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The minimal Starobinsky supergravity with inflaton (scalaron) and goldstino in a massive vector
supermultiplet is coupled to the dilaton-axion chiral superfield with the no-scale Kähler potential and a
superpotential. The Kachru-Kallosh-Linde-Trivedi-type superpotential with a constant term is used to
stabilize dilaton and axion during inflation, but it is shown to lead to an instability. The instability is cured
by adding the alternative Fayet-Iliopoulos (FI) term that does not lead to the gauged R symmetry. Other
stabilization mechanisms, based on the Wess-Zumino-type superpotential, are also studied in the presence
of the FI term. A possible connection to the D3-brane models is briefly discussed too.
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I. INTRODUCTION

Cosmological inflation offers a simple solution to basic
problems of standard cosmology and current cosmological
observations of the cosmic microwave background (CMB)
radiation. Viable field theory models of inflation are
usually nonrenormalizable after quantization, which raises
a problem of their ultraviolet (UV) completion in quantum
gravity. It is important because physical predictions
of those models are known to be sensitive to quantum
corrections. Amongst all viable inflationary models,
Starobinsky’s model [1] attracted a lot of attention because
it provides (so far) the best fit to the cosmological
observations [2]. The Starobinsky inflationary model of
modified (Rþ R2) gravity and its scalar-tensor gravity
counterpart are nonrenormalizable indeed, with the UV
cutoff being Planck mass MP [3,4]. Assuming quantum
gravity to be given by string theory, the UV completion in

string theory implies the necessity to extend viable infla-
tionary models to N ¼ 1 supergravity in four spacetime
dimensions as the first step. A supergravity extension of the
Starobinsky inflationary model is not unique, being de-
pendent upon the supergravity framework chosen; see, e.g.,
Ref. [5] for a review.
The minimal description of Starobinsky inflation in

supergravity as a single-field inflationary model (with a
single physical scalar called scalaron) is possible when the
scalaron (inflaton) is assigned to a massive Abelian vector
multiplet [6–9] in terms of unconstrained superfields.
A generic action of a vector multiplet V is governed by
a single (real) potential JðVÞ, while its bosonic part in
Einstein frame reads (MP ¼ 1)1

e−1Lbos ¼
1

2
R −

1

4
FmnFmn −

1

4
JCC∂mC∂mC

−
1

4
JCCBmBm −

g2

8
J2C; ð1Þ

where R is Ricci scalar, C is the leading field component
of V, Bm is an Abelian vector field with the Abelian
field strength Fmn ¼ ∂mBn − ∂mBn and the gauge
coupling constant g, and the subscripts (C) of J denote
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the derivatives of J with respect toC. The scalar potential in
Eq. (1) is obtained after elimination of the auxiliary field D
of the vector multiplet, so that is of the D type. The famous
Starobinsky inflationary scalar potential is obtained by
choosing the J potential as

JðCÞ ¼ −3ðCþ lnð−CÞÞ with C ¼ − exp
� ffiffiffiffiffiffiffiffi

2=3
p

φ
�
ð2Þ

in terms of the canonical scalaron φ. Then the first term in
JðCÞ is responsible for the induced cosmological constant
driving inflation, whereas the second term in JðCÞ repre-
sents an exponentially small correction during slow roll of
the scalaron for positive values of φ, which is responsible
for a suppression of the tensor-to-scalar ratio in the
Starobinsky inflation; see e.g., Ref. [10] for details.
Since inflation is driven by positive energy, in super-

gravity, it leads to a spontaneous supersymmetry breaking
(SSB). Therefore, a Goldstino should be present during
inflation. In the minimal supergravity description of infla-
tion, the Goldstino is given by gaugino (“photino”) that is
the superpartner of scalaron. It is worth to recall that the
Goldstino action is universal, being given by the Akulov-
Volkov action [11] up to a field redefinition [12,13].
Since an Abelian vector multiplet is always present in

the world volume of the spacetime-filling D3 brane (or anti-
D3 brane) [14–16], the D3-brane effective action may
provide the desired embedding of the Starobinsky infla-
tionary model into string theory. This conjecture is strongly
supported by the existence of the Bagger-Galperin (BG)
action [17] of an N ¼ 1 Abelian vector mulitplet, which is
the Dirac-Born-Infeld-type (DBI-type) extension of the
standard N ¼ 1 Maxwell-type action, because the BG
action has the second (nonlinearly realized) supersymmetry
needed for its D-brane interpretation. However, in order to
prove the conjecture, one needs to (i) realize Starobinsky’s
inflation in the DBI framework, (ii) provide SSB of the
first (linearly realized) supersymmetry, and (iii) restore the
second (nonlinearly realized) supersymmetry after cou-
pling the BG (or DBI) action to supergravity.
The first problemwas already solved inRefs. [18,19]. The

viable SSB after the Starobinsky inflation, which gives rise
to an adjustable (or observable) cosmological constant, is
also possible by the use of the alternative Fayet-lliopoulos
(FI) terms without the gauging of the R symmetry [20–23].
However, an origin of those FI terms in string theory and a
restoration of another supersymmetry are still unclear; see,
e.g., Refs. [24,25] for recent developments.
In this paper, we do not address those unsolved pro-

blems but check whether the minimal formulation of the
Starobinsky inflation in supergravity is compatible with its
coupling to the chiral dilaton-axion superfield Φ, described
by the no-scale Kähler potential K and a superpotentialW.
The no-scale Kähler potential reads

