировки #Модифицированные функции бесселя I0 I1

Сойгин судовые реакторы стр 263

E0 = 1 + 1 / 2 * (d_cell / (2 * L_moderator)) ** 2 * (np.log(d_cell / d_fuel - 0.75)) # Кошелев стр23

tetta_1 = (f_fuel * Sum_Sigma_a_fuel) / (f_fuel * Sum_Sigma_a_fuel * E0 + F0 * f_moderator * Sum_Sigma_a_moderator)

tetta_fuel = (Sigma_a_sr['U235'] + Sigma_a_sr['Pu239'] + Sigma_a_sr['Pu241']) / Sum_Sigma_a_fuel #К-т использования в топливе

tetta = tetta_1 * tetta_fuel

Вероятность избежать резонансного захвата phi

Sum_dzitaSigma_moderator = 0 for nuc in Nuc_moderator: Sum_dzitaSigma_moderator += dzitaSigma_s[nuc] # Замедляющая способность в замедлителе

D_t = 0.775 * (1 + 17.5 * 10 ** -3 * np.sqrt(T_eff))

I_sr = (d_fuel ** 2 - d0 ** 2) / d_fuel # Сойгин стр 253 судовые ядерные реакторы I_m_sr = f_moderator / f_fuel * I_sr etta = 1 / (1 + I_m_sr * Sum_Sigma_s_moderator)

R = 0.84

 $phi_1 = 0.366 * R * np.sqrt(d_fuel * (d_fuel ** 2 - d0 ** 2) * b) + 0.184 * b * (d_fuel ** 2 - d0 ** 2)$

phi = np.exp(-phi_1 * N_tvel / (Sum_dzitaSigma_moderator * f_moderator))

k_inf = v_eff * mu * tetta * phi

Определение длины диффузии решетки Сойгин стр 274

					ФН
Изм.	Лист	№ докум.	Подпись	Дата	

```
L_cell = np.sqrt(tetta * L_fuel ** 2 + (1 - tetta) * L_moderator ** 2)
```

Возраст нейтронов Tau = 27.3 * (1 + f_fuel / f_H2O + f_Zr / f_H2O) ** 2 / (p_H2O(T1sr) / 1000 + 0.82 * f_fuel / f_H2O + 0.4 * f_Zr / f_H2O) ** 2

#Длина миграции M = np.sqrt(Tau + L_cell ** 2)

Эффективная добавка delta = 7.2 + 0.1 * (М ** 2 - 40)

#Геометрические параметры alpha_r = 2.405 / (R_core + delta) alpha_z = np.pi / (H_core + 2 * delta) alpha = np.sqrt(alpha_r ** 2 + alpha_z ** 2)

Вероятность утечки P_L = 1 / (1 + alpha ** 2 * L_cell ** 2) P_tau = np.exp(-alpha ** 2 * Tau)

k_eff = k_inf * P_L * P_tau Sum_Sigma_f = Sigma_f_sr['U235'] + Sigma_f_sr['Pu239'] + Sigma_f_sr['Pu241'] # Сумма сечения деления в топливе F = Q / (200 * 1.60217733 * 10 ** -19 * Sum_Sigma_f * 86963760 / p_UO2(T_eff)) # сойгин стр325

```
c5 = N_g['U235'] / (N_g['U238'] + N_g['U235'])
po = (k_eff - 1) / k_eff
```

print(1 - 1 / k_eff)

					Φŀ
Изм.	Лист	№ докум.	Подпись	Дата	

Приложение Б

Листинг программы по расчету изменения реактивности в ходе кампании.

from CoolProp import CoolProp as CP import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy from scipy import special from scipy.integrate import simps import os % matplotlib inline print(np.random.random()) # Константы Na = 0.6023 * 10 ** 24 # Авогадро k bolc = 8.617 * 10 ** -5 # Постоянная Больцмана эВ E qr = 2 * 10 * 8# Параметры а.з [] P0 = 16.3 * 10 ** 6 #Πa Q = 3200 # MBmN tvs = 163V tn = 88000 # M3/4T1 in = 298.2 + 273.15 #K T1 out = 328.6 + 273.15 # KT1sr = (T1_in + T1_out) / 2 # Средняя температура # Параметры ТВС-2М т UO2 = 1710 # Масса топлива, г m UO2 Gd5 = 1690 # НИК КИ стр 14 m UO2 Gd8 = 1680 d0 = 0.12 # Центральное отверстие d_fuel = 0.76 # Топливо d in tvel = 0.773 # ТВЭЛ Сплав Э110 d_out_tvel = 0.91 # ТВЭЛ d_out_gr = 1.3 #Направляющий канал d_in_gr = 1.1 # Направляющий канал d in cr = 1.1 # Центральная трубка d out cr = 1.3 # Центральная трубка a_tvel = 1.275 #Шаг твэл a_tvs = 23.6 #Шаг ТВС s = 23.4 # Размер под ключ N tvel = 312N qr = 18N cr = 1H_core = 373.0 #Высота топлива ФЮРА.562527.005ПЗ Подпись Дата Лист № докум. Изм.

```
# Свойства материалов
    ##Плотность
    def p_UO2(t):
      pO UO2 = 10.96
      if t < 923:
        K = 0.99734 + 9.802 * 10 ** -6 * t - 2.715 * 10 ** -10 * t ** 2 + 4.291 * 10 ** -13 * t ** 3
      else:
        K = 0.99672 + 1.179 * 10 ** -5 * t - 2.429 * 10 ** -9 * t ** 2 + 1.219 * 10 ** -13 * t ** 3
      f = 1 - (
              d0 / d_fuel) ** 2 # поправка на центральное отверстие Павлов В.И.
    Анализ нейтронно-физических характеристик топливной решетки ВВЭР-1000.
      return K * p0_UO2 * f # Теплофиз. свойства материалов ядер. техники кириллов
    cmp 39
    def p_Zr(t):
      return (6636 - 0.286 * t) / 1000 # Теплофиз. свойства материалов ядер. техники
    кириллов стр 159
    def p_H2O(t):
      return CP.PropsSI('D', 'P', P0, "T", t, 'water')
    def p_He(t):
      return CP.PropsSI('D', 'P', P0, "T", t, 'Helium')
    ##Теплопроводность
    def lyambda_Zr(t):
      if t \ge 290 and t < 1100:
         return 23.5 - 0.0192 * t + 1.68 * 10 ** -5 * t ** 2
      elif t >= 1100 and t < 1600:
         return 1.5 + 0.02 * t # Теплофиз. свойства материалов ядер. техники кириллов
    cmp 160
    def lyambda_UO2(t):
      T = t / 1000
      return 100 / (7.5408 + 17.692 * T + 3.6142 * T ** 2) + 6400 / T ** 2.5 * np.exp(
         -16.35 / T) # Теплофиз. свойства материалов ядер. техники кириллов стр 40
    def Pr(t):
      return CP.PropsSI('Prandtl', 'P', P0, "T", t, 'water')
    def lyambda_H2O(t):
      return CP.PropsSI('L', 'P', P0, "T", t, 'water')
    def lyambda_He(t):
      return CP.PropsSI('L', 'P', P0, "T", t, 'Helium')
    # Расчет объемов
    f_cell = a_tvs ** 2 * np.sqrt(3) / 2
    f_Zr = np.pi / 4 * (d_out_tvel ** 2 - d_in_tvel ** 2) * N_tvel + np.pi / 4 * (d_out_gr ** 2 -
    d_in_gr ** 2) * (
           N gr + N cr)
    f_fuel = (d_fuel ** 2 - d0 ** 2) * np.pi / 4 * N_tvel
                                                                                          Лист
                                             ФЮРА.562527.005ПЗ
                                                                                           96
Изм. Лист
            № докум.
                       Подпись Дата
```

```
f_He = (d0 ** 2 + d_in_tvel ** 2 - d_fuel ** 2) * np.pi / 4 * N_tvel
f_H2O = f_cell - f_Zr - f_fuel - f_He
f_moderator = f_H2O + f_He + f_Zr
d_cell = np.sqrt(4 * (f_cell / N_tvel) / np.pi) # np.sqrt( (a_tvel**2*np.sqrt(3)/2)*4/np.pi)
# Размеры активной зоны
R_core = np.sqrt(f_cell * N_tvs / np.pi)
# Расчет эффективной температуры
##Расчет перепада температуры в пограничном слое
G = V_tn / 3600 * p_H2O(T1_in) # κε/c
w_sr = G / (N_tvs * f_H2O * 10 ** -4 * p_H2O(T1sr))
x = a tvel / d out tvel # Отноительный шаг
d_g = d_out_tvel * (2 * np.sqrt(3) * x ** 2 / np.pi - 1) # Гидравлический диаметр
Кириллов стр 31
kin_visc = CP.PropsSI('V', "P", P0, 'T', T1sr, 'water') / p_H2O(T1sr)
Re = d_g * 10 ** -2 * w_sr / kin_visc
A_Nu = 0.0165 + 0.02 * (1 - 0.91 * x ** -2) * x ** 0.15
Nu = A_Nu * Re ** 0.8 + Pr(T1sr) ** 0.4 # Кириллов стр 73.
alpha_Nu = Nu * lyambda_H2O(T1sr) / (d_g * 10 ** -2)
qf_out = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * np.pi * d_out_tvel * 10 ** -4)
delta_T_alpha = qf_out / alpha_Nu
qf_in = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * np.pi * d_in_tvel * 10 ** -4) # Bm/m**2
T_out_tvel = T1sr + delta_T_alpha
# Температура на внутренней стороне оболочки
T in tvel = T out tvel
eps = 1
while eps > 0.01:
  T_in_tvel2 = T_out_tvel - qf_in * d_in_tvel * 10 ** -2 / (2 * lyambda_Zr(T_in_tvel / 2 +
T_out_tvel / 2)) * np.log(
    d_in_tvel / d_out_tvel)
  eps = abs(T_in_tvel2 - T_in_tvel)
  T_in_tvel = T_in_tvel2 \# K
# Температура на внешней стороне топлива
T_out_fuel = T_in_tvel
eps = 1
while eps > 0.01:
  T_out_fuel2 = T_in_tvel - qf_in * d_in_tvel * 10 ** -2 / (2 * lyambda_He(T_out_fuel / 2 +
T_in_tvel / 2) * np.log(
    d_fuel / d_in_tvel)
  eps = abs(T_out_fuel2 - T_out_fuel)
  T_out_fuel = T_out_fuel2 \# K
# Температура на внутр. стороне топлива
ql = Q * 10 ** 6 / (N_tvs * N_tvel * H_core * 10 ** -2) # Bm/m**2
T_in_fuel = T_out_fuel
eps = 1
while eps > 0.1:
  T_in_fuel2 = T_out_fuel + ql / (4 * np.pi * lyambda_UO2(T_in_fuel / 2 + T_out_fuel / 2))
* (
                                                                                      Лист
                                         ФЮРА.562527.005ПЗ
                                                                                       97
```

