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1 Introduction

Near horizon geometries of extreme black holes in various dimensions attracted recently

considerable attention [1]. Although the primary concern was to understand the Kerr/CFT-

correspondence [2], other aspects including the study of superconformal mechanics [3]–[5]

and the construction of integrable systems [6]–[9] received interest.

Similarly to a generic conformal mechanics [10], an integrable model associated with

a near horizon black hole geometry is usually constructed by focusing on a relativistic

massive spinless particle, building constants of the motion which are linked to Killing

vector fields, computing the Casimir element of SO(2, 1) subgroup of the full isometry

group, and identifying the latter with the Hamiltonian of a reduced spherical mechanics.

If the isometry group involves U(n) factor, one can alternatively use quadratic Casimir

element of u(n) so as to specify the reduced integrable system. Note that this scheme is

entirely group theoretical, in which little depends on the peculiarities of a background field

configuration.

A recent study of su(2) spinning extensions of spherical mechanics [11] revealed a

tighter connection between the original metric and the resulting integrable system. In

particular, the background geometry determines a nontrivial Poisson structure on the phase

space which includes spin degrees of freedom [12].

In ref. [11], the spin sector of a particle on S2 was represented by a symmetric Euler top.

Within the Hamiltonian framework, the latter is usually described by a 3-vector obeying

the structure relations of su(2). Classification of three-dimensional real Lie algebras dates

back to the work of Bianchi [13], in which su(2) was identified with the type-IX algebra. It

is natural to wonder whether other instances from the Bianchi classification (see section 6)

may give rise to integrable spinning particles on S2. The goal of this paper is to report on

the Bianchi type-V model of such a kind.
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The work is organized as follows. In the next section, the near horizon 7d Myers-

Perry black hole metric is given in spherical coordinates and the full group of isometry

transformations is exposed. In section 3 a relativistic massive spinning particle on the

curved background is considered within the formalism introduced in ref. [12] and possible

consistent truncations are discussed which may result in integrable spinning extensions

of a particle on S2. In section 4 we focus on the case in which spin degrees of freedom

are represented by a 3-vector satisfying the Bianchi type-V algebra. The dynamics of

the system is studied in detail and its minimal superintegrability is established. Three

generalizations of the Bianchi type-V spinning particle on S2, which maintain minimal

superintegrability, are discussed next. The first of them involves an extra scalar potential

which gives rise to two quadratic constants of the motion. It can be regarded as the Bianchi

type-V spinning extension of the case (S9) in ref. [14]. The second model takes into account

external field of the Dirac monopole. The third system describes a Bianchi type-V spinning

particle moving on the group manifold of SU(2). In section 5 it is demonstrated that each

realization of su(2) in section 4 can be used to generate a novel example of the D(2, 1;α)

superconformal mechanics. The concluding section 6 contains a brief account of how the

consideration in this work could be extended to cover other instances from the Bianchi

classification.

2 Background metric and its symmetries

Our starting point is the near horizon 7d Myers-Perry black hole metric in which all rotation

parameters are set equal1

ds2 = −r2dt2 +
dr2

r2
+ 12

(
dθ2 + sin2 θdφ2

)
+ 2 sin2 φ sin2 θ

(
rdt+ 3

√
2dψ1

)2
+2 cos2 φ sin2 θ

(
rdt+ 3

√
2dψ2

)2
+ 2 cos2 θ

(
rdt+ 3

√
2dψ3

)2
−24 cos2 φ sin2 φ sin4 θ(dψ1 − dψ2)

2 − 24 sin2 φ cos2 θ sin2 θ(dψ1 − dψ3)
2

−24 cos2 φ cos2 θ sin2 θ(dψ2 − dψ3)
2. (2.1)

Here t and r are the temporal and radial variables, (θ, φ) are the latitudinal angular coor-

dinates, and (ψ1, ψ2, ψ3) are the azimuthal angles. It is straightforward to verify that (2.1)

is a particular solution of the vacuum Einstein equations.

A key ingredient of the construction to follow is to convert abundant symmetries of

the metric (2.1) into constants of the motion which characterize an integrable system. It

is thus important to have a clear understanding of Killing vectors associated with (2.1).