KðΦ; Φ̄Þ ¼ −n log ðΦþ Φ̄Þ; ð3Þ

where we have introduced the real parameter n > 0. In
the context of string theory, the no-scale Kähler
potential arises in toroidal (and orbifold) compactifications
of type II strings and in the large volume limit of Calabi-
Yau compactifications of heterotic strings (specifically,
with n ¼ 1 for dilaton-axion and with n ¼ 3 for a volume
modulus). The superpotential of dilaton and axion in string
theory may only be generated nonperturbatively. It is
common in the literature to assume its specific form either
as a Wess-Zumino-type cubic polynomial or as an expo-
nential of Φ.
At first sight, adding those couplings is not a problem

in supergravity. However, we find that it spoils the
Starobinsky inflation because of an instability. This phe-
nomenon was first observed in Ref. [26] in the context of
the so-called Polonyi-Starobinsky supergravity where a
Polonyi chiral superfield with the canonical kinetic term
and a linear superpotential were introduced for describing
SSB and dark matter after inflation [27–29] toward
combining our (early time) inflationary models with late
time cosmology. In the case of the no-scale Kähler
potential, we find a different situation because both dilaton
and axion have to be trapped near a minimum of their scalar
potential during the Starobinsky inflation driven by the
scalaron, i.e., the masses of both dilaton and axion have to
be larger than the Hubble scale during inflation (it is known
as the moduli stabilization in the literature [30]). It is the
purpose of this paper to achieve the moduli stabilization of
dilaton and axion with the Kähler potential (3) by using a
suitable superpotential and the alternative FI term in the
minimal Starobinsky supergravity coupled to the dilaton-
axion superfield.2 Our setup and motivation are different
from those of Ref. [25] where inflaton is identified with
dilaton. They are also different from those of Ref. [31],
where the superpotential is chosen in Polonyi’s form.
Though we did our calculations with the DBI kinetic

terms for the vector multiplet, in this paper we only use the
Maxwell-type kinetic terms for simplicity, because the DBI
structure does not significantly affect the Starobinsky
inflation and the moduli stabilization in question, according
to our findings (see also Refs. [18,23,28] for more).
The paper is organized as follows. In Sec. II, we recall

the superconformal tensor calculus in N ¼ 1 supergravity
and introduce our notation. In Sec. III, we define our
inflationary model of the minimal Starobinsky supergrav-
ity, whose vector (inflaton) multiplet is coupled to the
dilaton-axion chiral superfield with the no-scale Kähler
potential. The vacuum structure of the model with the
Kachru-Kallosh-Linde-Trivedi (KKLT)-type superpotential

2We call Φ to be the dilaton-axion superfield for simplicity,
although it may also represent a moduli superfield, with a generic
parameter n > 0.
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toward stabilization of dilaton and axion is investigated in
Sec. IV, where an instability of inflation is found. A cure to
the instability is proposed in Sec. V by using the alternative
FI term. Section VI is our conclusion. In the Appendix A,
we study a different stabilization mechanism by using the
Wess-Zumino (WZ)-type superpotential. Another stabili-
zation mechanism, as a combination of the previous ones,
is proposed in Appendix B. Spontaneous supersymmetry
breaking after inflation is studied in Appendix C.

II. SUPERCONFORMAL TENSOR CALCULUS

The conformal N ¼ 1 supergravity techniques are
described in Refs. [32–36]. We follow the notation and
conventions of Ref. [37]. In addition to the local symmetries
of Poincaré supergravity, one also has the gauge invariance
under dilatations, conformal boosts, andS supersymmetry, as
well as underUð1ÞA rotations. The gauge fields of dilatations
and Uð1ÞA rotations are denoted by bμ and Aμ, respectively.
A multiplet of conformal supergravity has charges with
respect to dilatations and Uð1ÞA rotations, called Weyl and
chiral weights, respectively, which are denoted by pairs
(Weyl weight, chiral weight) in what follows.
A chiral multiplet has the field components,

S ¼ fS; PLχ; Fg; ð4Þ

where S and F are complex scalars, and PLχ is a left-
handed Weyl fermion (PL is the chiral projection operator).
In this paper, we use the two types of chiral multiplets: the
conformal compensator S0 and the matter multiplets Si,

where the index i ¼ 1; 2; 3;…, counts the matter multip-
lets. The S0 has the weights (1,1) and is used to fix some of
the superconformal symmetries. The matter multiplets Si

have the weights (0,0). The antichiral multiplets are
denoted by S̄0 and S̄ī.
As regards a general (real) multiplet, it has the field

content

V ¼ fC;Z;H;K;Ba;Λ;Dg; ð5Þ

where Z and Λ are fermions, Ba is a (real) vector, and
others are (real) scalars, respectively.
The (gauge) field strength multiplet W has the weights

(3=2, 3=2) and the following field components:

η̄W¼
�
η̄PLλ;

