На правах рукописи

44

Клишин Андрей Петрович

ФОРМИРОВАНИЕ КРИСТАЛЛИЧЕСКИХ ФАЗ В ОКСИДАХ АЛЮМИНИЯ И ЦИРКОНИЯ В ПОСТОЯННОМ МАГНИТНОМ ПОЛЕ ПРИ СПЕКАНИИ КОМПАКТИРОВАННЫХ ПОРОШКОВ

Специальность 01.04.07 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Томск – 2021

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Томский государственный педагогический университет» и федеральном государственном автономном образовательном учреждении высшего образования «Национальный исследовательский Томский политехнический университет»

Научный руководитель:	Гынгазов Сергей Анатольевич доктор технических наук				
Официальные оппоненты:	Клопотов Анатолий Анатольевич доктор физико-математических наук, профессор, Федеральное государственное бюджетное обра- зовательное учреждение высшего образования «Томский государственный архитектурно- строительный университет» (г. Томск), профессор кафедры прикладной механики и материаловедения				
	Громов Виктор Евгеньевич доктор физико-математических наук, профессор, Федеральное государственное бюджетное обра- зовательное учреждение высшего образования «Сибирский государственный индустриальный университет» (г. Новокузнецк), заведующий				

Защита состоится «7» апреля 2021 года в 15:00 часов на заседании диссертационного совета ДС.ТПУ.03 при ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: 634028, г. Томск, пр. Ленина, 2а строение 4, аудитория 242.

кафедрой естественнонаучных дисциплин

С диссертацией можно ознакомиться в библиотеке ФГАОУ ВО «Национальный исследовательский Томский политехнический университет» по адресу: г. Томск, ул. Белинского, 55 и на сайте http://dis.tpu.ru

Автореферат разослан «____» февраля 2021 г.

Ученый секретарь диссертационного совета ДС.ТПУ.03, доктор технических наук

С. А. Гынгазов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Алюмооксидные и циркониевые оксидные керамические материалы находят широкое применение в различных областях науки и техники благодаря уникальному сочетанию высоких показателей таких свойств, как огнеупорность, механическая прочность, химическая стойкость, диэлектрические и оптические характеристики. Однако для распространенных в отечественной промышленности способов получения оксидных материалов необходима высокая температура спекания, которая для различных типов оксидов Al₂O₃ и ZrO₂ составляет более 1500°C. Для активации процессов спекания оксидных материалов в настоящее время используется множество различных способов: механохимический, введение в состав спекающих добавок с появлением эвтектического сплава, обработка и предобработка в различных внешних физических полях (в микроволновом поле, ультразвуке, постоянных электрических и магнитных полях), а также обработка с использованием излучений различной природы (α -, γ -, лазерное, и др.).

Поиск новых технологических приемов для активации спекания и улучшения свойств оксидной керамики требует детального исследования фундаментальных закономерностей формирования физико-механических характеристик и разработки моделей структур оксидных материалов на различных мезо- и макромасштабных уровнях. Актуальным является исследование влияния магнитного поля на процессы спекания и формирования кристаллических структур полиморфного состава алюмооксидных керамических материалов. Направленные изменения энергетических состояний кристаллических микроструктур (магнитное упорядочение, дефектная структура) в оксидных материалах, формируемые под действием постоянного магнитного поля, и термодинамический переход при магнитной активации способствуют эволюции упруго-пластической деформации материала, формированию полей механических напряжений и форм микроструктур и тем самым определяют режим управления процессом спекания и релаксации микроструктур.

Работа выполнялась при финансовой поддержке: Минобрнауки Российской Федерации (соглашение № 14.575.21.0139, идентификатор RFMEFI57517X0139) и Российского научного фонда (грант № 17-19-01082).

Степень разработанности темы

Термомагнитный метод спекания кристаллических материалов в постоянном магнитном поле показал свои уникальные возможности при спекании и обжиге некоторых диэлектриков (алмаз, топаз, полудрагоценные минералы), интерметалидов Al_{2-x}Fe, а также при обогащении минерального сырья.

Существенный вклад в изучении механизмов формирования и модификации микроструктур диэлектриков (немагнитных кристаллов) под действием внешних электрических и магнитных полей внесли: С.В. Вонсовский, А.И. Ахиезер, Н.П. Лякишев, Е.В. Туров, Г.И. Дистлер, В.И. Альшиц, Е.В. Даринская, В.И. Громов, П.А. Чернавский, В.М. Финкель и другие ученые.

Электрические и магнитные переходы в нанокластерах и наноструктурах исследовались Суздалевым И.П., Буравцевым В.Н., Френкелем Я.И. и др.

На основе вычислительного моделирования физико-химических свойств и форм нано-, микрокристаллов оксидной керамики рассчитаны оптимальные размеры микроструктур и технические требования к установке для спекания. В работах Руднева С.В., Семухина Б.С., Сергеева А.Н., и др. разработан геометрический подход к интерпретации кристаллографических групп для физических процессов и явлений, протекающих при термическом и магнитном воздействии на кристаллические структуры диэлектрика. На сегодняшний день не обнаружено работ по изучению влияния постоянного магнитного поля на физические свойства оксидов алюминия и циркония при спекании компактированных порошков промышленных марок или близких по составу к промышленным.

<u>Объект исследования</u> – структурно-фазовые состояния спекаемых компактированных порошков оксида алюминия и диоксида циркония.

<u>Предмет исследования</u> – физические процессы формирования полиморфного состава и структуры оксидов алюминия и циркония в постоянном магнитном поле при термической обработке компактированных порошков.

<u>Цель работы:</u> определение закономерностей формирования структуры кристаллических фаз в оксидах алюминия и циркония в постоянном магнитном поле при спекании компактированных порошков.

Для достижения указанной цели решались следующие задачи:

1. Разработка феноменологической модели формирования структуры реальных кристаллов оксидов алюминия и циркония на основе кристаллогеометрического подхода к решётчатым структурам.

2. Разработка алгоритма и компьютерной программы для моделирования микроструктур Al_2O_3 и ZrO_2 , а также выбора эффективных методик и режимов термомагнитного спекания оксидных материалов с целью улучшения их структурных характеристик (с целью управления их структурно-фазовым состоянием).

3. Построение физической модели процессов, протекающих в оксидных компактированных порошках при спекании 1200-1400 °C в постоянном магнитном поле.