Изм. Лист

№ докум.

Подпись Дата

```
1 - 2 * d0 ** 2 / (d_fuel ** 2 - d0 ** 2) * np.log(d_fuel / d0))
  eps = abs(T_in_fuel2 - T_in_fuel)
  T_in_fuel = T_in_fuel2 \# K
# Эффективная температура
T_eff = T_out_fuel + 0.4 * (T_in_fuel - T_out_fuel)
# Массы изотопов
A = {'U235': 235.0439, 'U238': 238.0508, 'O16': 15.9994, 'H1': 1.0078, 'Zr90': 89.9047,
'Zr91': 90.9056,
   'Zr92': 91.9050, 'Zr94': 93.9063, 'Zr96': 95.9083, 'He4': 4.0026, 'Eu151': 150.9199,
'Eu152': 151.9217.
   'Eu153': 152.9212, 'Eu154': 153.9230, 'Eu155': 154.9229, 'Eu156': 155.9248,
   'Gd154': 153.9209, 'Gd155': 154.9226, 'Gd156': 155.9221, 'Gd157': 156.9240,
'Gd158': 157.9241.
   'Pu239': 239.0522, 'Pu240': 240.0538, 'Pu241': 241.0569, 'Xe135': 134.9072, 'Sm149':
148.9172
# Среднелогарифмический декремент
dzita = \{\}
for nuc, a in A.items():
  if nuc == 'H1':
    dzita[nuc] = 1
  else:
    dzita[nuc] = 1 + (a - 1) ** 2 / (2 * a) * np.log((a - 1) / (a + 1))
# Средний косинус угла рассеяния
nu = \{\}
for nuc, a in A.items():
  nu[nuc] = 2 / (3 * a)
# Расчет ядерных концентраций
c5 = 6 / 100
c8 = 1 - c5
M_UO2 = A['U235'] * c5 + c8 * A['U238'] + 2 * A['O16']
M_H2O = 2 * A['H1'] + A['O16']
N_UO2 = Na * p_UO2(T_eff) / M_UO2
N U5 = c5 * N UO2
N U8 = c8 * N UO2
Tsr_He = T_out_fuel / 2 + T_in_tvel / 2
N_He = Na * p_He(Tsr_He) / 1000 / A['He4']
Tsr_Zr = T_out_tvel / 2 + T_in_tvel / 2
N_Zr = Na * p_Zr(Tsr_Zr)
N H = 2 * Na * p H2O(T1sr) / 1000 / M H2O
N_0_{H20} = Na * p_{H20}(T1sr) / 1000 / M_{H20}
# Концентрация выгорающих поглотителей
N tveg 8 = 24 * 9 + 13 * 12
N_tveg_5 = 24 * 12
                                                                                     Лист
                                        ФЮРА.562527.005ПЗ
                                                                                      98
```

Изм. Лист

№ докум.