1ffiffiffi
2

p
�
−
1

2
γabF̂

abþ iD

�
PLη; η̄PLDλ

�
; ð6Þ

where η is the dummy spinor, F̂ab ¼ ∂aBb − ∂bBa þ
ψ̄ ½aγb�λ≡ Fab þ ψ̄ ½aγb�λ is the superconformally covariant
field strength, ψa is gravitino, λ and D are Majorana
fermion and the real auxiliary scalar, respectively. The
related expressions of the multiplets W2 and W2W̄2, which
are embedded into the chiral multiplet (4) and the general
multiplet (5), respectively, are

W2 ¼
�
� � � ; � � � ; � � � þ 1

2
ðFF − FF̃Þ −D2

�
; ð7Þ

W2W̄2 ¼
�
� � � ; � � � ; � � � ; � � � ; � � � ; � � � ; � � � þ 1

2
jðFF − FF̃Þ − 2D2j2

�
; ð8Þ

where we have omitted the fermionic terms (denoted by dots) for simplicity. In addition, we use the book-keeping notation
FF ¼ FabFab and F̃ab ≡ − i

2
εabcdFcd throughout the paper.

We also need another chiral multiplet,

ΣðW̄2=jS0j4Þ ¼
�
−
ð1
2
FF þ 1

2
FF̃ −D2Þ

jS0j4
þ � � � ; � � � ; F0

jS0j4S0
ðFF þ FF̃ − 2D2Þ þ � � �

�
; ð9Þ

where Σ is the chiral projection operator [35,36]. The
argument of Σ requires specific Weyl and chiral weights: in
order to make sense to ΣV, the V must satisfy w − n ¼ 2,
where ðw; nÞ are the Weyl and chiral weights of V. We
adjust the correct weights of the argument by inserting the
factor jS0j4. Equation (9) is the conformal supergravity
counterpart of the superfield D̄2W̄2.
The covariant derivative of W is given by [36]

DW ¼ f−2D; � � � ; � � � ; � � � ; � � � ; � � � ; � � �g ð10Þ

of the weights (2,0). Here, the dots in the higher compo-
nents also include some bosonic terms, but we do not write
down them here for simplicity (see Ref. [20] for their
explicit expressions).
A massive vector multiplet V has the field components,

V ¼ fC; Z;H;K; Ba; λ; Dg; ð11Þ

while all of them are either real (bosonic) or Majorana
(fermionic). The weights of V are (0,0).
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The bosonic parts of the F-term invariant action
formulas are

½S�F ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ðF þ F̄Þ; ð12Þ

while they can be applied only when S has the weights
(3,3). The bosonic part of the D-term formula for a real
multiplet ϕ of the weights (2,0) is

½ϕ�D ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Dϕ −

1

3
CϕRðωÞ

�
; ð13Þ

where RðωÞ is the superconformal Ricci scalar in terms of
spacetime metric and bμ [37]. The Cϕ and Dϕ are the first
and the last components of ϕ, respectively.
We set the (reduced) Planck constantMP and the Abelian

gauge coupling constant g to unity for simplicity in our
calculations, unless it is stated otherwise. Both of them can
be restored by dimensional considerations and rescaling of
the vector multiplet fields, respectively.

III. THE MODEL

Let us consider the supergravity model of a massive
vector multiplet V coupled to a dilaton-axion chiral
multiplet Φ, whose action is given by

S ¼ −
3

2
½jS0j2e−J =3�D þ 2½S30W�F − ½ΦW2�F; ð14Þ

where J is a real function of C and (Φþ Φ̄). We take J as
a sum of the Starobinsky potential (2) and the no-scale
Kähler potential (3),

J ¼ −3 log ð−CeCÞ − n logðΦþ Φ̄Þ; ð15Þ

where n is a positive integer. The first term in Eq. (15) is
supposed to be responsible for the Starobinsky-type infla-
tion, and the second one describes the interactions of
dilaton and axion. The W is a holomorphic superpotential
depending on Φ only.
Our action is invariant under a constant shift

Φ → Φþ ic ð16Þ

with a real constant c, except the superpotential term.
After imposing the superconformal gauge fixing and

integrating out the auxiliary fields, the bosonic part of the
action (14) is given by

L ¼ 1

2
R −

1

4
J CCð∂aCÞ2 −

1

4
J CCB2

a − J ΦΦ̄∂aΦ∂aΦ̄ − V

−
1

4
ðΦþ Φ̄ÞFF þ 1

4
ðΦ − Φ̄ÞFF̃: ð17Þ

The subscripts of J denote the derivatives of J with
respect to the scalar fields C, Φ, and Φ̄, respectively. The V
is the scalar potential, whose explicit form reads

V ¼ VF þ VD; ð18Þ

VF ¼ eJ
	
ðJ ΦΦ̄Þ−1jWΦ þ J ΦWj2 þ

�
J 2

C

J CC
− 3

�
jWj2



;

ð19Þ

VD ¼ J 2
C

8ðΦþ Φ̄Þ ; ð20Þ

in agreement with Refs. [8,9,31]. When W ¼ 0, the
Lagrangian (17) reduces to the one of Ref. [38] considered
in the context of global supersymmetry. In the absence of
Φ, the equations above reduce to Eqs. (1) and (3).
The Planck mass MP can be recovered as follows:

C
MP

¼ −e
ffiffi
2
3

p
φ
MP ;

Φ
MP

¼ e−
ffiffi
2
n

p
ϕ
MP þ i

ffiffiffi
2

n

r
a
MP

: ð21Þ

The fields φ;ϕ, and a can be identified as the canonical
inflaton/scalaron, dilaton, and axion, respectively. After
rewriting the Lagrangian in terms of those fields, we obtain

L ¼ −
1

2
ð∂aφÞ2 −

1

2
ð∂aϕÞ2 −

1

2
e2

ffiffi
2
n

p
ϕ
MPð∂aaÞ2 − VF − VD;

ð22Þ

where (after a restoration of the gauge coupling constant g
also) we have

VF¼eJ =M2
P

	
e−2

ffiffi
2
n

p
ϕ
MP

n
jWΦj2−e−

ffiffi
2
n

p
ϕ
MP

�
WΦ

W̄
MP

þW̄Φ̄
W
MP

�

þðn−6e
ffiffi
2
3

p
φ
MP þ3e2

ffiffi
2
3

p
φ
MPÞjWj2

M2
P



; ð23Þ

VD ¼ 9g2M4
P

16
e
ffiffi
2
n

p
ϕ
MP

�
1 − e−

ffiffi
2
3

p
φ
MP

�
2
: ð24Þ

The Starobinsky inflation is supposed to be driven by the
D-type term above. However, in the case under consider-
ation, theD termhas the dilaton-dependent factor. Therefore,
a viable inflation is only possible after a stabilization of the
dilaton, while keeping the F term to be relatively small
against the D term, so that the F term should not spoil the
Starobinsky inflation either.

IV. THE VACUUM STRUCTURE

We choose the KKLT-type superpotential [39] as our
ansatz to safely stabilize dilaton and axion in our model
(Sec. III).
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Let us first study the stationary conditions of all fields.

In terms of the inflaton C ¼ −e
ffiffi
2
3

p
φ, the dilaton ReΦ ¼ ρ,

and the axion ImΦ ¼ θ,3 the scalar potential is given by

VD ¼ 9g2

16ρ

�
1 − e−

ffiffi
2
3

p
φ
�
2
; ð25Þ

VF ¼ eJ
1

ð2ρÞn
	ð2ρÞ2

n
jWΦj2 − 2ρðWW̄Φ̄ þ W̄WΦÞ

þ ðPþ nÞjWj2


; ð26Þ

where we have introduced the notation

JðφÞ ¼ 3e
ffiffi
2
3

p
φ −

ffiffiffi
6

p
φ; ð27Þ

PðφÞ ¼ 3e
ffiffi
2
3

p
φ
�
e
ffiffi
2
3

p
φ − 2

�
ð28Þ

and have recovered the gauge coupling constant g that
determines the inflationary scale.
The first derivative of the scalar potential with respect to

φ reads

Vφ ¼ 9g2

8ρ

ffiffiffi
2

3

r
φ
�
1 − e−

ffiffi
2
3

p
φ
�
þ JφVF þ eJ

1

ð2ρÞn PφjWj2;

ð29Þ

where the subscripts denote the derivatives with respect to a
given field. The φ ¼ 0 is a solution of Vφ ¼ 0, since Jφ and
Pφ vanish at φ ¼ 0.
Let us assume that the superpotential takes the following

form:

W ¼ W0 þ Ae−BΦ ð30Þ

that is inspired by the KKLT-type superpotential [39] with
constant parameters W0, A, and B.4 The nonvanishing
constant W0 is essential in our investigation. We assume
that W0 is negative and A;B are both positive. In this case,
the F-term scalar potential is explicitly given by

VF ¼ eJ
1

ð2ρÞn
	
4A2B2ρ2

n
e−2Bρ

þ 4ABρe−2BρðAþW0eBρ cosðBθÞÞ

þ ðPþ nÞðW2
0 þ 2AW0e−Bρ cosðBθÞ þ A2e−2BρÞ



:

ð31Þ

We find that θ ¼ 2mπ; m ∈ Z, minimizes the potential for
n ≥ 3 since Pþ n ≥ 0 holds in that case. In the following,
we focus on the point at θ ¼ 0. Taking into account the
condition φ ¼ 0 for Vφ ¼ 0, the condition Vρ ¼ 0 is
reduced to either of

Að2Bρþ nÞ þ nW0eBρ ¼ 0; ð32Þ

Aðnð4Bρ− 3Þ þ 4BρðBρ− 1Þ þ n2Þ þ ðn− 3ÞnW0eBρ ¼ 0:

ð33Þ

These conditions should be regarded as the equations that
determine the vacuum expectation value of ρð¼ ρ0Þ.
In what follows, we consider the no-scale case with

n ¼ 3 for definiteness. Then, Eq. (32) becomes

W0 ¼ −Ae−Bρ0
�
1þ 2

3
Bρ0

�
; ð34Þ

that is exactly same as the KKLT vacuum.5 The relevant
masses at the stationary point are explicitly given by

m2
φ ¼ 27g2 − 4A2B2e3−2Bρ0

36ρ0
;

m2
ρ ¼

A2B2e3−2Bρ0ðBρ0 þ 2Þð2Bρ0 þ 1Þ
6ρ30

;

m2
θ ¼

A2B3e3−2Bρ0ð2Bρ0 þ 3Þ
6ρ20

; ð35Þ

and they are all positive.6 The minimum is of the anti–de
Sitter (AdS)-type because the cosmological constant is
given by