4. Экспериментальные исследования термомагнитного эффекта воздействия внешнего постоянного магнитного поля на процессы преобразования кристаллических фаз и структурной релаксации, а также выявление особенностей процессов фазо- и структурообразования, протекающих при формировании микроструктур.

5. Разработка технологических основ спекания пористых компактированных порошков на основе оксидов (Al_2O_3 , ZrO_2) в постоянном магнитном поле.

Научная новизна работы

1. Предложена феноменологическая модель организации наноструктурных систем Al_2O_3 и основных видов примесей, участвующих в формировании кристаллических подрешеток α -, β -, θ - и γ - Al_2O_3 на основе риманова представления (способа описания) электростатических полей ионов Al^{3+} , Zr^{4+} , O^{2-} , Ca^{2+} , Fe²⁺, Fe³⁺ и Mg²⁺ для случая парных взаимодействий ионов с учетом распределения заряда на поверхности.

2. Впервые установлено, что воздействие кристаллографически симметризованным постоянным магнитным полем B=0,02-1 Тл, в оксиде алюминия при спекании T=1200 °C, повышает содержание фазы α -Al₂O₃ при пониженной температуре обработки и что приводит к направленным преобразованиям кристаллической структуры в сторону повышения на 25% прочности образцов.

3. Установлено, что в процессе спекания в постоянном магнитном поле происходит частичное упорядочивание микроструктур оксидов алюминия и циркония (структурных единиц, блоков) за счет направленного действия собственного кристаллического поля, а также ориентационного воздействия, оказываемого постоянным магнитным полем, и последующей перекристаллизацией исходной структуры. Особенности упорядочения микроструктур определяются типом соответствия группы симметрии кристаллического поля и кристаллографической группы симметрии микрокристаллических структур.

Теоретическая значимость работы

Определены закономерности формирования кристаллических структур Al₂O₃, ZrO₂ под действием постоянного магнитного поля при спекании компактированных порошков. Разработаны физические модели нано-, микроструктур оксида алюминия и диоксида циркония на основе римановых представлений сплошной среды с положительной метрикой.

Практическая значимость

Полученные в работе результаты, имеют важное практическое значение для технологии и материаловедения диэлектриков, вакуумной техники и в производстве конденсаторной и огнеупорной керамики. Практическая значимость заключается в следующем:

1. Разработана микроструктурная модель формирования наносистем Al_2O_3 и пакет компьютерных программ «rCrystal 1.0», обеспечивающий расчеты электростатических полей ионов в римановом представлении (эллиптическая геометрия Римана V^3 , K=1). Получено свидетельство об официальной регистрации программы для ЭВМ №2011611307.

2. Разработаны физические приемы технологии спекания оксидных материалов в постоянном магнитном поле B=0,02-1 Тл с заданной симметрией C_3 на примере оксидов алюминия и циркония.

3. Разработаны технологические рекомендации по формированию и модификации кристаллических структур Al₂O₃ при спекании в постоянном магнитном поле, что позволило снизить температуру обработки сырья на 150 °C.

Рассчитаны параметры внешнего магнитного поля (B, симметрия) в установке для обжига корунда на основе моделирования геометрических параметров микроструктур Al₂O₃. Разработан технологический регламент для термической обработки в постоянном магнитном поле оксидов алюминия и циркония.

Методология работы

Методология работы включает предварительное моделирование кристаллических решеток оксида алюминия и диоксида циркония, их микро-

структур, моделирование электростатических полей ионов. Формирование кристаллических фаз осуществлялось методом спекания в постоянном симметричном магнитном поле на специально созданной установке.

Методы исследования

Для изучения процессов спекания оксидных керамических материалов в постоянном магнитном поле использовались физико-математические модели кристаллических решеток оксида алюминия и диоксида циркония, и микроструктур, а также экспериментальные исследования физико-механических свойств: рентгеновская дифракция, сканирующая электронная микроскопия, оптическая микроскопия и термогравиметрический анализ. Были исследованы функциональные свойства полученных образцов: прочность, микротвёрдость, кристаллографические параметры, электрофизические характеристики. Все измерения выполнены в сертификационных центрах на современном оборудовании, внесенном в Государственный реестр измерительных приборов.

Положения выносимые на защиту

1. Структурная физическая модель формирования наносистем Al_2O_3 и ZrO_2 компактированных порошков, описывающая способы организации и упорядочения ионных систем и полученная на основе компьютерного моделирования римановых моделей электростатических полей ионов.

2. Механизм магнитного упорядочивания микроструктур Al_2O_3 и ZrO_2 при спекании в постоянном магнитном поле, включающий направленное действие собственного кристаллического поля, а также ориентационное воздействие, оказываемое внешним постоянным магнитным полем. Особенности упорядочения микроструктур определяются типом соответствия группы симметрии кристаллического поля и кристаллографической группы симметрии микрокристаллических структур.

3. Структурно-фазовые изменения, обуславливающие изменения физикомеханических характеристик (микротвёрдости, плотности, прочности) материалов в условиях термомагнитного спекания оксидов алюминия и циркония до 1400 °C (B=0,02–1 Тл, F_p = C_3 , t = 12–72 часов), способствуют совершенствованию кристалличности их микроструктуры и улучшению механических свойств.

<u>Достоверность полученных результатов</u> обеспечена строгим математическим обоснованием предлагаемых методик моделирования на ЭВМ оксидных структур и совокупностью теоретических и экспериментальных результатов, полученных с привлечением современной экспериментальной техники, а так же согласием защищаемых научных положений с фундаментальными представлениями современной физики и химии твердого тела.

<u>Апробация работы</u>. Основные результаты диссертации докладывались и обсуждались на II и III Международных научно-технических конференциях молодых ученых, аспирантов и студентов «Высокие технологии в современной науке и технике» BTCHT (Томск, 2014, 2013 г.), German-Russian forum nanotechnology (Tomsk, Russia, 2013 г.), на 2dn International scientific conference Ешореап science and technology (Wiesbaden, Germany, 2012 г.), IV и VII Международной научно-практической конференции «Исследование, разработка и приме-

нение высоких технологий в промышленности» (Санкт-Петербург, 2007 г., 2012 г.), Федоровских сессиях (Санкт-Петербург, 2012 г.), VI Всероссийской научнопрактической конференции «Керамические материалы: производство и применение» (Великий Устюг, 2007 г.), XII и XIII Международных научнопрактических конференциях студентов, аспирантов и молодых ученых «Современные техника и технологии» (Томск, 2007 г., 2008 г.).