In addition to the Killing vector fields

H = ∂t, D = t∂t − r∂r, K =

(
t2 +

1

r2

)
∂t − 2tr∂r −

√
2

3r
(∂ψ1 + ∂ψ2 + ∂ψ3) , (2.2)

1Here and in what follows we use the notations in [7]. Constant factors entering the metric were chosen

so as to keep the Killing vector fields (2.3) in the simplest form.
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which form the conformal algebra so(2, 1) and are common for most of the near horizon

black hole geometries [1], the metric (2.1) enjoys U(3)-symmetry generated by the operators

ξij = −ξji, ρij = ρji which read

ξ12 = − cosψ12∂φ + sinψ12 (cotφ∂ψ1 + tanφ∂ψ2) ,

ξ13 = − cosψ13 (sinφ∂θ + cosφ cot θ∂φ) + sinψ13

(
cot θ

sinφ
∂ψ1 + sinφ tan θ∂ψ3

)
,

ξ23 = cosψ23 (− cosφ∂θ + sinφ cot θ∂φ) + sinψ23

(
cot θ

cosφ
∂ψ2 + cosφ tan θ∂ψ3

)
,

ρ12 = sinψ12∂φ + cosψ12 (cotφ∂ψ1 + tanφ∂ψ2) ,

ρ13 = sinψ13 (sinφ∂θ + cosφ cot θ∂φ) + cosψ13

(
cot θ

sinφ
∂ψ1 + sinφ tan θ∂ψ3

)
,

ρ23 = sinψ23 (cosφ∂θ − sinφ cot θ∂φ) + cosψ23

(
cot θ

cosφ
∂ψ2 + cosφ tan θ∂ψ3

)
,

ρ11 = 2∂ψ1 , ρ22 = 2∂ψ2 , ρ33 = 2∂ψ3 , (2.3)

where we abbreviated ψij = ψi − ψj , i, j = 1, 2, 3. Note that the enhancement of U(1)3

symmetry associated with the transformations ψ′i = ψi + λi to a larger group U(3) is a

consequence of setting all rotation parameters to be equal to each other.

3 Spinning particle on a curved background and reduced spherical me-

chanics

Our strategy in constructing spinning extensions of integrable spherical mechanics is to

implement a proper reduction of the model of a relativistic massive spinning particle prop-

agating on the curved background with SU(3) isometry group. To this end, let us con-

sider a phase space parametrized by the canonical pair (xµ, pµ) and the self-conjugate

spin variables Sµν = −Sνµ, µ, ν = 0, . . . , 6, which is endowed with the Poisson structure

introduced in [12]

{xµ, pν} = δµν , {pµ, pν} = −1

2
RµνλσS

λσ, {Sµν , pλ} = ΓµλσS
νσ − ΓνλσS

µσ,

{Sµν , Sλσ} = gµλSνσ + gνσSµλ − gµσSνλ − gνλSµσ. (3.1)

Here gµν is the inverse metric, Γµλσ are the Christoffel symbols, and Rµνλσ is the Riemann

tensor. Within this framework, to each Killing vector field λµ(x)∂µ characterizing the

background geometry there corresponds the first integral of the relativistic equations of

motion [12]

λ̃ = λµpµ + 1
2∇µλνS

µν . (3.2)

For what follows, it is important to emphasize that the algebra formed by the phase

space functions (3.2) under the bracket (3.1) is analogous to that generated by Killing

vector fields.
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Taking into account the recent studies in [11], a reasonable truncation of the model

would be to abandon the temporal and radial coordinates along with the Mathisson-

Papapetrou-Dixon equations and to focus on the angular sector whose dynamics is governed

by quadratic Casimir invariant of su(3). Spin degrees of freedom which do not contribute

into su(3) generators are to be discarded as well. Unfortunately, the resulting Hamiltonian

and su(3) conserved charges turn out to be extremely bulky.

For lack of a better alternative, we are led to further simplify the model by implement-

ing the reduction proposed in [7]. Taking into account that the azimuthal angular variables

(ψ1, ψ2, ψ3) are cyclic, it is natural to set the integrals of motion (3.2) associated with the

Killing vector fields ρ11, ρ22, ρ33 in (2.3) to be equal to (coupling) constants g1, g2, and

g3, respectively. Analysing the structure relations of su(3), one can then verify that the

quadratic combinations

Iij = ξ̃2ij + ρ̃2ij , i < j, (3.3)

where ξ̃ij and ρ̃ij denote the phase space functions (3.2) associated with the Killing vec-

tor fields (2.3), commute with (ρ̃11, ρ̃22, ρ̃33), and represent the integrals of motion of a

dynamical system governed by the Hamiltonian

H =
∑
i<j

Iij . (3.4)