Подпись Дата

```
c_Gd = 0.00062 \# (N_tveg_8 * 0.08 + N_tveg_5 * 0.05)/(N_tvs*N_tvel)
    c Eu = 0.0004
    N_Gd2O3 = 1 * c_Gd * N_UO2
    N_Eu2O3 = 1 * c_Eu * N_UO2
    N_0 = 2 * N_0 + 3 * N_G d_{203} + 3 * N_E u_{203}
    #Концентрации изотопов ВП в естественной смеси
    c Eu151 = 0.4744
    c Eu153 = 0.5223
    c_Gd154 = 0.0218
    c Gd155 = 0.1480
    c Gd156 = 0.2047
    c Gd157 = 0.1565
    c Gd158 = 0.2484
    c Zr90 = 0.5146
    c Zr91 = 0.1123
    c Zr92 = 0.1711
    c Zr94 = 0.174
    c Zr96 = 0.028
    N_0 = {'O16': N_O, 'Zr90': c_Zr90 * N_Zr / A['Zr90'], 'Zr91': c_Zr91 * N_Zr / A['Zr91'],
        'Zr92': c_Zr92 * N_Zr / A['Zr92'], 'Zr94': c_Zr94 * N_Zr / A['Zr94'],
        'Zr96': c Zr96 * N Zr / A['Zr96'],
        'H2O': N O H2O, 'He4': N He, 'Eu151': 2 * N Eu2O3 * c Eu151, 'Eu152': 0,
        'Eu153': 2 * N_Eu2O3 * c_Eu153, 'Eu154': 0, 'Eu155': 0, 'Eu156': 0,
        'Gd154': 2 * N Gd2O3 * c Gd154, 'Gd155': 2 * N Gd2O3 * c Gd155,
        'Gd156': 2 * N_Gd2O3 * c_Gd156, 'Gd157': 2 * N_Gd2O3 * c_Gd157,
        'Gd158': 2 * N_Gd2O3 * c_Gd158, 'U235': N_U5, 'U238': N_U8,
        'Pu239': 0, 'Pu240': 0, 'Pu241': 0, 'Xe135': 0, 'I135': 0, 'Sm149': 0, 'Pm149': 0}
    #Гомогенизация
    N_g = \{\}
    for nuc, N in N_0.items():
      if nuc == 'He4':
        N_g[nuc] = N_0[nuc] * f_He / f_moderator
      elif nuc.find('Zr') != -1:
        N_g[nuc] = N_0[nuc] * f_Zr / f_moderator
      elif nuc == 'H2O':
        N_g[nuc] = N_0[nuc] * f_H2O / f_moderator
      else:
        N_g[nuc] = N_0[nuc]
    def Runge():
      Eu151a = (-(N_g['Eu151']) * sigma_a_sr['Eu151'] * F) * tau
      Eu151b = (-(N_g['Eu151'] + Eu151a / 2) * sigma_a_sr['Eu151'] * F) * tau
      Eu151c = (-(N_g['Eu151'] + Eu151b / 2) * sigma_a_sr['Eu151'] * F) * tau
      Eu151d = (-(N_g['Eu151'] + Eu151c) * sigma_a_sr['Eu151'] * F) * tau
      Eu152a = (((N_g['Eu151']) * sigma_a_sr['Eu151'] - (N_g['Eu152']) *
    sigma_a_sr['Eu152']) * F - lyamda['Eu152'] * (
                                                                                        Лист
                                            ФЮРА.562527.005ПЗ
                                                                                         99
                      Подпись Дата
Изм. Лист
            № докум.
```

```
N_g['Eu152'])) * tau
            Eu152b = (((N_g['Eu151'] + Eu151a / 2) * sigma_a_sr['Eu151'] - (N_g['Eu152'] +
       Eu152a / 2) * sigma_a_sr[
                'Eu152']) * F - lyamda['Eu152'] * (N_g['Eu152'] + Eu152a / 2)) * tau
            Eu152c = (((N_g['Eu151'] + Eu151b / 2) * sigma_a_sr['Eu151'] - (N_g['Eu152'] +
       Eu152b / 2) * sigma_a_sr[
                'Eu152']) * F - lyamda['Eu152'] * (N_g['Eu152'] + Eu152b / 2)) * tau
            Eu152d = (((N_g['Eu151'] + Eu151c) * sigma_a_sr['Eu151'] - (N_g['Eu152'] + Eu152c) *
       sigma_a_sr['Eu152']) * F -
                      lyamda['Eu152'] * (N_g['Eu152'] + Eu152c)) * tau
            Eu153a = (((N_g['Eu152']) * sigma_a_sr['Eu152'] - (N_g['Eu153']) *
       sigma_a_sr['Eu153']) * F) * tau
            Eu153b = (((N_g['Eu152'] + Eu152a / 2) * sigma_a_sr['Eu152'] - (N_g['Eu153'] +
       Eu153a / 2) * sigma_a_sr[
                'Eu153']) * F) * tau
            Eu153c = (((N_g['Eu152'] + Eu152b / 2) * sigma_a_sr['Eu152'] - (N_g['Eu153'] +
       Eu153b / 2) * sigma_a_sr[
                'Eu153']) * F) * tau
            Eu153d = (((N_g['Eu152'] + Eu152c) * sigma_a_sr['Eu152'] - (N_g['Eu153'] + Eu153c) *
       sigma_a_sr['Eu153']) * F) * tau
            Eu154a = (((N_g['Eu153']) * sigma_a_sr['Eu153'] - (N_g['Eu154']) *
       sigma_a_sr['Eu154']) * F - lyamda['Eu154'] * (
           N_g['Eu154'])) * tau
            Eu154b = (((N_g['Eu153'] + Eu153a / 2) * sigma_a_sr['Eu153'] - (N_g['Eu154'] +
       Eu154a/2) * sigma a sr[
                'Eu154']) * F - lyamda['Eu154'] * (N_g['Eu154'] + Eu154a / 2)) * tau
            Eu154c = (((N_g['Eu153'] + Eu153b / 2) * sigma_a_sr['Eu153'] - (N_g['Eu154'] +
       Eu154b / 2) * sigma_a_sr[
                'Eu154']) * F - lyamda['Eu154'] * (N_g['Eu154'] + Eu154b / 2)) * tau
            Eu154d = (((N_g['Eu153'] + Eu153c) * sigma_a_sr['Eu153'] - (N_g['Eu154'] + Eu154c) *
       sigma_a_sr['Eu154']) * F -
                      lyamda['Eu154'] * (N_g['Eu154'] + Eu154c)) * tau
            Eu155a = (((N_g['Eu154']) * sigma_a_sr['Eu154'] - (N_g['Eu155']) *
       sigma_a_sr['Eu155']) * F - lyamda['Eu155'] * (
           N_g['Eu155'])) * tau
            Eu155b = (((N_g['Eu154'] + Eu154a / 2) * sigma_a_sr['Eu154'] - (N_g['Eu155'] +
       Eu155a / 2) * sigma_a_sr[
                'Eu155']) * F - lyamda['Eu155'] * (N_g['Eu155'] + Eu155a / 2)) * tau
            Eu155c = (((N_g['Eu154'] + Eu154b / 2) * sigma_a_sr['Eu154'] - (N_g['Eu155'] +
       Eu155b / 2) * sigma_a_sr[
                'Eu155']) * F - lyamda['Eu155'] * (N_g['Eu155'] + Eu155b / 2)) * tau
            Eu155d = (((N_g['Eu154'] + Eu154c) * sigma_a_sr['Eu154'] - (N_g['Eu155'] + Eu155c) *
       sigma_a_sr['Eu155']) * F -
                      lyamda['Eu155'] * (N_g['Eu155'] + Eu155c)) * tau
            Eu156a = (((N_g['Eu155']) * sigma_a_sr['Eu155'] - (N_g['Eu156']) *
       sigma_a_sr['Eu156']) * F - lyamda['Eu156'] * (
           N_g['Eu156'])) * tau
           Eu156b = (((N_g['Eu155'] + Eu155a / 2) * sigma_a_sr['Eu155'] - (N_g['Eu156'] + Eu156b = ((N_g['Eu156'] + Eu156b = (N_g['Eu156'] + Eu156b = (N_g[
                                                                                                                                                                Лист
                                                                                ФЮРА.562527.005ПЗ
                                                                                                                                                                  100