<u>Личный вклад автора</u> состоит в участии в постановке задач, решаемых в диссертационной работе, и в разработке методики спекания оксидных компактированных порошков с использованием постоянного магнитного поля. Автором проведено моделирование кристаллических микроструктур на ЭВМ, а также обработка и интерпретация экспериментальных данных. Результаты, изложенные в диссертационной работе, получены лично автором или при его непосредственном участии.

Публикации. По материалам диссертации опубликованы 28 печатных работ, включая 10 статей в рецензированных научных журналах, рекомендованных ВАК РФ, и 6 статей в международных журналах, индексируемых Scopus; получен один патент РФ и одно свидетельство об официальной регистрации программы для ЭВМ.

<u>Структура и объем работы</u>. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы из 184 наименований и приложения. Работа изложена на 172 страницах машинописного текста (без приложения). Иллюстрированный материал содержит 78 рисунков и 26 таблиц.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, определены цель и задачи, показаны научная новизна полученных результатов и практическая значимость работы, сформулированы положения, выносимые на защиту.

<u>В первой главе</u> представлен анализ литературных данных по известным способам воздействия внешними электрическими и магнитными полями на структуру оксидных материалов и закономерностям формирования кристаллических фаз оксида алюминия, диоксида циркония, полученных по плазмохимической технологии, рассмотрены перспективы их применения.

Рассмотрены и проанализированы различные физико-математические модели, предложенные для описания механизмов формирования и организации микроструктур оксидных и керамических материалов, а также поведения их структурных и механических свойств. Работы, имеющиеся по данной тематике, носят фрагментарный, узкоспециализированный характер и направлены лишь на изучение закономерностей влияния внешних электрических и магнитных полей в различных средах без учета типа симметрии поля и структурных особенностей обрабатываемых материалов. Недостаточно освещены вопросы, касающиеся оценки влияния магнитного поля на механические свойства и деформационное поведение оксидной керамики, что послужило основой для постановки цели и задач работы. Слабое магнитное поле с индукцией $B\sim1$ Тл способствует необратимому изменению метастабильных состояний точечных дефектов, инициируя многостадийный релаксационный процесс, сопровождающийся изменениями прочности и плотности кристаллической фазы оксидов Al_2O_3 и ZrO₂. Анализ изменений структуры наночастиц и их агломератов под действием постоянного магнитного поля важен для понимания процессов кристаллизации, фазовых превращений, а также определения возможностей более эффективного целенаправленного управления их кристаллографическими параметрами при получении оксидных материалов с требуемыми свойствами.

Вторая глава посвящена характеристике исследуемых материалов и методам их исследований. В качестве материалов для исследований использовались образцы, полученные из компактированных порошков Al₂O₃ и ZrO₂, синтезированные методом плазмохимии, а также высокоглиноземистая керамика марки ВК-95. Были подготовлены четыре группы образцов для каждого типа порошков. Количество образцов в каждой группе не превышало двадцати.

Образцы первой группы ВК-95 имели размер мелких зерен порошка 0,1–1 мкм и размер крупных зерен 2–5 мкм (рис.1). Морфология мелких зерен призматическая и неопределенная, крупные зерна имеют обломочную форму. Мелкие зерна образуют агломераты. Результаты рентгеноструктурного анализа Al_2O_3 и ZrO₂ приведены в таблице 1. Основной фазой исследуемых порошков ВК-95 является α -Al₂O₃. Порошки для второй и третьей групп были получены методом плазмохимии на Сибирском химическом комбинате: $Al_2O_3(I)$ и $Al_2O_3(II)$.

		· -					
Наиме-	Фазовый	Содержа-	Параметр	Параметр	Параметр,	Кристалло-	Объем
нование	состав	ние фаз,	<i>a</i> , A	<i>b</i> , A	c, A	графиче-	ячейки
		масс %				ская группа	V, A^3
ВК-95	α -Al ₂ O ₃	93	4,75	_	12,98	$R\bar{3}c$	254,34
Dir ye	$MgAl_2O_4$	2	8,07	—	_	$Fd\overline{3}m$	527,25
	к-Al ₂ O ₃	8	4,74	8,39	9,03	Pc21n	359,30
Al ₂ O ₃ (II)	α -Al ₂ O	21	4,87	_	13,05	$R\overline{3}c$	268,12
	θ -Al ₂ O ₃	40	11,95	2,80	5,53	<i>C</i> 2/ <i>m</i>	179,14
AlaOa(III)	α -Al ₂ O ₃	25	4,87	_	13,05	$R\overline{3}c$	268,12
1 112 0 3(111)	θ -Al ₂ O ₃	41	11,95	2,80	5,53	<i>C</i> 2/ <i>m</i>	179,14
ZrO ₂	c-ZrO ₂	23	5,03	_	_	Fm3m	127,94
	t-ZrO ₂	5	3,49	_	5,06	$P4_2 / nmc$	69,89
	o-ZrO ₂	12	5,09	5,32	5,14	Pcmn	257,45

Таблица 1 – Фазовый состав и параметры кристаллической решётки исходных порошков Al₂O₃, ZrO₂ по данным рентгеновского анализа (кристаллическое состояние)

Рис.1 — Морфология частиц ультрадисперсного порошка ВК-95

Рентгенографическое определение фазового и дисперсного состава исходных образцов оксидов проводилось на дифрак-7000S" тометре "Shimadzu XRD B СиКа-излучении. С помощью растрового электронного микроскопа ESEM Quanta 200 3D со встроенным EDX-анализатором, была исследована микроструктура образцов. Испытание образцов на одноосное продольное сжатие проводили на установке Instron 3382 при комнатной температуре и скорости деформирования $0.2 \cdot 10^{-4} c^{-1}$.

<u>В третьей главе</u> изложены результаты моделирования кристаллической структуры Al₂O₃ и его полиморфных модификаций, описана методика расчета и построения кластерных форм. На основе построенных моделей разработаны методы и режимы воздействия постоянным магнитным полем с заданной симметрией, способствующие совершенствованию кристаллических структур.