V0 ¼ −
A2B2e3−2Bρ0

6ρ0
< 0; ð36Þ

while supersymmetry is restored at the minimum.
Though both dilaton and axion are stabilized by using

the KKLT-type superpotential, as was demonstrated above,
there is still a problem. In the Starobinsky-type inflationary
scenario, it is necessary to require VD ≫ jVFj. But the3Canonical normalizations of the dilaton and axion fields are

obtained after a field redefinition Φ ¼ e−
ffiffi
2
n

p
ϕ þ i

ffiffi
2
n

q
a. We find

convenient to use ρ and θ in what follows.
4Another type of the superpotential is considered in

Appendix A.

5Equation (33) yields the solutions ρ ¼ 0;− 2
B.6We assume that the inflationary scale ∼g is larger than that

of VF.
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double exponential in the eJ factor and the exponentials in
the P function, defined by Eqs. (27) and (28) in terms of the
canonical inflaton φ, destroy the flatness of the scalar
potential and thus greatly reduce the e-foldings number of
inflation. Therefore, we need the hierarchy of the two
parameters, namely, g ≫ A. However, as can be seen from
Eq. (35), it gives rise to the extremely small dilaton and
axion masses and, therefore, the KKLT stabilization ansatz
alone does not work here.7

V. THE FIELD-DEPENDENT FI TERM

As long as the total J potential (2) is unchanged, it gives
rise to the Starobinsky D-type inflationary potential, as
desired. However, as we found in the previous section, the
coupling of the vector (inflaton) superfield to the chiral
(dilaton-axion) superfield converts a single-field inflation
into a multifield inflation, while it leads to the instability
resulting in a significant reduction of the duration of
inflation, measured by the e-foldings number Ne, and,
hence, to an unacceptable change in the predicted CMB
power spectrum measured by the scalar index ns and the
tensor-to-scalar ratio r, both depending upon Ne. Our idea
to solve this problem is to change the origin of the first term
in the J potential (2) and thus avoid the instability via the
induced change in the F-type scalar potential.
Let us introduce the following alternative field-

dependent FI term (cf. Refs. [20–22]):8

SFI ¼ −
3

2

	
jS0j2e−J =3ξ

W2W̄2

ðDWÞ2ðD̄ W̄Þ2DW



D
; ð37Þ

where ξ is a real function that, in general, depends on C
and a combination (Φþ Φ̄), in order to preserve the
shift symmetry in Eq. (16). This FI term does not require
the gauged R symmetry, and therefore, is applicable
together with our KKLT-type superpotential.9 It appears
that a constant ξ does not help because it merely shifts the
vacuum and does not contribute to eJ and P. As was
noticed in Ref. [26], the dangerous terms in the scalar
potential can be removed when ξ and J satisfy a specific
relation, by extending ξ to be field dependent. Here we
apply the same idea to the case under consideration, where
the dilaton-axion multiplet is coupled to the massive vector
multiplet.

Let us choose J and ξ so they satisfy the relation

JC þ ξðCÞ
3g

¼ −3
�
1þ 1

C

�
; ð38Þ

where we have set

ξðCÞ ¼ 3gξ0ekJ
�
1þ 1

C

�
; ξ0 < 0; k > 0: ð39Þ

The case ξðCÞ ∝ ekJ was studied in Ref. [26]. In Eq. (39),
we added the factor ð1þ 1

CÞ to ensure ξð−1Þ ¼ 0. This
factor does not change the results of Ref. [26] since it is
reduced to 1 for C → −∞. However, due to a change of the
J function in Eq. (38), the canonical scalaron field in
Eq. (21) has to be modified. We find convenient to use the
noncanonical inflaton field C in what follows.
For large negative C, Eq. (38) can be approximately

solved as

J ∼ −
1

k
log

1

3
ðe3kðC−C0Þ − ξ0Þ; ð40Þ

with the integration constant C0. Thus, the function J
becomes constant as

J∞ ≡ −
1

k
log

−ξ0
3

; ð41Þ

for C → −∞. Then the exponential factor eJ in the F-type
part VF of the scalar potential (26) also becomes constant
during inflation, while the term PðCÞ ¼ J2C=JCC − 3 in the
VF becomes constant too,

P∞ ¼ 3 − 2ξ0ekJ∞

kξ0ekJ∞
: ð42Þ

To summarize, we obtain the following full scalar
potential during inflation:

V ¼ 9g2

16ρ

�
1þ 1

C

�
2

þ eJ∞
1

ð2ρÞn
	ð2ρÞ2

n
jWΦj2 − 2ρðWW̄Φ̄

þ W̄WΦÞ þ ðP∞ þ nÞjWj2


; ð43Þ

whose F term in the second line does not spoil the
Starobinsky inflation described by the D term in the first
line because eJ∞ and P∞ are constants during the inflation.
The observational predictions for the cosmological tilts ns
and r with the e-folding number Ne between 50 and 60 in
this inflationary model are the same as in the Starobinsky
case; see Ref. [26] for details.
As the inflation ends, the inflaton C and the dilaton-

axion Φ ¼ ρþ iθ take the vacuum expectation values
which are determined by the vacuum conditions

7The range of the scalaron field φ=MP is trans-Planckian of the
order Oð1Þ during the (large field) Starobinsky inflation [19].