Изм. Лист
                     № докум.
                                        Подпись Дата
```

```
Eu156a / 2) * sigma_a_sr[
         'Eu156']) * F - lyamda['Eu156'] * (N_g['Eu156'] + Eu156a / 2)) * tau
      Eu156c = (((N_g['Eu155'] + Eu155b / 2) * sigma_a_sr['Eu155'] - (N_g['Eu156'] +
    Eu156b / 2) * sigma_a_sr[
         'Eu156']) * F - lyamda['Eu156'] * (N_g['Eu156'] + Eu156b / 2)) * tau
      Eu156d = (((N_g['Eu155'] + Eu155c) * sigma_a_sr['Eu155'] - (N_g['Eu156'] + Eu156c) *
    sigma_a_sr['Eu156']) * F -
            lyamda['Eu156'] * (N_g['Eu156'] + Eu156c)) * tau
      Gd154a = (-(N_g['Gd154']) * sigma_a_sr['Gd154'] * F + lyamda['Eu154'] *
    (N_g['Eu154'])) * tau
      Gd154b = (-(N_g['Gd154'] + Gd154a / 2) * sigma_a_sr['Gd154'] * F + lyamda['Eu154'] *
    (
              N_g['Eu154'] + Eu154a / 2)) * tau
      Gd154c = (-(N_g['Gd154'] + Gd154b / 2) * sigma_a_sr['Gd154'] * F + lyamda['Eu154'] *
    (
              N_g['Eu154'] + Eu154b / 2)) * tau
      Gd154d = (-(N_g['Gd154'] + Gd154c) * sigma_a_sr['Gd154'] * F + lyamda['Eu154'] *
    (N_g['Eu154'] + Eu154c)) * tau
      Gd155a = (((N_g['Gd154']) * sigma_a_sr['Gd154'] - (N_g['Gd155']) *
    sigma_a_sr['Gd155']) * F + lyamda['Eu155'] * (
      N_g['Eu155'])) * tau
      Gd155b = (((N_g['Gd154'] + Gd154a / 2) * sigma_a_sr['Gd154'] - (N_g['Gd155'] +
    Gd155a / 2) * sigma_a_sr[
         'Gd155']) * F + lyamda['Eu155'] * (N_g['Eu155'] + Eu155a / 2)) * tau
      Gd155c = (((N_g['Gd154'] + Gd154b / 2) * sigma_a_sr['Gd154'] - (N_g['Gd155'] +
    Gd155b / 2) * sigma_a_sr[
         'Gd155']) * F + lyamda['Eu155'] * (N_g['Eu155'] + Eu155b / 2)) * tau
      Gd155d = (((N_g['Gd154'] + Gd154c) * sigma_a_sr['Gd154'] - (N_g['Gd155'] + Gd155c)
    * sigma_a_sr['Gd155']) * F +
            lyamda['Eu155'] * (N_g['Eu155'] + Eu155c)) * tau
      Gd156a = (((N_g['Gd155']) * sigma_a_sr['Gd155'] - (N_g['Gd156']) *
    sigma_a_sr['Gd156']) * F + lyamda['Eu156'] * (
      N_g['Eu156'])) * tau
      Gd156b = (((N_g['Gd155'] + Gd155a / 2) * sigma_a_sr['Gd155'] - (N_g['Gd156'] +
    Gd156a / 2) * sigma_a_sr[
         'Gd156']) * F + lyamda['Eu156'] * (N_g['Eu156'] + Eu156a / 2)) * tau
      Gd156c = (((N_g['Gd155'] + Gd155b / 2) * sigma_a_sr['Gd155'] - (N_g['Gd156'] +
    Gd156b / 2) * sigma_a_sr[
         'Gd156']) * F + lyamda['Eu156'] * (N_g['Eu156'] + Eu156b / 2)) * tau
      Gd156d = (((N_g['Gd155'] + Gd155c) * sigma_a_sr['Gd155'] - (N_g['Gd156'] + Gd156c))
    * sigma_a_sr['Gd156']) * F +
            lyamda['Eu156'] * (N_g['Eu156'] + Eu156c)) * tau
      Gd157a = (((N_g['Gd156']) * sigma_a_sr['Gd156'] - (N_g['Gd157']) *
    sigma_a_sr['Gd157']) * F) * tau
      Gd157b = (((N_g['Gd156'] + Gd156a / 2) * sigma_a_sr['Gd156'] - (N_g['Gd157'] +
    Gd157a / 2) * sigma_a_sr[
         'Gd157']) * F) * tau
      Gd157c = (((N_g['Gd156'] + Gd156b / 2) * sigma_a_sr['Gd156'] - (N_g['Gd157'] +
                                                                                         Лист
                                             ФЮРА.562527.005ПЗ
                                                                                          101
Изм. Лист
            № докум.
                      Подпись Дата
```

```
Gd157b / 2) * sigma_a_sr[
                        'Gd157']) * F) * tau
                 Gd157d = (((N_g['Gd156'] + Gd156c) * sigma_a_sr['Gd156'] - (N_g['Gd157'] + Gd157c)
           * sigma_a_sr['Gd157']) * F) * tau
                 Gd158a = (((N_g['Gd157']) * sigma_a_sr['Gd157'] - (N_g['Gd158']) *
           sigma_a_sr['Gd158']) * F) * tau
                 Gd158b = (((N_g['Gd157'] + Gd157a / 2) * sigma_a_sr['Gd157'] - (N_g['Gd158'] +
           Gd158a / 2) * sigma_a_sr[
                        'Gd158']) * F) * tau
                 Gd158c = (((N_g['Gd157'] + Gd157b / 2) * sigma_a_sr['Gd157'] - (N_g['Gd158'] +
           Gd158b / 2) * sigma_a_sr[
                        'Gd158']) * F) * tau
                 Gd158d = (((N_g['Gd157'] + Gd157c) * sigma_a_sr['Gd157'] - (N_g['Gd158'] + Gd158c)
           * sigma_a_sr['Gd158']) * F) * tau
                 U235a = (-(N_g['U235']) * sigma_a_sr['U235'] * F) * tau
                 U235b = (-(N_g['U235'] + U235a / 2) * sigma_a_sr['U235'] * F) * tau
                 U235c = (-(N_g['U235'] + U235b / 2) * sigma_a_sr['U235'] * F) * tau
                 U235d = (-(N_g['U235'] + U235c) * sigma_a_sr['U235'] * F) * tau
                 U238a = (-(N_g['U238']) * sigma_a_sr['U238'] - (1 - phi) * (
                                    v['U235'] * (N_g['U235']) * sigma_a_sr['U235'] + v['Pu239'] * (
                              N_g['Pu239']) * sigma_a_sr['Pu239'])) * F * mu * np.exp(-alpha ** 2 * Tau) * tau
                 Pu239a = ((N_g['U238']) * sigma_a_sr['U238'] - (N_g['Pu239']) * sigma_a_sr['Pu239'] +
           (1 - phi) * (
                              v['U235'] * (N_g['U235']) * sigma_a_sr['U235'] + v['Pu239'] * (N_g['Pu239']) *
           sigma_a_sr[
                        'Pu239'])) * F * mu * np.exp(-alpha ** 2 * Tau) * tau
                 U238b = (-(N_g['U238'] + U238a / 2) * sigma_a_sr['U238'] - (1 - phi) * (v['U235'] * (
                              N_g['U235'] + U235a / 2) * sigma_a_sr['U235'] + v['Pu239'] * (N_g['Pu239'] +
           Pu239a / 2) * sigma_a_sr[
                                                                                                                                            'Pu239'])) * F * mu * np.exp(
                        -alpha ** 2 * Tau) * tau
                 Pu239b = ((N_g['U238'] + U238a / 2) * sigma_a_sr['U238'] - (N_g['Pu239'] + Pu239a / 2) * sigma_sr['U238'] + Pu239a / 2) * sigma_sr['U238'] - (N_g['Pu239'] + Pu239a / 2) * sigma_sr['U238'] + Pu239'] + Pu239' + Pu23
           2) * sigma_a_sr['Pu239'] + (
                                     1 - phi) * (