The explicit expressions for Iij read

I12 =
(
pφ + sin 2φ sin2 θ

(
Stψ1 − Stψ2

)
− 6 sin 2φ sin2 θ(2− cos 2θ)Sψ1ψ2

+6 sin 2θSθφ − 3 sin 2φ sin2 2θ
(
Sψ1ψ3 − Sψ2ψ3

))2
+
(
g1 cotφ+ g2 tanφ− 12 sin2 θ

(
Sφψ1 − Sφψ2

))2
,

I13 =
(
pφ cosφ cot θ + pθ sinφ+ sinφ sin 2θ

(
Stψ1 − Stψ3

)
− 12 cosφ sin2 θSθφ

− 24 sinφ cos2 φ cos θ sin3 θ(Sψ1ψ2 + Sψ2ψ3)

−3 sinφ(cos2 φ sin 4θ + (5− cos 2φ) sin 2θ)Sψ1ψ3

)2
+
(
g1 sin−1 φ cot θ + g3 sinφ tan θ − 6 cosφ sin 2θ

(
Sφψ1 − Sφψ3

)
−12 sinφ

(
Sθψ1 − Sθψ3

))2
,

I23 =

(
pφ sinφ cot θ − pθ cosφ− cosφ sin 2θ

(
Stψ2 − Stψ3

)
− 12 sinφ sin2 θSθφ

− 24 cosφ sin2 φ cos θ sin3 θ
(
Sψ1ψ2 − Sψ1ψ3

)
+

3

2
((11 cosφ+ cos 3φ) sin 2θ + sinφ sin 2φ sin 4θ)Sψ2ψ3

)2

+
(
g2 cos−1 φ cot θ + g3 cosφ tan θ + 6 sinφ sin 2θ

(
Sφψ2 − Sφψ3

)
−12 cosφ

(
Sθψ2 − Sθψ3

))2
. (3.5)
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In order to simplify these formulae and the algebra (4.1) below, we fixed the value of the

radial coordinate at r = 1
3
√
2
. As is customary in the literature on relativistic spinning

particles propagating on curved backgrounds, the constituents of the spin tensor Sµν are

labeled by the same letters which designate the coordinates. The explicit form of the

Poisson structure relations (3.1) originating from the metric (2.1) is bulky and will not be

exposed here.

The resulting model still looks rather complicated. Furthermore, the thirteen spin

degrees of freedom entering H leave little hope that it is actually integrable. A natural

way out is to get rid of some of the spin variables. A rigorous procedure of doing so is to

consider an even number of spin degrees of freedom, which have a non-degenerate bracket

among themselves, regard half of them as first class constrains and the other half as gauge

fixing conditions and discard the full set after introducing the Dirac bracket.

4 Bianchi type-V spinning extension of integrable spherical mechanics

Searching for a nontrivial yet tractable integrable system originating from eqs. (3.4), (3.5),

in this section we consider the case in which ten spin degrees of freedom are eliminated

from the consideration while the rest obeys the Bianchi type-V algebra.

Let us choose Stψ1 := −J1, Stψ2 := −J2, Stψ3 := −J3 to be the spin variables, which

survive the reduction, and impose the Poisson structure relations

{θ, pθ} = 1, {φ, pφ} = 1, {Ji, Jj} = −Ji + Jj , (4.1)

with i, j = 1, 2, 3, for which the Jacobi identities are automatically satisfied. Eqs. (3.5)

give rise to the phase space functions

I12 =
(
pφ − (J1 − J2) sin 2φ sin2 θ

)2
+ (g1 cotφ+ g2 tanφ)2,

I13 = (−pφ cosφ cot θ − pθ sinφ+ (J1 − J3) sinφ sin 2θ)2

+
(
g1 sin−1 φ cot θ + g3 sinφ tan θ

)2
,

I23 = (−pφ sinφ cot θ + pθ cosφ− (J2 − J3) cosφ sin 2θ)2

+
(
g2 cos−1 φ cot θ + g3 cosφ tan θ

)2
, (4.2)

which commute with the Hamiltonian

H =
1

2

∑
i<j

Iij , (4.3)

under the bracket (4.1). Taking into account that

J1 − J2, J1 − J3 (4.4)

are conserved as well, one concludes that (4.3) defines an integrable system. Four function-

ally independent integrals of motion in involution include (H, I12, J1 − J2, J1 − J3), while

the extra constant of the motion I13 (or alternatively I23) ensures minimal superintegra-

bility. Omitting the spin degrees of freedom (J1, J2, J3), one reveals a particle on S2 in
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the presence of an external scalar potential, which admits two quadratic constants of the

motion. In the terminology of ref. [14] it corresponds to the case (S9).