Для комплексного моделирования кристаллической структуры Al₂O₃ с расчетов технологических параметров воздействия целью проведения постоянным магнитным полем был разработан программный пакет rCrystal, позволяющий строить модели электростатических полей ионов, участвующих в формировании кристаллических решеток, а также рассчитывать возможные качестве модельного выбрано кластерные модели. В эллиптическое пространство геометрии Римана (V^3) с постоянной гауссовой кривизной K=1, которое в достаточно малых областях совпадает с евклидовым пространством. Специальный математический алгоритм обеспечивает расчет 2D сечений моделей точечных систем, расположенных перпендикулярно осям симметрии l_2 , l₃, l₄, и l₆. С использованием пакета rCrystal проведены расчеты компонент электростатических полей ионов Al^{3+} , Zr^{4+} , O^{2-} , Ca^{2+} , Fe^{2+} , Fe^{3+} и Mg^{2+} , участвующих в формировании кристаллических подрешеток оксидов при парных взаимодействиях с учетом распределения заряда на поверхности (табл.2).

мсяситомного взиимоосиствия								
Тип связи	R ₀ , Å	R _{min} , Å	Глубина <i>є</i> , Å	Радиус электростати- ческого поля R _p , Å				
$[Al^{3+}] - O^{2-}$	4,68	5,42	-8,70	5,70				
$[Zr^{4+}] - O^{2-}$	5,90	6,90	-8,50	7,03				
$[O^{2-}] - Al^{3+}$	5,31	5,84	-2,95	11,04				
$[Mg^{2+}] - O^{2-}$	5,59	6,25	-3,00	6,87				
$[Ca^{2+}] - O^{2-}$	7,28	8,10	-3,00	8,96				

Таблица 2 – Результаты расчета параметров потенциальных кривых межатомного взаимодействия

Примечание: R_0 – радиус "жесткой сердцевины" электростатического поля, где силы отталкивания имеют преобладающий характер; R_{min} – координата минимума потенциала V(r); ε – величина потенциальной ямы V(r). Структурные особенности электростатического поля в пространстве Римана, рассматриваемые для случая взаимодействия разноименных зарядов ионов, накладывают особые условия, которые ведут к образованию связных состояний и образованию локальных замкнутых областей притяжения и отталкивания. Модель электростатического поля заряда характеризуется ограниченным размером, замкнутостью и имеет зональный характер (рис. 2). Форма распределения энергетических зон, группа симметрий, энергетические параметры модели определяют способы организации подрешеток в основной решетке (рис. 3).

На основе модельных расчетов был выделен минимальный структурный элемент $[2(Al_2O_3)]$, состоящий из двух формульных единиц Al_2O_3 (далее обозначенный Al_4O_6), параметры которого рассчитывались в модельном пространстве (табл. 3).

Таблица 3 — Линейные параметры рассчитанной модели равновесного структурного элемента Al₄O₆ (малый кластер)

Ребро структ. эл- та (<i>a</i>), Å	$(Al^{3+}-Al^{3+})_1$	$(Al^{3+} - Al^{3+})_2$	$(0^{2-}-0^{2-})_1$	$(O^{2-} - O^{2-})_2$	$(O^{2-} - O^{2-})_3$	(Al ³⁺ -O ²⁻)
18,85	5,44	9,42	1,41	2,25	11,68	1,30

Рисунок 2 – Модельные кривые радиального сечения электростатического потенциала ионов: (a)– Al^{3+} , (b)– O^{2-} , (b)– Zr^{4+} , (c)– Mg^{2+} .

Рисунок 3 – Эквипотенциальная картина электростатического поля ионов: (a) $-[Al^{3+}] - O^{2-}$, (б) $-[Zr^{4+}] - O^{2-}$.

Геометрическая конфигурация структурного элемента Al_4O_6 и набор внешних физико-химических условий (структура электростатического поля, термодинамические параметры, кристаллофизические параметры) задают способы укладки кластерных форм в различные мотивы в соответствии с принципом плотнейшей упаковки (рис. 4-6). Структура, отвечающая принципу плотнейшей упаковки, приведена на рисунке 6.

Рисунок 4 — Сечения в плоскости XY моделей кристаллических структур Al_2O_3 , отвечающих принципу плотнейшей упаковки: а) модель ассоциации кластеров полиморфной модификации γ - Al_2O_3 (модель I); б) модель полиморфной модификации θ - Al_2O_3 (модель II)

Построенные модели обладают всеми признаками реального микрокристалла: центром, внешней огранкой, определенной кристаллографической группой и зональностью, что позволило разработать режимы воздействия постоянным магнитным полем с заданной симметрией, способствующие самоочистке и совершенствованию кристаллических структур Al₂O₃.

11

Рисунок 5 – Проекция на плоскость XY модели кристаллической структуры Al₂O₃ с явно выделенной сверхрешеткой, элементами которой служат кластеры

Рисунок 6 – Сечение в плоскости XY модели кристаллической структуры Al₄O₆ (модель III). Ассоциации кластеров полиморфной модификации α-Al₂O₃ (корунд)

<u>В четвертой главе</u> приводятся результаты комплексных исследований влияния воздействия внешнего симметричного постоянного магнитного поля на процессы структурной релаксации и преобразования кристаллических структур Al₂O₃ и ZrO₂ при спекании до 1400°C, а также выявлены особенности структурно-фазовых состояний, возникающих при формировании микроструктур оксидов.

Экспериментальные исследования по термомагнитной обработке оксидов проводились на опытной установке с использованием постоянного магнитного поля с заданной симметрией (рис.7) и температурных режимов (рис.8).

Рисунок 7 — Схема установки: (1) электромагнитная катушка для создания постоянного магнитного поля, (2) теплоизолирующий корпус, (3)— немаг. (бифилярная) обмотка,(4)— рабочая камера, (5)— обрабатываемые образцы, (6)— керамическая чашка

Рисунок 8 — Температурные режимы при спекании прессовок оксидов: (1) — средняя скорость подъема температуры 108 град/ч, скорость снижения 54 град/ч; (2)—155 град/ч, 75 град/ч; (3)—180 град/ч, 87 град/ч соответственно

Напряженность магнитного поля регулировалась изменением силы тока, подаваемого на электромагнитную катушку (1), которая представлена на рисунке 7.