8The standard FI term [40] in the context of supergravity
does not work because it implies the gauged R symmetry and,
hence, the charged gravitino field that severely restricts possible
couplings.

9The gauged R symmetry does not allow a constant term in the
superpotential.
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VC ¼ Vρ ¼ Vθ ¼ 0. We find that C ¼ −1 is still a solution
to VC ¼ 0 since JCjC¼−1 ¼ PCjC¼−1 ¼ 0 in the paramet-
rization of Eq. (39). As regards Vρ ¼ Vθ ¼ 0, the results of
the previous Sec. IV apply since VDjC¼−1 ¼ 0.
Moreover, we do not have to demand VD ≫ jVFj with

the FI term because the structure of J and ξ already solves
the problem. Therefore, we can strongly stabilize Φ by
choosing the superpotential parameters appropriately, i.e.,
with a sufficiently large A in Eq. (30).
For completeness, we provide the masses of all scalar

fields in the vacuum. The masses given in Eq. (35) get small
modifications due to the change of the J function; see
Eq. (38). They are explicitly given by

m2
C ¼ 9g2

8ρ0
−
A2B2eJð−1Þ−2Bρ0

6ρ0

�
1þ 1

3
ξ0ekJð−1Þ

�
;

m2
ρ ¼

A2B2eJð−1Þ−2Bρ0ðBρ0 þ 2Þð2Bρ0 þ 1Þ
6ρ30

;

m2
θ ¼

A2B3eJð−1Þ−2Bρ0ð2Bρ0 þ 3Þ
6ρ20

; ð44Þ

where Jð−1Þ is the value at C ¼ −1. In the limit ξ0 → 0,
these masses are reduced to those in Eq. (35).
A comment is in order here. Consistency of the alter-

native FI term (37) requires the vacuum expectation value
of the D term to be nontrivial; in other words, supersym-
metry must be spontaneously broken in the vacuum. Since
D in our case is given by

D ¼ g
2ρ

�
JC þ ξðCÞ

3g

�
; ð45Þ

the vacuum discussed above is not allowed. To be con-
sistent, the right-hand side of Eq. (38) should be modified
further as

JC þ ξðCÞ
3g

¼ −3
�
1þ 1

C

�
þ Δ; ð46Þ

where a nonvanishing (small) constant Δ has been intro-
duced. As long as jCΔj ≪ 1 during inflation, the proposed
mechanism applies without changing the results above. The
detailed analysis is given in Appendix C.

VI. CONCLUSION

In this paper, we studied the phenomenological aspects
of inflation in our new supergravity model. Our main
results are summarized in the Abstract.
As we already mentioned in the Introduction, the DBI

deformation of the vector multiplet kinetic terms in our
supergravity model, which is essentially described by a
locally supersymmetric extension of the BI action

−
1

4

ffiffiffiffiffiffi
−g

p
FμνFμν

→ M4
BI

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμνÞ

q
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgμν þM−2

BIFμνÞ
q 


ð47Þ

with the dimensional deformation parameter M4
BI, is avail-

able and does not significantly change our results. The DBI
structure is, however, relevant for a possible embedding of
our model into the effective action of a D3 brane.
The BI action is known to have the Uð1Þ electric-

magnetic self-duality, while its minimal coupling to the
massless dilaton and axion results in the SLð2;RÞ self-
duality [41] that also applies to the D3-brane effective
action of the massless fields. The manifestly N ¼ 1 locally
supersymmetric extension of the BI action, coupled to the
massless dilaton-axion chiral superfield and preserving the
SLð2;RÞ self-duality, can be found in Ref. [42].10 The self-
duality properties are only valid in the case of the massless
fields and in the absence of a superpotential.11

Another (nonlinearly realized) supersymmetry is also
required for a D3 brane. Our supergravity model has
manifest N ¼ 1 supersymmetry but does not have another
supersymmetry by construction, though it may still be
possible after a modification of our action or by using
nonlinear realizations where manifest supersymmetry is
absent. Unlike the standard FI term, the alternative FI terms
avoid the no-go theorems known in supergravity and string
theory [44] so that the search for an origin of the alternative
FI term (37) in string theory deserves further investigation.
Finally, we mention a possible connection to extended

supersymmetry and supergravity. Some alternative FI terms
were recently found inN ¼ 2 supergravity [45]. TheN ¼ 2
supersymmetric extensions of the BI theory both in super-
space and via nonlinear realizations also exist [46–50]. The
scalar (ϕiÞ kinetic terms of the N-extended vector multiplet
enter the generalized BI action via the root

−M4
BI

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ½gμν þM−2

BI ðFμν þ ∂μϕ
i∂νϕ

iÞ�
q

; ð48Þ

which is different from the k inflation [51] and Horndeski
gravity theories [52].
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APPENDIX A: THE WZ-TYPE
SUPERPOTENTIAL