                                              v['U235'] * (N_g['U235'] + U235a / 2) * sigma_a_sr['U235'] + v['Pu239'] * (
                                                     N_g['Pu239'] + Pu239a / 2) * sigma_a_sr['Pu239'])) * F * mu * np.exp(-
           alpha ** 2 * Tau) * tau
                 U238c = (-(N_g['U238'] + U238b / 2) * sigma_a_sr['U238'] - (1 - phi) * (v['U235'] * (1 - phi) 
                              N_g['U235'] + U235b / 2) * sigma_a_sr['U235'] + v['Pu239'] * (N_g['Pu239'] +
           Pu239b / 2) * sigma_a_sr[
                                                                                                                                            'Pu239'])) * F * mu * np.exp(
                        -alpha ** 2 * Tau) * tau
                 Pu239c = ((N_g['U238'] + U238b / 2) * sigma_a_sr['U238'] - (N_g['Pu239'] + Pu239b /
           2) * sigma_a_sr['Pu239'] + (
                                     1 - phi) * (
                                              v['U235'] * (N_g['U235'] + U235b / 2) * sigma_a_sr['U235'] + v['Pu239'] * (
                                                    N_g['Pu239'] + Pu239b / 2) * sigma_a_sr['Pu239'])) * F * mu * np.exp(-
                                                                                                                                                                                                                                              Лист
                                                                                                                       ФЮРА.562527.005ПЗ
                                                                                                                                                                                                                                                 102
Изм. Лист
                                № докум.
                                                            Подпись Дата
```

```
alpha ** 2 * Tau) * tau
      U238d = (-(N_g['U238'] + U238c) * sigma_a_sr['U238'] - (1 - phi) * (v['U235'] * (
           N_g['U235'] + U235c) * sigma_a_sr['U235'] + v['Pu239'] * (N_g['Pu239'] + Pu239c)
    * sigma_a_sr[
                                                   'Pu239'])) * F * mu * np.exp(
         -alpha ** 2 * Tau) * tau
      Pu239d = ((N_g['U238'] + U238c) * sigma_a_sr['U238'] - (N_g['Pu239'] + Pu239c) *
    sigma_a_sr['Pu239'] + (1 - phi) * (
           v['U235'] * (N_g['U235'] + U238c) * sigma_a_sr['U235'] + v['Pu239'] *
    (N_g['Pu239'] + Pu239c) * sigma_a_sr[
         'Pu239'])) * F * mu * np.exp(-alpha ** 2 * Tau) * tau
      Pu240a = ((N_g['Pu239']) * sigma_a_sr['Pu239'] - (N_g['Pu240']) *
    sigma_a_sr['Pu240']) * F * tau
      Pu240b = ((N_g['Pu239'] + Pu239a / 2) * sigma_a_sr['Pu239'] - (N_g['Pu240'] +
    Pu240a / 2) * sigma_a_sr[
         'Pu240']) * F * tau
      Pu240c = ((N_g['Pu239'] + Pu239b / 2) * sigma_a_sr['Pu239'] - (N_g['Pu240'] + Pu240b)
    / 2) * sigma_a_sr[
         'Pu240']) * F * tau
       Pu240d = ((N_g['Pu239'] + Pu239c) * sigma_a_sr['Pu239'] - (N_g['Pu240'] + Pu240c) *
    sigma_a_sr['Pu240']) * F * tau
      Pu241a = ((N_g['Pu240']) * sigma_a_sr['Pu240'] - (N_g['Pu241']) *
    sigma_a_sr['Pu241']) * F * tau
      Pu241b = ((N_g['Pu240'] + Pu239a / 2) * sigma_a_sr['Pu240'] - (N_g['Pu241'] +
    Pu240a / 2) * sigma_a_sr[
         'Pu241']) * F * tau
      Pu241c = ((N_g['Pu240'] + Pu239b / 2) * sigma_a_sr['Pu240'] - (N_g['Pu241'] + Pu240b)
    / 2) * sigma_a_sr[
         'Pu241']) * F * tau
      Pu241d = ((N_g['Pu240'] + Pu239c) * sigma_a_sr['Pu240'] - (N_g['Pu241'] + Pu240c) *
    sigma_a_sr['Pu241']) * F * tau
      Xe135a = (0.003 * sigma_f_sr['U235'] * (N_g['U235']) - sigma_a_sr['Xe135'] *
    (N_g['Xe135'])) * F + lyamda[
         'I135'] * (N_g['I135']) - Iyamda['Xe135'] * (N_g['Xe135'])
      I135a = 0.06 * sigma_f_sr['U235'] * (N_g['U235']) * F - lyamda['I135'] * (N_g['I135'])
      Xe135b = (0.003 * sigma_f_sr['U235'] * (N_g['U235'] + U235a / 2) - sigma_a_sr['Xe135']
    * (
              N_g['Xe135'] + Xe135a / 2)) * F + lyamda['l135'] * (N_g['l135'] + l135a / 2) -
    lyamda['Xe135'] * (
                   N_g['Xe135'] + Xe135a / 2)
      I135b = 0.06 * sigma_f_sr['U235'] * (N_g['U235'] + U235a / 2) * F - Iyamda['I135'] *
    (N_g['1135'] + 1135a / 2)
      Xe135c = (0.003 * sigma_f_sr['U235'] * (N_g['U235'] + U235b / 2) - sigma_a_sr['Xe135']
    * (
              N_g['Xe135'] + Xe135b / 2)) * F + lyamda['l135'] * (N_g['l135'] + l135b / 2) -
    lyamda['Xe135'] * (
                                                                                           Лист
                                             ФЮРА.562527.005ПЗ
                                                                                            103
Изм. Лист
            № докум.
                       Подпись Дата
```

```
N_g['Xe135'] + Xe135b / 2)
      I135c = 0.06 * sigma_f_sr['U235'] * (N_g['U235'] + U235b / 2) * F - lyamda['I135'] *
    (N_g['135'] + 1135b / 2)
      Xe135d = (0.003 * sigma_f_sr['U235'] * (N_g['U235'] + U235c) - sigma_a_sr['Xe135'] *
    (N_g['Xe135'] + Xe135c)) * F + \
           lyamda['I135'] * (N_g['I135'] + I135c) - lyamda['Xe135'] * (N_g['Xe135'] + Xe135c)
      I135d = 0.06 * sigma_f_sr['U235'] * (N_g['U235'] + U235c) * F - lyamda['I135'] *
    (N_g['1135'] + 1135c)
      Pm149a = 0.011 * sigma_f_sr['U235'] * (N_g['U235']) * F - lyamda['Pm149'] *
    (N g['Pm149'])
      Sm149a = lyamda['Pm149'] * (N_g['Pm149']) - sigma_a_sr['Sm149'] * (N_g['Sm149']) *
    F
      Pm149b = 0.011 * sigma_f_sr['U235'] * (N_g['U235'] + U235a / 2) * F - lyamda['Pm149']
    * (N_g['Pm149'] + Pm149a / 2)
      Sm149b = lyamda['Pm149'] * (N_g['Pm149'] + Pm149a / 2) - sigma_a_sr['Sm149'] *
    (N g['Sm149'] + Sm149a / 2) * F
      Pm149c = 0.011 * sigma_f_sr['U235'] * (N_g['U235'] + U235b / 2) * F - lyamda['Pm149']