Setting the coupling constants (g1, g2, g3) to vanish, one gets the Bianchi type-V spin-

ning extension of a free particle on S2. Indeed, it is straightforward to verify that the phase

space functions

J1 = −pφ cosφ cot θ − pθ sinφ+ (J1 − J3) sinφ sin 2θ,

J2 = −pφ sinφ cot θ + pθ cosφ− (J2 − J3) cosφ sin 2θ,

J3 = pφ − (J1 − J2) sin 2φ sin2 θ, (4.5)

which derive from
√
Iij at g1 = g2 = g3 = 0, obey the structure relations of su(2) under

the bracket (4.1)

{Ji,Jj} = εijkJk, (4.6)

where εijk is the Levi-Civita symbol with ε123 = 1. The Hamiltonian (4.3) reduces to the

Casimir element

H =
1

2
~J 2. (4.7)

Four functionally independent integrals of motion in involution (H,J3, J1 − J2, J1 − J3)
provide the Liouville integrability. One more constant of the motion J1 (or alternatively

J2) renders the model minimally superintegrable.

Let us discuss qualitative dynamical behaviour of the system. Turning to the Cartesian

coordinates

~x = (cosφ sin θ, sinφ sin θ, cos θ), (4.8)

and analysing Hamilton’s equations following from (4.1), (4.7), one reveals the uniform

motion on S2

~̇x2 = θ̇2 + φ̇2 sin2 θ = 2H = const (4.9)

which takes place along the intersection of the sphere and the plane passing through

the origin

~x · ~J = 0, (4.10)

i.e. the great circle. Note that H entering (4.9) is the energy of the full system. It is here

that one sees the impact of the spin degrees of freedom upon the orbital motion on S2.
Taking into account the integrals of motion (4.4) and introducing the constant vector

~m = (J2 − J3, J3 − J1, J1 − J2), one similarly finds that evolution of the spin degrees of

freedom is confined to the plane in 3d spin subspace

~J · ~m = 0. (4.11)

Hamilton’s equation resulting from (4.1), (4.7) and specifying the change of ~J over

time reads

~̇J = ω(t)~l, (4.12)

– 6 –
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where ~l = (1, 1, 1) and

ω(t) = J1(J1 − J3) sinφ(t) sin 2θ(t)− J2(J2 − J3) cosφ(t) sin 2θ(t)

−J3(J1 − J2) sin 2φ(t) sin2 θ(t). (4.13)

It has the general solution

~J = ~α+~l

∫ t

t0

dτω(τ), (4.14)

where ~α is an arbitrary vector belonging to the plane (4.11), i.e. a constant of integration

obeying ~α · ~m = 0.

Thus, while a particle on S2 is travelling along the great circle, the tip of the spin

vector ~J(t) oscillates forwards and backwards along the straight line parallel to ~l = (1, 1, 1)

in 3d spin subspace. This is in agreement with geometric interpretation of constants of the

motion (4.4) as two planes

~J · ~n1 = const, ~J · ~n2 = const′, (4.15)

with the normals ~n1 = (1,−1, 0) and ~n2 = (1, 0,−1), respectively, which intersect along

the straight line parallel to ~l = ~n1 × ~n2. The swinging of ~J looks most transparent for a

particular solution corresponding to the orbital motion in the equatorial plane (J1 = J2 =

pθ = 0)

θ =
π

2
, φ(t) = J3t+ β, ~J(t) = ~α+

1

2
~l(J1 − J2) cos 2φ(t), (4.16)

where β and ~α are constants of integration.

It is interesting to compare the model above with the Bianchi type-IX spinning particle

on S2 constructed recently in [11]. In the latter case, the J2-component of the spin vector
~J is conserved, a particle parametrized by the angular variables (θ, φ) follows a circular

orbit, which is the intersection of S2 and the cone

xiJi = −J2 = const, (4.17)

while the spin vector precesses around J2-axis in 3d spin subspace

J1(t) = R cos Ω(t), J3(t) = R sin Ω(t),

Ω(t) = Ω0 −
∫ t

t0

dτ
J2 + J3 cos θ(τ)

sin2 θ(τ)
, (4.18)

where R and Ω0 are constants of integration.