Let us investigate another case of the Wess-Zumino
(WZ)-type superpotential in order to stabilize dilaton and
axion during Starobinsky inflation in our supergravity
model. We did our calculations with a generic (cubic)
WZ superpotential, but those results are cumbersome and
not very illuminating. We restrict ourselves in this
Appendix to the most relevant mass term for simplicity, i.e.,

W ¼ mΦ2; ðA1Þ

where m is a real constant. The F-term potential becomes

VF ¼ eJ
m2

ð2ρÞn ðθ
2 þ ρ2Þ

	
ðθ2 þ ρ2ÞðnþPÞ þ 16ρ2

n
− 8ρ2



:

ðA2Þ

Under the condition φ ¼ 0, we obtain

n ¼ 3∶ Vρ ¼ −
e3m2ðρ2 − θ2Þ

3ρ2
; Vθ ¼ −

2e3θm2

3ρ
; ðA3Þ

n ¼ 4∶ Vρ ¼
e3θ2m2ðρ2 − θ2Þ

4ρ5
; Vθ ¼ −

e3θm2ðρ2 − θ2Þ
4ρ4

:

ðA4Þ

It is easy to verify that the case of n ¼ 3 has no solution.
In the n ¼ 4 case, the equations are satisfied when
ρ ¼ θ≡ ρ0. The masses are given by

m2
φ ¼ mm3g2

4ρ0
þ e3m2

2
; ðA5Þ

m2
− ¼ e3m2

ρ20
; m2þ ¼ 0; ðA6Þ

where m2
� are the masses of 1ffiffi

2
p ðρ� θÞ. Hence, the vacuum

is not stabilized in this case.
In contrast to the KKLT case, supersymmetry is broken

in the vacuum because

FΦ ∼
m
ρ0

: ðA7Þ

The vacuum is AdS, whose depth is given by

V0 ¼ −
1

4
e3m2: ðA8Þ

The situation can be improved by adding quartic
couplings inside the log of the Kähler potential in the J
function. Let us modify J as

J ¼ JðCÞ − n log½Φþ Φ̄þ γ1ðΦþ Φ̄ − 2ρ0Þ4
þ γ2ðΦ − Φ̄ − 2iρ0Þ4�; ðA9Þ

where γ1;2 are the real parameters. After these modifica-
tions, the stationary point is the same as in the model
without the quartic modifications, i.e.,

φ ¼ 0; ρ ¼ θ ¼ ρ0; ðwith n ¼ 4Þ: ðA10Þ
The quartic couplings affect the mass terms that can be

roughly evaluated as

Δm2 ∼ ðJ ΦΦ̄Þ−1ΦΦ̄jFΦj2: ðA11Þ
Thus, the messes get no corrections when the vacuum
preserves supersymmetry, like in the KKLT case. In the
WZ-type model, we find the contributions to the mass
matrix as follows:0
BB@

M2
φφ M2

φρ M2
φθ

� M2
ρρ M2

ρθ

� � M2
θθ

1
CCA

¼

0
BBBBB@

3g2

4ρ0
þ e3m2

2
0 0

0
e3m2ð192γ1ρ30þ1Þ

2ρ2
0

− e3m2

2ρ2
0

0 − e3m2

2ρ2
0

e3m2ð192γ2ρ30þ1Þ
2ρ2

0

1
CCCCCA:

ðA12Þ
Therefore, we can stabilize ρ and θ in the presence of the
quartic couplings when the latter take values larger than m.
We can also decouple the masses of the dilaton and the
axion from VF ∼m2 and impose the condition VD ∼ g2 ≫
VF ∼m2 in this case. As regards inflation, the mechanism
discussed in the main text (Sec. V) can be applied here too.

APPENDIX B: HYBRID SOLUTION

Since the problem of suppressing the VF term comes
from the exponential in

J ¼ −3 logð−CeCÞ ðB1Þ
(in terms of the canonically normalized inflaton φ, we have

C ¼ −e
ffiffi
2
3

p
φ), we can change the J function to the first term

only as
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J ¼ −3 log ð−CÞ ðB2Þ

and generate the second term in (B1), leading to the
constant vacuum energy driving inflation in the D-type
Starobinsky potential and responsible for the instability due
to the F term, by the alternative FI term, schematically as
∼ð1=Cþ ξÞ2. The parameter ξ can be fixed as ξ ¼ g in
order to keep the standard Starobinsky potential.
As regards the dilaton-axion coupled model, we have to

demand the following conditions: (i) the D-term potential
should not cross zero between the start of inflation and the
vacuum (otherwise, the action will become singular due to
the alternative FI term) and (ii) the masses of dilaton and
axion must be higher than the inflationary (Hubble) scale
during inflation.
Let us introduce the dilaton-axion pair with the following