    * (N_g['Pm149'] + Pm149b / 2)
      Sm149c = lyamda['Pm149'] * (N_g['Pm149'] + Pm149b / 2) - sigma_a_sr['Sm149'] *
    (N_g['Sm149'] + Sm149b / 2) * F
      Pm149d = 0.011 * sigma_f_sr['U235'] * (N_g['U235'] + U235c) * F - lyamda['Pm149'] *
    (N g['Pm149'] + Pm149c)
      Sm149d = lyamda['Pm149'] * (N_g['Pm149'] + Pm149c) - sigma_a_sr['Sm149'] *
    (N_g['Sm149'] + Sm149c) * F
      global N_g2
      N_g2 = {'O16': N_g['O16'], 'Zr90': N_g['Zr90'], 'Zr91': N_g['Zr91'],
           'Zr92': N_g['Zr92'], 'Zr94': N_g['Zr94'], 'Zr96': N_g['Zr96'], 'H2O': N_g['H2O'],
    'He4': N_g['He4']
      N_g2['Eu151'] = N_g['Eu151'] + (Eu151a + 2 * Eu151b + 2 * Eu151c + Eu151d) / 6
      N g2['Eu152'] = N g['Eu152'] + (Eu152a + 2 * Eu152b + 2 * Eu152c + Eu152d) / 6
      N g2['Eu153'] = N g['Eu153'] + (Eu153a + 2 * Eu153b + 2 * Eu153c + Eu153d) / 6
      N_{q2}[Eu154'] = N_{g}[Eu154'] + (Eu154a + 2 * Eu154b + 2 * Eu154c + Eu154d) / 6
      N_g2['Eu155'] = N_g['Eu155'] + (Eu155a + 2 * Eu155b + 2 * Eu155c + Eu155d) / 6
      N_q2['Eu156'] = N_q['Eu156'] + (Eu156a + 2 * Eu156b + 2 * Eu156c + Eu156d) / 6
      N_{g2}[Gd154'] = N_{g}[Gd154'] + (Gd154a + 2 * Gd154b + 2 * Gd154c + Gd154d) / 6
      N_g2['Gd155'] = N_g['Gd155'] + (Gd155a + 2 * Gd155b + 2 * Gd155c + Gd155d) / 6
      N_g2['Gd156'] = N_g['Gd156'] + (Gd156a + 2 * Gd156b + 2 * Gd156c + Gd156d) / 6
      N_q2['Gd157'] = N_g['Gd157'] + (Gd157a + 2 * Gd157b + 2 * Gd157c + Gd157d) / 6
      N_g2['Gd158'] = N_g['Gd158'] + (Gd158a + 2 * Gd158b + 2 * Gd158c + Gd158d) / 6
      N_q2['U235'] = N_q['U235'] + (U235a + 2 * U235b + 2 * U235c + U235d) / 6
      N_g2['U238'] = N_g['U238'] + (U238a + 2 * U238b + 2 * U238c + U238d) / 6
                                                                                        Лист
                                            ФЮРА.562527.005ПЗ
                                                                                         104
                      Подпись Дата
Изм. Лист
            № докум.
```

```
N g2['Pu239'] = N g['Pu239'] + (Pu239a + 2 * Pu239b + 2 * Pu239c + Pu239d) / 6
      N g2['Pu240'] = N g['Pu240'] + (Pu240a + 2 * Pu240b + 2 * Pu240c + Pu240d) / 6
      N_{q2}[Pu241'] = N_{g}[Pu241'] + (Pu241a + 2 * Pu241b + 2 * Pu241c + Pu241d) / 6
      N_{g2}[Xe135'] = N_{g}[Xe135'] + (Xe135a + 2 * Xe135b + 2 * Xe135c + Xe135d) * tau / 6
      N_{q2}[135] = N_{q}[135] + (1135a + 2 * 1135b + 2 * 1135c + 1135d) * tau / 6
      N g2['Pm149'] = N g['Pm149'] + (Pm149a + 2 * Pm149b + 2 * Pm149c + Pm149d) *
    tau / 6
      N g2['Sm149'] = N g['Sm149'] + (Sm149a + 2 * Sm149b + 2 * Sm149c + Sm149d) *
    tau / 6
      return N g2
    Nuc = ['O16', 'Zr90', 'Zr91', 'Zr92', 'Zr94', 'Zr96', 'He4', 'Eu151', 'Eu152', 'Eu153',
    'Eu154'. 'Eu155'. 'Eu156'.
        'Gd154', 'Gd155', 'Gd156', 'Gd157', 'Gd158', 'U235', 'U238', 'Pu239', 'Pu240',
    'Pu241', 'Xe135', 'Sm149']
    Nuc_moderator = ['O16', 'Zr90', 'Zr91', 'Zr92', 'Zr94', 'Zr96', 'H2O', 'He4']
    Nuc_fuel = ['Eu151', 'Eu152', 'Eu153', 'Eu154', 'Eu155', 'Eu156',
            'Gd154', 'Gd155', 'Gd156', 'Gd157', 'Gd158', 'U235', 'U238', 'Pu239', 'Pu240',
    'Pu241', 'Xe135', 'Sm149']
    tau = 3600 * 24 * 0.2
    lyamda = {'Eu152': 1.622 * 10 ** -9, 'Eu154': 2.554 * 10 ** -9, 'Eu155': 4.6 * 10 ** -9,
    'Eu156': 5.283 * 10 ** -7.
          'Gd153': 3.925 * 10 ** -8.
          'I135': np.log(2) / (6.58 * 3600), 'Xe135': np.log(2) / (9.14 * 3600), 'Pm149': np.log(2)
    / (53.08 * 3600)}
    #####Начало цикла отсюда######
    \mathbf{k} = \mathbf{0}
    results = pd.DataFrame(columns=list(N_g.keys()), data=[list(N_g.values())])
    results['T'] = 0
    results['ro'] = 0.3
    results[[F'] = 0
    results['Tnq'] = 0
    results['keff'] = 1
    results['tetta'] = 1
    results['phi'] = 1
    results['x_gr'] = 1
    def Maxwell(E):
      return E / E_kt * np.exp(-E / E_kt)
    def Simps(x, y):
      S = 0
                                                                                            Лист
                                              ФЮРА.562527.005ПЗ
                                                                                              105
                       Подпись Дата
Изм. Лист
            № докум.
```

```
if len(x) \% 2 == 0:
    S = (y[-1] + y[-2]) / 2 * (x[-1] - x[-2])
    n = 3
  else:
    n = 2
  for j in range(0, \text{len}(x) - n, 2):
    h = x[j + 1] - x[j]
    k1 = x[i + 2] - x[i]
    c = y[i]
    a = (y[j + 2] - y[j] + k1 / h * (y[j] - y[j + 1])) / (k1 ** 2 - h * k1)
    b = y[j + 1] / h - a * h - y[j] / h
    S = a / 3 * k1 * 3 + b / 2 * k1 * 2 + c * k1
  return S
def Sigma_sr(folder, nuc, E_gr, T):
  global E kt
  E_kt = k_bolc * T
  file_path = folder + "\\" + nuc
  data = pd.read_csv(file_path)
  Energy_0 = np.array(data.Energy)
  sigma_0 = np.array(data.Cross_section)
  if E_gr < Energy_0[-1]:
    Energy = Energy_0[(Energy_0 <= E_gr)]
    sigma = sigma 0[:len(Energy)]
    if list(np.argwhere(Energy == E_gr)) == []:
       sigma_append = np.interp(E_gr, Energy, sigma)
       Energy = np.append(Energy, E_gr)
       sigma = np.append(sigma, sigma_append)
  else:
    Energy = Energy_0
    sigma = sigma_0
  numerator = Simps(Energy, sigma * Maxwell(Energy))
  denominator = Simps(Energy, Maxwell(Energy))
  integral sigma = numerator / denominator
  return integral_sigma * 10 ** -24
sigma_c_path = r'C:\Users\User\Desktop\python\Diplom\cross_sections\sigma_c'
sigma_s_path = r'C:\Users\User\Desktop\python\Diplom\cross_sections\sigma_s'
sigma f path = r'C:\Users\User\Desktop\python\Diplom\cross sections\sigma f'
def f_gr(x):
  return (x ** 2 * np.exp(-x)) / (1 - (1 + x) * np.exp(-x))
                                                                                       Лист
                                         ФЮРА.562527.005ПЗ
```