Исследуемые образцы Al_2O_3 в форме цилиндров диаметром 10 мм и выстой 10 мм (*m*=1,65±0,15) были получены методом осевого холодного прессования на гидравлическом прессе (давление 18 МПа). Спекание проводилось в течение 12 часов при температурах в диапазоне от 1200–1400 °C с наложением и без наложения постоянного магнитного поля *B*=0,02–1 Тл с заданной осью симметрией *C*₃ (рис.9, табл.4). Экспериментальные данные получены при воздействии постоянного магнитного поля с напряженностью внутри рабочей области *H*=7,87·10³ A/м.

№	Магнитная ин-	Сила тока	Температура об-	Моделируемая группа сим-
	дукция <i>В</i> , Тл	<i>I</i> , A	работки <i>T</i> , °C	метрии магнитного поля, <i>F</i> _p
1	0,02–1	50	870	$C_{3}, R\bar{3}c$
2	0,1–1	75	1200	$C_{3,} R\bar{3}c$
3	0,1–1	75	1400	$C_3 R\bar{3}c$

Таблица 4 – Режимы воздействия внешним постоянным магнитным полем

Постоянное магнитное поле прикладывалось в экваториальной плоскости рабочей камеры, варьировалось по величине и направлению и имело заданную группу симметрии, соответствующую кристаллографической группе обрабатываемого материала (рис.9).

Воздействие внешнего симметризованного постоянного магнитного поля на колеблющиеся ионы кристаллической решетки осуществляется в соответствии с заданной симметрией поля, так как ионы, центры которых находятся на элементах симметрии, локально устойчивы в том смысле, что им удобно двигаться по элементам симметрии.

Рисунок 9 – Конфигурация постоянного магнитного поля в установке. Измерение величины магнитной индукции осуществлялось на расстоянии h от проводника электромагнитной катушки: (a) – h=0,1 м, (б) – h=0,3 м

Результаты рентгенофазового анализа исследуемых образцов, полученных при спекании в симметричном постоянном магнитном поле (без поля), представлены в таблице 5.

Фазовый	Содер.	Пара-	Пара-	Пара-	Кристал-	Объем	Рент.			
состав	фаз,	метр а,	метр <i>b</i> ,	метр, с,	лограф.	ячейки	плотн.,			
	масс %	Å	Å	Å	группа	V, $Å^3$	р, г/см ³			
	Керамика Al ₂ O _{3 (} кристаллическое состояние)									
к–Al ₂ O ₃	12/7	4,74	8,38	8,83	Pna21	351,73	3,85			
α-Al ₂ O ₃	87/86	4,75	_	12,98	$R\bar{3}c$	254,34	3,99			
	1 / 7% (аморфное состояние)									
]	Керамика	ВК-95 (кр	исталличес	ское состоян	ие)				
α -Al ₂ O ₃	95/93	4,75	—	12,98	$R\overline{3}c$	254,34	3,99			
MgAl ₂ O ₄	1/2	8,07	_	—	$Fd\overline{3}m$	527,25	3,58			
	4 / 5 % (аморфное состояние)									
	Ке	рамика Zr	$O_2(CaO)$ (кристаллич	неское состо	яние)				
o*-ZrO ₂	49/35	5,58	7,99	5,74	Pcmn	256,81	4,64			
<i>t</i> -ZrO ₂	8/4	3,65	_	5,15	$P4_2 / nmc$	68,70	5,95			
c-ZrO ₂	24/29	5,12	_	_	Fm3m	134,68	6,07			
o-ZrO ₂	12/7	5,49	6,40	3,29	Pnam	116,04	7,05			
<i>m</i> -ZrO ₂	5/—	5,15	5,26	5,34	$P2_{1} / a$	143,49	5,70			
	менее 3% (аморфное состояние)									

Таблица 5 – Фазовый состав и параметры кристаллической решетки фаз образцов Al₂O₃, BK-95 и ZrO₂(CaO) после спекания при T=1400 °C с наложением постоянного магнитного поля/без поля

Наибольший вклад магнитного поля в линейную усадку, как видно на рисунке 10, осуществляется для образцов $Al_2O_3(I)$, BK-95, что так же прослеживается и для объемной усадки. Преимущество комплексного метода с использованием постоянного магнитного поля по сравнению с традиционной обработкой состоит в особом способе влиянии поля на микроструктуру обрабатываемого материала. Уровень воздействия постоянным магнитным полем с заданной симметрией зависит от физико-химических характеристик и симметрии (кристаллографической группы) обрабатываемого материала и определяется пре-имущественно размерным факторами микроструктур, уровнем их дефектности.

В образцах ВК-95, $Al_2O_3(I)$, $Al_2O_3(II)$, ввиду их меньшей относительной плотности и наличия в их структуре более крупных агломератов, обработка в постоянном магнитном поле не успевает осуществить необходимые структурные преобразования, приводящие к более совершенным, компактным формам микроструктур.

По экспериментальным данным была выполнена оценка вклада постоянного магнитного поля в линейную усадку Al_2O_3 , которая оказалась равной 1–6% (рис. 10). Диапазон величин вклада магнитного поля оценивался предельными значениями разности линейной усадки для образцов, обработанных в постоянном магнитном поле и без него.

Рисунок 10 – Линейная усадка образцов: при спекании в постоянном магнитном поле B=0,02-1 Тл (сплошная линия) и без воздействия магнитного поля (пунктирная линия) при спекании T=1200 °C. (a) – BK-95, (б) – $Al_2O_3(I)$, (в) – $Al_2O_3(II)$, (г) – кривые усадки образцов, обработанных в постоянном магнитном поле в неизотермическом режиме: (1) – BK-95, (2) – $Al_2O_3(I)$, (3) – $Al_2O_3(II)$

Прочность межзеренных контактов значительно возрастает в процессе спекания, в результате чего в образцах образуются жесткие агломераты, блоки, которые имеют более совершенные структуры. Образцы ВК-95 уже при обработке в течение 10 ч имели величину линейной усадки 3,9%, что на 3 % больше, чем для образцов, обожжённых без воздействия магнитного поля (рис.10*a*).

На рисунке 11 представлены зависимости среднего размера кристаллитов и величины микроискажений решетки o^* -фазы от времени обработки в магнитном поле. Выполненный расчет размеров кристаллитов o^* -фазы образцов, подвергнутых магнитной обработке, показал, что средний размер кристаллитов увеличивается от 77 ± 3 до 99 ± 3 нм, при этом микроискажения решетки уменьшаются пропорционально продолжительности времени экспозиции в магнитном поле (рис.11).