Concluding this section, we note that the su(2) generators in eq. (4.5) can be extended

to include a magnetic charge q

J ′1 = J1 + q
cosφ

sin θ
, J ′2 = J2 + q

sinφ

sin θ
, J ′3 = J3. (4.19)

Because the angular and spin degrees of freedom commute, J ′i obey the su(2) algebra.

Identifying the Casimir element with the Hamiltonian, H ′ = 1
2
~J ′

2
, one gets the Bianchi

type-V spinning particle on S2 coupled to external field of the Dirac monopole. In contrast

– 7 –
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to the previous case, a particle moves along a circular orbit, which is the intersection of S2

and the cone

~x · ~J ′ = q. (4.20)

As above, the functionally independent integrals of motion in involution (H ′,J ′3, J1 −
J2, J1 − J3) ensure the Liouville integrability, while the conservation of J ′1 (or J ′2) over

time provides minimal superintegrability.

Finally, because q in (4.19) is constant, one can introduce into the consideration an

extra canonical pair (χ, pχ), obeying the standard bracket {χ, pχ} = 1, and implement the

oxidation with respect to q

q → pχ. (4.21)

The corresponding su(2) generators

J ′′1 = J1 +
cosφ

sin θ
pχ, J ′′2 = J2 +

sinφ

sin θ
pχ, J ′′3 = J3, (4.22)

and the Hamiltonian H ′′ = 1
2
~J ′′

2
describe the Bianchi type-V spinning particle propagating

on the group manifold of SU(2). Its Liouville integrability is provided by five functionally

independent integrals of motion in involution (H ′′,J ′′3 , J1 − J2, J1 − J3, pχ). The fact

that J ′′1 does not change as the system evolves over time implies the model is minimally

superintegrable.

5 D(2, 1;α) superconformal extensions

As was demonstrated in [3], any realization of su(2) in terms of phase space functions Ji,
{Ji,Jj} = εijkJk, gives rise to a variant of the D(2, 1;α) superconformal mechanics. It

suffices to introduce into the consideration an extra bosonic canonical pair (x, p) along with

the fermionic SU(2)-spinor partners2 (ψα, ψ̄
α), (ψα)∗ = ψ̄α, α = 1, 2, and to impose the

structure relations

{x, p} = 1, {ψα, ψ̄β} = −iδαβ . (5.1)

It is assumed that Ji commute with (x, p, ψα). The generators forming Lie superalgebra

associated with the exceptional supergroup D(2, 1;α) read

H =
p2

2
+

2α2

x2
JiJi +

2α

x2
(ψ̄σiψ)Ji −

(1 + 2α)

4x2
ψ2ψ̄2, D = tH − 1

2
xp,

K = t2H − txp+
1

2
x2, Ii = Ji +

1

2
(ψ̄σiψ),

Qα = pψα −
2iα

x
(σiψ)αJi −

i(1 + 2α)

2x
ψ̄αψ

2, Sα = xψα − tQα,

Q̄α = pψ̄α +
2iα

x
(ψ̄σi)

αJi −
i(1 + 2α)

2x
ψαψ̄2, S̄α = xψ̄α − tQ̄α,

I− =
i

2
ψ2, I+ = − i

2
ψ̄2, I3 =

1

2
ψ̄ψ, (5.2)

2For our spinor conventions see [5].
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Type a b1 b2 b3 Type a b1 b2 b3

I 0 0 0 0 V 1 0 0 0

II 0 1 0 0 IV 1 0 0 1

V II0 0 1 1 0 VII a 0 1 1

V I0 0 1 −1 0 III 1 0 1 −1

IX 0 1 1 1 VI a 0 1 −1

VIII 0 1 1 −1

Table 1. The Bianchi classification of three-dimensional real Lie algebras.

where σi are the Pauli matrices. H is linked to temporal translations (the Hamiltonian).

D and K generate dilatations and special conformal transformations. Qα are the super-

symmetry generators and Sα are their superconformal partners. Ia form the R-symmetry

subalgebra su(2). I±, I3 generate one more su(2).