Изм.

Лист

№ докум.

Подпись

Дата

```
z = 0
for t in range(2001):
```

Изм.

Лист

№ докум.

Словари Макроскопический сечений

```
# Словари Макроскопический сечений
```

```
Sigma_c = \{\}
  for nuc in Nuc:
    if nuc in Nuc fuel:
       Sigma_c[nuc] = N_g[nuc] * Sigma_sr(sigma_c_path, nuc, E_gr, T1sr)
    elif nuc in Nuc moderator:
       Sigma_c[nuc] = N_g[nuc] * Sigma_sr(sigma_c_path, nuc, E_gr, T1sr)
  Sigma_c['H2O'] = (2 * Sigma_sr(sigma_c_path, 'H1', E_gr, T1sr) +
Sigma_sr(sigma_c_path, "O16", E_gr, T1sr)) * N_g[
    'H2O']
  Sigma_a = Sigma_c.copy()
  for nuc in os.listdir(sigma_f_path):
    Sigma a[nuc] += Sigma sr(sigma f path, nuc, E gr, T1sr) * N g[nuc]
  dzitaSigma s = \{\}
  for nuc in Nuc:
    if nuc in Nuc fuel:
       dzitaSigma_s[nuc] = dzita[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr) *
N g[nuc]
    elif nuc in Nuc moderator:
       dzitaSigma_s[nuc] = dzita[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr) *
N g[nuc]
  dzitaSigma_s['H2O'] = (2 * dzita['H1'] * Sigma_sr(sigma_s_path, 'H1', E_gr, T1sr) +
dzita['016'] * Sigma_sr(
    sigma_s_path, "O16", E_gr, T1sr)) * N_g['H2O']
  Sigma s = \{\}
  for nuc in Nuc:
    if nuc in Nuc fuel:
       Sigma_s[nuc] = N_g[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr)
    elif nuc in Nuc moderator:
       Sigma_s[nuc] = N_g[nuc] * Sigma_sr(sigma_s_path, nuc, E_gr, T1sr)
  Sigma s['H2O'] = (2 * Sigma sr(sigma s path, 'H1', E gr, T1sr) +
Sigma_sr(sigma_s_path, "O16", E_gr, T1sr)) * N_g[
    'H2O']
  # Определение температуры нейтронного газа
  Sum a = 0
  Sum_dzita_Sigma_s = 0
  for i in Sigma a.values(): Sum a += i
  for i in dzitaSigma_s.values(): Sum_dzita_Sigma_s += i
  Tng = T1sr * (1 + 1.4 * Sum_a / Sum_dzita_Sigma_s)
  # Усреднение сечений
  a, b = 1, 0
                                                                                    Лист
                                        ФЮРА.562527.005ПЗ
                  Подпись Дата
```

```
x_gr = np.random.randint(4, 9)
      delta = 1
      while abs(delta) > 0.001:
        sigma_a_sr = {}
        Sigma_a_sr = \{\}
        sigma_f_sr = \{\}
        Sigma_f_sr = {}
        sigma_s_sr = {}
        Sigma_s_sr = \{\}
        E_gr = k_bolc * Tng * x_gr
        for nuc in Nuc:
           sigma_a_sr[nuc] = Sigma_sr(sigma_c_path, nuc, E_gr, Tng)
           if nuc in os.listdir(sigma_f_path):
             sigma_f_sr[nuc] = Sigma_sr(sigma_f_path, nuc, E_gr, Tng)
             Sigma_f_sr[nuc] = N_g[nuc] * sigma_f_sr[nuc]
             sigma_a_sr[nuc] += sigma_f_sr[nuc]
           Sigma_a_sr[nuc] = N_g[nuc] * sigma_a_sr[nuc]
         Sigma_a_sr['H2O'] = (2 * Sigma_sr(sigma_c_path, 'H1', E_gr, Tng) +
    Sigma_sr(sigma_c_path, "O16", E_gr, Tng)) * \
                     N g['H2O']
        for nuc in Nuc:
           sigma_s_sr[nuc] = Sigma_sr(sigma_s_path, nuc, E_gr, Tng)
           Sigma_s_sr[nuc] = sigma_s_sr[nuc] * N_g[nuc]
         Sigma_s_sr['H2O'] = (2 * Sigma_sr(sigma_s_path, 'H1', E_gr, Tng) +
    Sigma_sr(sigma_s_path, "O16", E_gr, Tng)) * \
                     N_g['H2O']
        for nuc in Nuc:
           dzitaSigma_s[nuc] = dzita[nuc] * Sigma_s_sr[nuc]
        dzitaSigma_s['H2O'] = (2 * dzita['H1'] * Sigma_sr(sigma_s_path, 'H1', E_gr, Tng) +
    dzita['016'] * Sigma sr(
           sigma_s_path, "O16", E_gr, Tng)) * N_g['H2O']
        Sum Sigma a sr = 0
        for i in Sigma_a_sr.values(): Sum_Sigma_a_sr += i
        right = Sum_Sigma_a_sr / Sum_dzita_Sigma_s
        delta = f_gr(x_gr) - right
        if delta > 0:
           a, b = x_gr, b \#x_gr = x_gr - delta
        else:
           a, b = a, x_gr
        x_gr = a / 2 + b / 2 \# x_gr + delta
      Sigma_tr_sr = \{\}
                                                                                          Лист
                                             ФЮРА.562527.005ПЗ
                                                                                           108
                      Подпись Дата
Изм.
    Лист
            № докум.
```
```
for nuc in Sigma_a_sr.keys():
    if nuc == 'H2O':
       Sigma_tr_sr[nuc] = 69 * np.sqrt(293 / Tng) * N_g[nuc] * 10 ** -24
    else:
       Sigma_tr_sr[nuc] = (Sigma_a_sr[nuc] + Sigma_s[nuc] * (1 - nu[nuc]))
  # Число вторичных нейтронов
  v = {'U235': 2.416, 'Pu239': 2.862, "Pu241": 2.924}
  v_eff = (v['U235'] * Sigma_f_sr['U235'] + v['Pu239'] * Sigma_f_sr['Pu239'] + v['Pu241'] *
Sigma_f_sr['Pu241']) / (
         Sigma_a_sr['U235'] + Sigma_a_sr['Pu239'] + Sigma_a_sr['Pu241'])
  #К-т размножения на быстрых нейтронах ти
  N_U238_0 = 4.783 * 10 ** 22
  P = d fuel * 0.125
  b = N_g['U238'] / N_U238_ 0
  mu_t = 1 + 0.092 * P * b / (1 - 0.52 * P * b) #Коэффициент размножения в
одиночном блоке
  global mu
  mu = mu_t + (1.192 - mu_t) / (1 + 2.3 * 2 * N_g['H2O'] / N_g['U238'] * f_H2O / f_fuel)
  # К-т размножения использования тепловый нейтронов tetta
  Sum_Sigma_a_fuel = 0
  for nuc in Nuc_fuel: Sum_Sigma_a_fuel += Sigma_a_sr[nuc] # Сумма сечения
поглощения в топливе
  Sum_Sigma_tr_fuel = 0
  for nuc in Nuc_fuel: Sum_Sigma_tr_fuel += Sigma_tr_sr[nuc] # Сумма
транспортного сечения в топливе
  Sum_Sigma_a_moderator = 0
  for nuc in Nuc_moderator: Sum_Sigma_a_moderator += Sigma_a_sr[nuc] # Сумма
сечения поглощения в замедлителе
  Sum_Sigma_tr_moderator = 0
  for nuc in Nuc_moderator: Sum_Sigma_tr_moderator += Sigma_tr_sr[nuc] # Сумма
транспортного сечения в замедлителе
  Sum_Sigma_s_moderator = 0
  for nuc in Nuc_moderator: Sum_Sigma_s_moderator += Sigma_s_sr[nuc] # Сумма
транспортного сечения в замедлителе
  L_fuel = (3 * Sum_Sigma_a_fuel * Sum_Sigma_tr_fuel) ** (-1 / 2) # Длина диффузии
топлива
  L_moderator = (3 * Sum_Sigma_a_moderator * Sum_Sigma_tr_moderator) ** (-1 / 2) #
Длина диффузии ячейки
  F0 = d_fuel / (4 * L_fuel) * scipy.special.iv(0, d_fuel / (2 * L_fuel)) / scipy.special.iv(1,
d_fuel / (
         2 * L_fuel)) # Коэффициент экранировки #Модифицированные функции
                                                                                Лист
                                      ФЮРА.562527.005ПЗ
                                                                                 109
```

№ докум.