На рисунке 12 приведена зависимость, отражающая влияние продолжительности магнитной обработки на прочность образцов. Видно, что значения показателя прочности имеют логарифмическую зависимость от времени обработки, а после 12 часов рассматриваемый показатель в дальнейшем уже не изменяется. Исследование физико-механических свойств показывает, что наибольшее значение предела прочности σ демонстрирует керамика, прошедшая обработку в постоянном магнитном поле, где после спекания механические свойства резко улучшаются (рис.12).

Рисунок 11 — Размер ОКР (1) и микроискажения решетки орторомбической фазы o^* -ZrO₂ (2) при спекании T=1400 °C с наложением постоянного магнитного поля B=1 Тл, с различной продолжительностью. Микроискажения решетки фазы с-ZrO₂ (3)

Рисунок 13 – Деформационные зависимости (истинное напряжение–абсолютная деформация) полученных при испытании на сжатие, для образцов $ZrO_2(CaO)$, спеченных при T=1400 °C с наложением $t_{mag}=12$ ч –(2), и без наложения постоянного магнитного поля – (1)

Рисунок 12 – Зависимость прочности σ образцов ZrO₂ от температуры спекания: без наложения – (1) и с наложением постоянного магнитного поля B=1 T_{π} ($t_{mag}=12$ ч) – (2); и от времени магнитной обработки – (3)

Рисунок 14 — Сравнение зависимостей прочности σ образцов ZrO₂(CaO), спеченных при 1400 °C, от относительной плотности $\rho_{отн}$. Без наложения поля — (a) и с наложением постоянного магнитного поля B=1Tл продолжительностью t_{mag} : 8 (1), 10 (2), 12 (3) часов – (b)

Величина микроискажений решетки фазы c-ZrO₂ уменьшается в 3 раза после спекания при вышеуказанной температуре после 10 ч в постоянном магнитном поле, по сравнению с образцами, полученными без наложения поля, а после 12 часов – значения микроискажений решетки уже не фиксировались (рис.11). Эти структурные улучшения четко прослеживаются в изменениях физикомеханических свойств полученной керамики: прочности (рис.12, 13), плотности (рис.14). Изменение прочности (рис.14) линейно зависит от изменения относительной плотности и времени экспозиции в магнитном поле. Происходит увеличение размера зерна в среднем на 30% и повышение степени его кристалличности и совершенства структуры, что приводит к увеличению относительной плотности материала $\rho_{\text{отн}}$ в среднем на 15%. На графике *b* выделяются два линейных участка $\rho_{\text{отн}}$: 0,397-0,426 и 0,432-0,455, на которых отмечается умеренный рост прочности, и участок 0,426-0,432, где происходит быстрый рост прочности.

Оксидная керамика, спеченная с использованием предлагаемого способа, имеет пониженные уровни величин упругих напряжений, содержания примесей и дефектов (меньше на 10–15 %), более совершенную кристаллическую структуру в сравнении с образцами, полученными по традиционной технологии (табл. 6).

	Al ₂ O ₃ (плазм)	ZrO ₂ (плазм)		
Наименование	Без наложения	С наложением	Без наложения	С наложением	
Средний размер г. мум	пост. маг. поля 0 5_1	пост. маг. поля 0 1_0 3	пост. маг. поля – 1	пост. маг. поля	
Средний размер 7, мкм	0,3-1	0,1-0,5	< 1	< 0,5	
Содержание примесеи,					
% вес.					
Na ₂ O	0,020	0,011	0,030	0,020	
Fe ₂ O	0,015	0,012	0,040	0,015	
Кажущаяся плотность $ ho_{\text{каж}} \times 10^3$, кг/м ³	1,16 ± 0,05	1,31 ± 0,05	1,65 ± 0,01	1,73 ± 0,01	
Удельная поверхность $S_{y\partial}$, M^2/Γ	160–180	120–135	80–105	65–75	
Общий объем пор $\sum V_{nop}$, см 3 /г	$0,\!42 \pm 0,\!02$	0,36±0,02	0,35 ± 0,02	$0,24 \pm 0,02$	
Прочность σ , МПа	$2,1\pm0,5$	3,0 ± 0,5	$24,3\pm0,5$	$40,7\pm0,5$	
Микротвёрдость <i>H_v</i> ,ГПа	$0,62\pm0,05$	$0,72\pm0,05$	$0,\!81\pm0,\!05$	$0,\!96\pm0,\!05$	
Устойчивость к истиранию, % /мин	0,20–0,30	0,10–0,15	0,13–0,15	0,05–0,07	
Диэлектр. прониц., <i>є</i>	20,84	2,51	742,16	356,46	
Проводимость, σ'	1,03.10-7	2,17.10-9	5,52·10 ⁻⁵	1,08.10-5	
<i>tg δ</i> при 100 КГц, 20 ℃	0,94	0,10	13,40	5,50	
Макродефекты, внутр. полости (>10 ³ нм)	_	уменьшение на 25 %	_	уменьшение на 30-35 %	
Степень крист. К, %	93	99	75	98	

Таблица 6 — Сравнительные характеристики образцов Al₂O₃ и ZrO₂, полученных при спекании (T=1400 °C) без наложения и с наложением симметричного постоянного магнитного поля

Установлено, что спекание ВК-95 при T=1400 °C в постоянном магнитном поле приводит к формированию доменной структуры, определяемой размером микрокристаллических блоков 100–200 мкм (рис.15*a*, рис.15*б*). Крупные и средние блоки формируют основной мотив сверхрешетки с симметрией, совпадающей с симметрией прикладываемого внешнего постоянного магнитного поля (рис. 15*в*). Структурные особенности границ между блоками зависят от типа симметрии, уровня воздействия внешнего магнитного поля и характеризуются наличием областей со значительным нарушением структурного порядка в расположении частиц (рис. 15*б*, рис. 15*г*).

Воздействие симметричного постоянного магнитного поля в предложенной конфигурации состоит в укладке микроблоков в соответствии с принципом плотнейшей упаковки и решеткой Браве микрокристаллов данного вещества. Пластическое течение, вызванное термообработкой в постоянном магнитном поле, осуществляется путем взаимного смещения и разворотов поликристаллических блоков, в результате возникает микроструктура блоков, которая имеет более совершенную укладку микрокристаллов с упорядоченной внутренней структурой (укладку блоков с минимальными промежутками и размерами пор).