no-scale Kähler potential and the WZ superpotential:12

J ¼ −3 log ð−CÞ − logðΦþ Φ̄Þ; ðB3Þ

W ¼ λþ μΦþ ωΦ2; ðB4Þ

where we parametrize Φ as

Φ ¼ y=2þ iθ; y ¼ e−
ffiffi
2

p
ϕ: ðB5Þ

The scalar potential of the model is given by

VF ¼ 1

ð−CÞ3y
	�

−λþ 1

2
μyþ 3

4
ωy2 þ ωθ2

�
2

þ ðωy − μÞ2θ2


; ðB6Þ

VD ¼ 9g2

2
ð1
C
þ 1Þ2: ðB7Þ

The critical points can be found analytically as

θ0 ¼ 0; ðB8Þ

y0ð1Þ ¼ −
μ

9ω

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

36

μ2
λω

s !
;

y0ð2Þ ¼ −
μ

9ω

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12

μ2
λω

s !
; ðB9Þ

C0 ¼ −
1

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B

A

r !
; ðB10Þ

where

A≡ 3g2y0 and B≡
�
−λþ 1

2
μy0 þ

3

4
ωy20

�
2

: ðB11Þ

As an example, the signs of the parameters can be fixed
as ω < 0 and λ; μ > 0. The points y0ð2Þ lead to a Minkowski
vacuum with VD ¼ 0, so that in this case hDi ¼ 0 breaks
the requirement (i). To exclude y0ð2Þ, we can impose the
condition 12λjωj > μ2 when y0ð2Þ becomes imaginary.
Then the remaining minimum at y0ð1Þ is unique with the
“plus” branch according to Eq. (B8),

y0 ¼
μ

9jωj

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36

μ2
λjωj

s !
; ðB12Þ

where we have renamed y0ð1Þ to y0.
Unfortunately, the mass of ϕ vanishes in the vacuum,

similarly to the model studied in Appendix A, so that we
have to introduce the quartic couplings again.

APPENDIX C: THE Δ-DEFORMATION

Here we demonstrate that the introduction of a smallΔ in
Eq. (46) does not affect the considerations of Sec. V.
First, let us compute the impact of Δ ≠ 0 on the scalar

potential during inflation. Equation (40) gets modified as

J ∼ ΔðC − C0Þ −
1

k
log

1

3 − Δ
ðe3kðC−C0Þ − ξ0ekΔðC−C0ÞÞ

ðC1Þ
for jCj ≫ 1. Under the assumption jCΔj ≪ 1, while keep-
ing jCj ≫ 1, it reduces to

J∞ ≡ −
1

k
log

−ξ0
3

ðC2Þ

that is exactly the same as Eq. (41), so that there is no effect
of Δ. As regards another relevant function PðCÞ, a
straightforward calculation yields

P∞ ¼ 3 − 2ξ0ekJ∞

kξ0ekJ∞
− 2Δ

e−kJ∞

kξ0
ðC3Þ

for jCj ≫ 1. Here we have the small correction due toΔ but
it is negligible. Thus, the key observation that both J and P
become constants for jCj ≫ 1 is unchanged, so that the
discussion without Δ in Sec. V can be applied as long as Δ
is small like jCΔj ≪ 1. We conclude that the small value of
Δ does not affect inflation.
Next, let us consider the impact ofΔ on the vacuum.Once

Δ ≠ 0 is included, the original vacuum (ρ ¼ ρ0, θ ¼ 0, and
C ¼ −1) gets shifted. It is difficult to obtain an analytic
solution to the vacuum conditions. Therefore, we expand the
scalar potential around the original vacuum as follows:

V ¼ V0 þ ViΦi þ 1

2
VijΦiΦj þ � � � ; ðC4Þ

12When at least one of the parameters of the superpotential
vanishes, we find it impossible to obey the conditions (i) and (ii)
simultaneously.
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whereVi andVij are the first and the second derivatives with
respect to all scalar fieldsΦi ¼ ðC; ρ; θÞ, respectively,which
are evaluated at ρ ¼ ρ0, θ ¼ 0, and C ¼ −1, while V0 is the
cosmological constant.
The leading terms of Vρρ, Vθθ, and VCC are the same as

in Eq. (44). As regards the remaining terms, we find their
contributions of the order

Vρ ¼ OðΔ2Þ; VC ¼ OðΔÞ; VCρ ¼ OðΔÞ ðC5Þ

and

Vθ ¼ Vθρ ¼ VθC ¼ 0: ðC6Þ

Therefore, the deviations from the original vacuum are

δρ ∼OðΔ2Þ; δθ ¼ 0; δC ∼OðΔÞ; ðC7Þ

so that they can be safely neglected for small jΔj ≪ 1.

Finally, the cosmological constant V0 is given by

V0 ¼ −
A2B2e3−2Bρ0

6ρ0
þ Δ2

�
g2

16ρ0
þ A2B2eJð−1Þ−2Bρ0

18ρ0ð3þ ξ0ekJð−1ÞÞ

�
:

ðC8Þ

Though the obtained correction due to Δ does uplift the
AdS vacuum, it is apparently insufficient to get a dS
vacuum because the value of Δ is supposed to be small as
jΔj ≪ 1, while we have the hierarchy of the parameters
jΔj ≪ A < g in our model in accordance to footnote 6 and
Eq. (C7). Moreover, a large value of Δ to be compatible
with A may induce tachyonic masses in Vij; see Eq. (C4).
Therefore, another mechanism is needed to realize a dS
vacuum in our approach, but it is beyond the scope of this
paper (see, however, Refs. [9,31] for possible solutions).
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