Изм. Лист

Подпись Дата

бесселя 10 11 # Сойгин судовые реакторы стр 263 E0 = 1 + 1 / 2 * (d_cell / (2 * L_moderator)) ** 2 * (np.log(d_cell / d_fuel - 0.75)) # Кошелев стр23 tetta_1 = (f_fuel * Sum_Sigma_a_fuel) / (f_fuel * Sum_Sigma_a_fuel * E0 + F0 * f_moderator * Sum_Sigma_a_moderator) tetta_fuel = (Sigma_a_sr['U235'] + Sigma_a_sr['Pu239'] + Sigma_a_sr[**'Pu241']**) / Sum_Sigma_a_fuel #К-т использования в топливе tetta = tetta_1 * tetta_fuel # Вероятность избежать резонансного захвата phi Sum_dzitaSigma_moderator = 0 for nuc in Nuc_moderator: Sum_dzitaSigma_moderator += dzitaSigma_s[nuc] # Замедляющая способность в замедлителе D t = 0.775 * (1 + 17.5 * 10 ** - 3 * np.sqrt(T eff))I_sr = (d_fuel ** 2 - d0 ** 2) / d_fuel # Сойгин стр 253 судовые ядерные реакторы I_m_sr = f_moderator / f_fuel * I_sr etta = 1 / (1 + I_m_sr * Sum_Sigma_s_moderator) R = 0.84phi 1 = 0.366 * R * np.sqrt(d fuel * (d fuel ** 2 - d0 ** 2) * b) + 0.184 * b * (d fuel ** 2 d0 ** 2) phi = np.exp(-phi_1 * N_tvel / (Sum_dzitaSigma_moderator * f_moderator)) k_inf = v_eff * mu * tetta * phi # Определение длины диффузии решетки Сойгин стр 274 L_cell = np.sqrt(tetta * L_fuel ** 2 + (1 - tetta) * L_moderator ** 2) # Возраст нейтронов Tau = $27.3 * (1 + f_fuel / f_H2O + f_Zr / f_H2O) ** 2 / ($ p H2O(T1sr) / 1000 + 0.82 * f fuel / f H2O + 0.4 * f Zr / f H2O) ** 2 # Длина миграции $M = np.sqrt(Tau + L_cell ** 2)$ # Эффективная добавка delta = 7.2 + 0.1 * (M ** 2 - 40) # Геометрические параметры $alpha_r = 2.405 / (R_core + delta)$ $alpha_z = np.pi / (H_core + 2 * delta)$ alpha = np.sqrt(alpha_r ** 2 + alpha_z ** 2) # Вероятность утечки $P_L = 1 / (1 + alpha ** 2 * L_cell ** 2)$ Лист ФЮРА.562527.005ПЗ 110 Изм. Лист № докум. Подпись Дата

```
P_tau = np.exp(-alpha ** 2 * Tau)
  k_{eff} = k_{inf} * P_L * P_{tau}
  Sum_Sigma_f = Sigma_f_sr['U235'] + Sigma_f_sr['Pu239'] + Sigma_f_sr['Pu241']
  # Сумма сечения деления в топливе
  F = Q / (200 * 1.60217733 * 10 ** -19 * Sum_Sigma_f * 86963760 / p_UO2(T_eff)) #
сойгин стр325
  c5 = N_g['U235'] / (N_g['U238'] + N_g['U235'])
  po = (k_eff - 1) / k_eff
  if t == 0:
    z = 0
     ro shlak = 0
  else:
     z += sigma_a_sr['U235'] * F * (tau)
     ro_shlak = (15.1 + 52.8 * z) * tetta * 10 ** -3
  c5 = N_g['U235'] / (N_g['U238'] + N_g['U235'])
  po = (k_eff - 1) / k_eff
  print('po', po)
  ro_Xe = tetta * sigma_a_sr['Xe135'] / (sigma_a_sr['U235'] * N_g['U235']) * N_g['Xe135']
  ro_Sm = tetta * sigma_a_sr['Sm149'] / (sigma_a_sr['U235'] * N_g['U235']) *
N_g['Sm149']
  print('ro_Xe', N_g['Xe135'])
  po_total = po - (ro_shlak + ro_Xe + ro_Sm)
  N q = Runge()
  print(k, po_total)
  string = list(N_g.values())
  string.append((tau * k) / (3600 * 24)) #Добавить значение времени
  string.append(po_total)
  string.append(F)
  string.append(Tng)
  string.append(k_eff)
  string.append(tetta)
  string.append(phi)
  string.append(x_gr)
  results.loc[k] = string
  k += 1
results.head()
                                                                                       Лист
                                         ФЮРА.562527.005ПЗ
```

Изм.

Лист

№ докум.

Подпись Дата

Рисунок 1 – Примерная компоновка БЩУ блока АЭС

Блочный щит управления не имеет источников естественного освещения. Для обеспечения нормируемого значения освещенности помещения используются люминисцентные ртутные лампы

Согласно СНиП 23-05-95 помещение БЩУ должно иметь следующий уровень освещенности

Vapartenuet	Наимании	Подразр	Kourpact		Освещен	ность, лк
ика зрительной работы	ий размер объекта, мм	яд зритель ной работы	Контраст объекта различения с фоном	Характеристи ка фона	Комбиниро ванное освещение	Общее освещение
очень высокая точность (II разряд зрительной работы)	0,15-0,3	б	малый	средний	3500	400

Таблица 1. Определение освещенности БЩУ.

 $h_p = 0.8 \, M$ – высота рабочей поверхности над полом;

 $h = h_n - h_p = 3.5 - 0.8 = 2.7 \ m$ – расчетная высота светильника над рабочей поверхностью;

A = 24 M - длина помещения;

B = 12*м* – ширина помещения.

На рисунке Б.2 изображены необходимые геометрические параметры установки светильника в помещении.

Световой поток определяется по формуле:

						Лист
					ФЮРА.562527.005ПЗ	112
Изм.	Лист	№ докум.	Подпись	Дата		112

$$\Phi = \frac{E_{_{H}} \cdot S \cdot K_{_{3}} \cdot Z}{\left[N \cdot \eta\right)},$$

где $E_{\mu} = 400 \, \pi \kappa$ – нормируемая освещенность;

 $S = 24 \cdot 12 = 288 \, \text{m}^2 -$ площадь освещаемого помещения;

N – число ламп;

 $K_{3} = 1,5 -$ коэффициент запаса, учитывающий загрязнение светильника;

n = 2 – число ламп в светильнике;

 η – КПД ламп, %;

Z = 1.1 – коэффициент неравномерности люминесцентных ламп.

Тип	Количество и]	Размеры, мі	М	КПД,	λ
светильника	мощность	Длина	Ширина	Высота	%	
	лампы					
ОД - 2-30	2 x30	933	204	156	75	1.4
ОД – 2-40	2 x40	1230	266	158	75	
ОД – 2-80	2 x80	1531	266	198	75	
ОД - 2-125	2 x125	1528	266	190	75	

Таблица 2. Характеристика ламп типа ОД.

Расстояние между рядами светильников:

$$L = \lambda h = 1.4 \cdot 2.7 = 3.78;$$

Расстояние от между светильниками в ряду примем:

$$s = 0.5 m_{\odot}$$

Расстояние между рядом и стеной:

$$y = \frac{B - 2L - 3d}{2} = \frac{12 - 2 \cdot 3.78 - 3 \cdot 0.266}{2} = 1.82 \text{ m}.$$

Принимаем число светильников в ряду равным 11(длина 1 светильника $l = 1.531 \, m$, ширина $d = 0.266 \, m$, в одном светильнике 2 лампы). Расстояние между рядом и стеной по ширине:

$$x = \frac{A - N \cdot l - (N - 1)s}{2} = \frac{24 - 11 \cdot 1.531 - (11 - 1) \cdot 0.5}{2} = 1.08 \text{ m}.$$

Находим индекс помещения:

$$i = \frac{S}{h(A+B)} = \frac{288}{2.7 \cdot (24+12)} = 3;$$

Коэффициент отражения для стен и потолка принимается $\rho_n = 0.5$, $\rho_c = 0.3$. Это соответствует коэффициенту использования светового потока $\eta = 0.62$.

Суммарное число ламп:

$$N = 11 \cdot 2 \cdot 3 = 66;$$

Мощность необходимого светового потока:

$$\Phi = \frac{400 \cdot 288 \cdot 1.5 \cdot 1.1}{66 \cdot 0.62} = 4645 \, \Pi \text{M};$$

					ФЮРА.562527.005ПЗ
Изм.	Лист	№ докум.	Подпись	Дата	

Лист 113 Выбираем тип лампы ЛБ мощностью 80 Вт, имеющей световой поток 5200 Лм. Оценим погрешность

$$\delta = \frac{5200 - 4645}{4645} \cdot 100\% = 10.7\%$$
$$-10\% < \delta < +20\%$$

Определяем электрическую мощность осветительной установки:

$$P = 66 \cdot 80 = 5280$$
 BT.

Рисунок 2 – Схема размещения освещения.

						Пист
					ФЮРА 562527.005ПЗ	114
Изм.	Лист	№ докум.	Подпись	Дата		114

Приложение Г

Таблица 1. Отнесение условий труда по классу (подклассу) условий труда при воздействии ионизирующего излучения (в зависимости от значения потенциальной максимальной дозы при работе с источниками излучения в стандартных условиях), мЗв/год

Максимальная	Класс (подкла	асс) усло	вий труда	a		
потенциальная доза за год,	допустимый	вредный	Á			опасный
мЗв/год	2	3.1	3.2	3.3	3.4	4
Эффективная доза	\leq_5	> 5 -	> 10 -	> 20 -	> 50 -	> 100
		10	20	50	100	
Эквивалентная доза в	≤ _{37,5}	> 37,5	> 75 -	>150	> 225 -	> 300
хрусталике глаза		- 75	150	- 225	300	
Эквивалентная доза в коже,	≤ ₁₂₅	> 125 -	> 250	> 500	> 750 -	> 1000
кистях и стопах		250	- 500	- 750	1000	

Изм.	Лист	№ докум.	Подпись	Дата