Рисунок 15 — Микроструктура образца ВК-95, спеченного в постоянном магнитном поле с заданной симметрией C_3 — (а). Выделенные границы блочной структуры — (б). Направления упорядочения блочной структуры (пунктир) с выделенными центрами блоков (сверхрешетка) — (в). Структурные особенности межблочных границ — (г)

ОСНОВНЫЕ ВЫВОДЫ

1. Предложенная физическая модель формирования структуры наносистем Al_2O_3 позволила адекватно описать способы организации и упорядочивания ионных систем, формирование полей механических напряжений под действием постоянного магнитного поля C_3 . На основе конечно-разностной схемы дискретизации уравнений созданы численный алгоритм и программное обеспечение, позволяющие исследовать организацию и формирование микроструктур оксидов алюминия и циркония в соответствии с федоровской группой под действием постоянного магнитного поля.

2. Предложенная физическая структурная модель римановых электростатических полей ионов в случае парных взаимодействий с учетом распределения заряда на поверхности для следующих элементов: Al^{3+} , Zr^{4+} , O^{2-} , Ca^{2+} , Fe^{2+} , Fe^{3+} и Mg^{2+} описывает замкнутый структурный характер электростатических полей для конечных объемов пространства.

3. Воздействие постоянным магнитным полем B=0,02-1 Тл с заданной симметрией C_3 в процессе спекания оксида алюминия приводит к изменению размеров и морфологии микроструктур, понижению температуры образования α -Al₂O₃, изменению условий зарождения и роста микрокристаллов, частичному упорядочению микроструктур первичных кристаллов Al₂O₃ в соответствии с кристаллографической группой, что позволяет обеспечить управление процессом синтеза и кристаллизации микроструктур.

4. Кристаллические структуры, морфология и форма зерен ZrO_2 , полученные при спекании в постоянном магнитом поле при 1400 °C, характеризуются более совершенными кристаллографическими формами, становятся более изометричными, кроме того в среднем степень кристалличности повышается в 2,4 раза. Зависимость среднего размера зерен стабилизированной фазы ZrO_2 от времени наложения постоянного магнитного поля при спекании имеет линейный характер. Формирование и стабилизация высокотемпературных фаз (высокотемпературных модификаций o^* -, c- фаз) диоксида циркония в процессе спекания под действием магнитного поля связаны с направленными изменениями структурных характеристик (уменьшение микроискажений кристаллитов, степени однородности).

5. Спекание оксида алюминия в постоянном магнитном поле по сравнению с традиционной технологией позволяет повысить содержание кристаллической фазы α -Al₂O₃ и одновременно понизить температуру ее образования (на 150–200 °C). Оксид Al₂O₃, прошедший термомагнитную обработку, имеет пониженные уровни упругих напряжений, содержание примесей, дефектов и пор (на 10–15 %), более совершенную кристаллическую структуру, повышенную прочность (на 25%) в сравнении с образцами, полученными без наложения магнитного поля.

6. Предложенный физический способ получения оксидных керамических материалов обладает относительной простотой в реализации и является энергоэффективным. Оксиды Al₂O₃ и ZrO₂, полученные путем спекания в постоян-

ном магнитном поле B=0,02-1 Тл с заданной симметрией C_3 , имеют повышенные физико-механические характеристики и более совершенные кристаллические формы микроструктур.

Основные публикации по теме диссертации

В журналах, индексируемых SCOPUS и Web of Science:

1. **Klishin A.P.** Fabrication of zirconia ceramics by sintering in a magnetic field / A. P. Klishin, S. A. Ghyngazov, S. V. Rudnev, A. N. Zakutaev, O.A. Golovanova // Ceramics International. 2020. DOI: 10.1016/j.ceramint.2020.11.043. (В печати).

2. Klishin A. P., Formation of structural-phase states in alumina ceramics VK-95 by sintering in a constant magnetic field /A. P. Klishin, S. V. Rudnev, S. A. Ghyngazov, V. I. Vereschagin, Yu. V. Borodin // Russian Physics Journal. 2019. V. 62. N 2. P. 378-381.

3. Borodin Yu. V. Structural organization of nanocomposite crystals / Yu. V. Borodin, S. A. Ghyngazov, **A. P. Klishin** // Russian Physics Journal. 2019. V. 61. N. 10. P.1887-1893.

4. Klishin A. P. Structural phase changes in nanocrystalline disperse system $ZrO_2(CaO)$ during firing under the action of a constant magnetic field / A. P. Klishin, Yu. A. Abzaev, S. V. Rudnev, V. I. Vereschagin, B. S. Semukhin // Russian Physics Journal. 2017. V. 60. N. 3. P. 529-536.

5. Klishin A. Modeling the cluster organization of Al_2O_3 for obtaining more perfect materials / A. Klishin, A. Kovancev, A. Zacutaev, V. Vereshchagin // Advanced materials research. 2014. V. 872. P. 52-59.

6. Klishin A. Features of processing of ceramic materials by an electromagnetic field / A. Klishin, A. Kovancev, S. Rudnev, A. Zacutaev, V. Vereshchagin // Advanced materials research. 2014. V. 1040. P. 303-308.

Публикации в изданиях, рекомендованных ВАК:

7. Клишин А. П. Особенности формирования нано- и микроструктур порошков и монолитных образцов Al₂O₃, при обжиге без наложения и с наложением электромагнитного поля / А. П. Клишин, С. В. Руднев, В. И. Верещагин, О.С. Андриенко // Известия высших учебных заведений. Физика. 2015. Т.58. № 6/2. С. 106-110.

8. Клишин А. П. Особенности формирования нано- и микроструктур порошков и монолитных образцов ZrO₂, при обжиге без наложения и с наложением электромагнитного поля / А. П. Клишин, С. В. Руднев, В. И. Верещагин, И. Н. Быков // Известия высших учебных заведений. Физика. 2015. Т.58. № 6/2. С. 111-115.

9. Клишин А. П. Обработка Al₂O₃ В постоянном электромагнитном поле с заданной симметрией C₃ / А. П. Клишин, С. В. Руднев, А. Н. Закутаев, В. И. Верещагин // Известия высших учебных заведений. Физика. 2014. Т.56. №12/2. С. 192-197.