Combining the algebraic framework above with the results in the preceding section,

one concludes that each realization of su(2) in section 4 gives rise to a novel example of the

D(2, 1;α) superconformal mechanics. Similar models incorporating the Bianchi type-IX

algebra have been studied in [11, 15].

If desirable, one can further generalize the system by introducing an extra fermionic

canonical pair (χα, χ̄
α), χ̄α = (χα)∗, {χα, χ̄β} = −iδαβ , α, β = 1, 2, and extending the

su(2) generators as follows:

Ji → Ji +
1

2
(χ̄σiχ). (5.3)

The resulting models will include an extra on-shell supermultiplet of the type (0, 4, 4) [5].

6 Discussion

Three-dimensional real Lie algebras were classified in [13]. Representing the structure

constants in the form3

ckij = εijlb
lk − δki aj + δkj ai, (6.1)

where blk is a symmetric 3 × 3 matrix and ai is an arbitrary 3-vector, and analysing the

Jacobi identities, one gets the restriction

bijaj = 0. (6.2)

Rotating the basis in the algebra, one can diagonalize the matrix bij = biδ
ij (no sum) and

bring the vector ai to the form ai = (a, 0, 0). Further rescaling/relabeling of the generators

reveals eleven distinct cases exposed in table 1 above.

The Bianchi type-V spinning particle on S2 constructed above4 and its type-IX coun-

terpart in [11] suggest that other instances from the Bianchi classification might give rise

3We follow a modern exposition in [16].
4Note that in section 4 a slightly different basis was chosen in which bij = 0, ai = (1, 1, 1). It is related

to that in table 1 by a rotation of the basis in the algebra.
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to potentially interesting integrable systems of a similar kind. A reasonable strategy of

building such models, is to start with the ansatz for the Poisson structure

{θ, pθ} = 1, {φ, pφ} = 1, {pθ, pφ} = αi(θ, φ)Ji,

{Ji, pφ} = βij(θ, φ)Jj , {Ji, pθ} = γij(θ, φ)Jj , {Ji, Jj} = ckijJk, (6.3)

where αi(θ, φ), βij(θ, φ), γij(θ, φ) are unknown functions and ckij are specified by eq. (6.1)

and the table 1, to extend the standard expressions for the angular momentum of a free

particle on S2 by contributions linear in the spin variables Ji

J1 = −pφ cosφ cot θ − pθ sinφ+ σi(θ, φ)Ji,

J2 = −pφ sinφ cot θ + pθ cosφ+ µi(θ, φ)Ji,

J3 = pφ + νi(θ, φ)Ji, (6.4)

where σi(θ, φ), µi(θ, φ), νi(θ, φ) are unknown functions, and to fix all the unknown coeffi-

cients from the requirements that (6.3) is compatible with the Jacobi identities, while (6.4)

satisfy the structure relations of su(2) under the bracket (6.3). These conditions will yield

a coupled system of nonlinear partial differential equations which is to be solved. Similarly

to the type-V and type-IX cases, it is plausible to assume that the variables θ and φ are

separated, in which case the Fourier analysis might be helpful. Other consistent trunca-

tions of eqs. (3.4), (3.5) are worth studying as well. Finally, it would be interesting to

explore whether Ji in section 4 could be represented in terms of the Euler-like angles.
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[2] G. Compére, The Kerr/CFT correspondence and its extensions, Living Rev. Rel. 15 (2012)

11 [arXiv:1203.3561] [INSPIRE].

[3] A. Galajinsky, Particle dynamics near extreme Kerr throat and supersymmetry, JHEP 11

(2010) 126 [arXiv:1009.2341] [INSPIRE].

[4] A. Galajinsky, N = 4 superconformal mechanics from the SU(2) perspective, JHEP 02

(2015) 091 [arXiv:1412.4467] [INSPIRE].

[5] A. Galajinsky, Couplings in D(2, 1;α) superconformal mechanics from the SU(2) perspective,

JHEP 03 (2017) 054 [arXiv:1702.01955] [INSPIRE].

– 10 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12942/lrr-2013-8
https://arxiv.org/abs/1306.2517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2517
https://doi.org/10.1007/s41114-017-0003-2
https://doi.org/10.1007/s41114-017-0003-2
https://arxiv.org/abs/1203.3561
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3561
https://doi.org/10.1007/JHEP11(2010)126
https://doi.org/10.1007/JHEP11(2010)126
https://arxiv.org/abs/1009.2341
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.2341
https://doi.org/10.1007/JHEP02(2015)091
https://doi.org/10.1007/JHEP02(2015)091
https://arxiv.org/abs/1412.4467
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4467
https://doi.org/10.1007/JHEP03(2017)054
https://arxiv.org/abs/1702.01955
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.01955


J
H
E
P
0
3
(
2
0
2
0
)
1
4
3

[6] A. Galajinsky, Near horizon black holes in diverse dimensions and integrable models, Phys.

Rev. D 87 (2013) 024023 [arXiv:1209.5034] [INSPIRE].

[7] A. Galajinsky, A. Nersessian and A. Saghatelian, Superintegrable models related to near

horizon extremal Myers-Perry black hole in arbitrary dimension, JHEP 06 (2013) 002

[arXiv:1303.4901] [INSPIRE].

[8] T. Hakobyan, A. Nersessian and M.M. Sheikh-Jabbari, Near horizon extremal Myers-Perry

black holes and integrability of associated conformal mechanics, Phys. Lett. B 772 (2017) 586

[arXiv:1703.00713] [INSPIRE].

[9] H. Demirchian, A. Nersessian, S. Sadeghian and M.M. Sheikh-Jabbari, Integrability of

geodesics in near-horizon extremal geometries: Case of Myers-Perry black holes in arbitrary

dimensions, Phys. Rev. D 97 (2018) 104004 [arXiv:1802.03551] [INSPIRE].

[10] T. Hakobyan, S. Krivonos, O. Lechtenfeld and A. Nersessian, Hidden symmetries of integrable

conformal mechanical systems, Phys. Lett. A 374 (2010) 801 [arXiv:0908.3290] [INSPIRE].

[11] A. Galajinsky and O. Lechtenfeld, Spinning extensions of D(2, 1;α) superconformal

mechanics, JHEP 03 (2019) 069 [arXiv:1902.06851] [INSPIRE].

[12] G. d’Ambrosi, S. Satish Kumar and J.W. van Holten, Covariant hamiltonian spin dynamics

in curved space–time, Phys. Lett. B 743 (2015) 478 [arXiv:1501.04879] [INSPIRE].

[13] L. Bianchi, Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti,

Mem. Mat. Fis. Soc. Ital. Sci. III 11 (1898) 267.

[14] E.G. Kalnins, J.M. Kress, G.S. Pogosyan and W. Miller Jr., Completeness of

superintegrability in two-dimensional constant curvature spaces, J. Phys. A 34 (2001) 4705

[math-ph/0102006].

[15] S. Fedoruk, E. Ivanov and O. Lechtenfeld, New D(2, 1, α) mechanics with spin variables,

JHEP 04 (2010) 129 [arXiv:0912.3508] [INSPIRE].

[16] B.A. Dubrovin, A.T. Fomenko and S.P. Novikov, Modern geometry — Methods and

applications. Part I. The geometry of surfaces, transformation groups, and fields. Graduate

Texts in Mathematics volume 93, Springer, Germany (1984).

– 11 –

https://doi.org/10.1103/PhysRevD.87.024023
https://doi.org/10.1103/PhysRevD.87.024023
https://arxiv.org/abs/1209.5034
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5034
https://doi.org/10.1007/JHEP06(2013)002
https://arxiv.org/abs/1303.4901
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4901
https://doi.org/10.1016/j.physletb.2017.07.028
https://arxiv.org/abs/1703.00713
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00713
https://doi.org/10.1103/PhysRevD.97.104004
https://arxiv.org/abs/1802.03551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.03551
https://doi.org/10.1016/j.physleta.2009.12.006
https://arxiv.org/abs/0908.3290
https://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3290
https://doi.org/10.1007/JHEP03(2019)069
https://arxiv.org/abs/1902.06851
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.06851
https://doi.org/10.1016/j.physletb.2015.03.007
https://arxiv.org/abs/1501.04879
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.04879
https://arxiv.org/abs/math-ph/0102006
https://doi.org/10.1007/JHEP04(2010)129
https://arxiv.org/abs/0912.3508
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3508

	Introduction
	Background metric and its symmetries
	Spinning particle on a curved background and reduced spherical mechanics
	Bianchi type-V spinning extension of integrable spherical mechanics
	D(2,1;alpha) superconformal extensions
	Discussion