10. Руднев С. В. Моделирование структур кристаллических комплексов Al₂O₃ для совершенствования технологии их получения / С. В. Руднев, А. П. Клишин, А. Н. Закутаев, А. С. Кованцев, В. И. Верещагин // Известия высших учебных заведений. Физика. 2013. Т.56. № 12/2. С. 192-197.

11. Руднев С. В. Моделирование электромагнитных полей структур алюмооксидных материалов / С. В. Руднев, Б. С. Семухин, В. И. Верещагин, А. П. Клишин // Известия высших учебных заведений. Физика. 2011. Т.54. № 11/3. С. 362-367.

12. Клишин А. П. Новые технологические подходы получения алюмооксидных материалов с использованием термомагнитной обработки / А. П. Клишин, С. В. Руднев, В. И. Верещагин // Огнеупоры и техническая керамика. 2009. № 6. С.31-37.

13. Клишин А. П. Моделирование процесса структурных превращений Al₂O₃ при термомагнитной обработке / А. П. Клишин, А. Н. Закутаев, С. В. Руднев, В. А. Ермолаев, Т. А. Хабас // Конструкции из композиционных материалов. 2008. Вып.1. С.12-17.

Патенты и свидетельства о регистрации:

14. Быков А.И. Способ модификации нефти и нефтепродуктов и система для модификации нефти и нефтепродуктов / А. И. Быков, И. Н. Быков, А. В. Вильке, Ф. Ф. Иващенко, А. П. Клишин, В. В. Кривошеин, В. Н. Лешков, А. В. Никулин, С. В. Руднев, Г. А. Сафонов, О. С. Андриенко. А.с. РФ 23397681 МПКС10G 23/02 В01J 19/12 № 2006127387/04; Заявл. 2007.07.06; Опубл. 2008.27.11, Бюл. N 33. 12 с.: ил.

15. Клишин А. П. R-Crystal 1.0 Свидетельство об официальной регистрации программы для ЭВМ №2011611307 от 09.02.2011.

В изданиях, индексируемых РИНЦ:

16. Rudnev S. V. Geometrical modeling of crystal structures with use of space of elliptic Riemannian geometry / S. V. Rudnev, B. S. Semukhin, A. P. Klishin // Materials Sciences and Applications. 2011. V. 2. N_{0} 6. P. 526-536.

17. Руднев С. В. Геометрическое моделирование кристаллических структур / С. В. Руднев, А. П. Клишин // Вестник Томского государственного педагогического университета. 1998. Вып. 5. С. 48-49.

В сборниках научных трудов Всероссийских и Международных конференций:

18. Rudnev S.V. Modelling electromagnetic fields of structures of aluminum oxide materials for creating new treatment technologies / S. V. Rudnev, **A. P. Klishin**, B. S. Semukhin, V. I. Vereshchagin // European Science and Technology: 2dn International scientific conference. Bildungszentrum Rdk e.V. Wiesbaden. 2012. P. 346-350.

19. Kovancev A. S. Modeling of structures of Al_2O_3 crystalline complexes / A. S. Kovancev, A. P. Klishin, A. N. Zacutaev, V. I. Vereshchagin // German-Russian Forum Nanotechnology(21-24.05.2013) – Tomsk: TPU. P. 67.

20. Клишин А. П. Моделирование структурных превращений Al₂O₃ при термомагнитной обработке / А. П. Клишин // Керамические материалы: производство и применение: сборник трудов VI Всероссийской научно-практической конференции. – Великий Устюг. 2007. С.36-38.

21. Руднев С. В. Термомагнитный способ обработки алюмооксидных материалов / С. В Руднев, А. П. Клишин // Современная техника и технологии: сборник трудов XIII международной научно-практической конференции. – Томск: ТПУ, 2009. Т.2. С.121-123.

22. Клишин А. П. Повышение усталостной прочности корундовой керамики при помощи симметризованной термомагнитной обработки (СМП) / А. П. Клишин // Современная техника и технологии: сборник трудов XII Международной научно-практической конференции. – Томск: ТПУ, 2008. С. 144-148.

23. Клишин А. П. Особенности термомагнитной обработки керамических материалов (Al₂O₃) в постоянном магнитном поле / А. П. Клишин, С. В. Руднев // Исследование, разработка и применение высоких технологий в промышленности: сборник научных трудов IV Международной научно-практической конференции. – СПб.: СПбГПУ, 2007. С.124-126.

24. Руднев С. В. Моделирование электромагнитных полей структур алюмооксидных материалов для получения новых технологий обработки / С. В. Руднев, **А. П. Клишин**, Б. С. Семухин, В. И. Верещагин // Фундаментальные и прикладные исследования, разработка и применение высоких технологий в промышленности и экономике: сборник научных трудов XIII Международной научно-практической конференции. – СПб.: СПбГПУ, 2012. С.179-182.

25. Клишин А. П. Моделирование структур кристаллических комплексов AL₂O₃ / А.П. Клишин, А. Н. Закутаев, А. С. Кованцев, В. И. Верещагин // Фундаментальные и прикладные исследования, разработка и применение высоких технологий в промышленности и экономике: сборник научных трудов XV Международной научно-практической конференции. – СПб.: СПбГПУ, 2013. Т.2. С. 183-186.

26. Кованцев А. С. Моделирование кристаллических комплексов алюмооксидных материалов для совершенствования технологии их получения / А. С. Кованцев, А. П. Клишин, С. В. Руднев, А. Н. Закутаев // Высокие технологии в современной науке и технике: сборник трудов II Всероссийской научнотехнической конференции молодых ученых, аспирантов и студентов с международным участием. – Томск: ТПУ, 2013. Т.2. С. 377-380.

27. Кованцев А. С. Особенности обработки керамических материалов электромагнитным полем / А. С. Кованцев, А. П. Клишин, С. В. Руднев, В. И. Верещагин // Высокие технологии в современной науке и технике: сборник трудов III Международной научно-технической конференции молодых ученых, аспирантов и студентов с международным участием. – Томск: ТПУ, 2014. С. 101-105.

28. Руднев С.В. Моделирование кристаллических структур алюмооксидных материалов / С. В. Руднев, А. П. Клишин // Сборник научных трудов Федоровской сессии. 2012. – СПб: СПГУ, 2012. С. 457-460.