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Abstract. Preference aggregation as a problem of a single consensus ranking determination, using 

Kemeny rule, for m rankings, including ties, of n alternatives is considered in the paper. The 

Kemeny Ranking Problem (KRP) may have considerably more than one optimal solutions (strict 

orders or permutations of the alternatives) and, hence, special efforts to deal with this phenomenon 

are needed. In the paper, there is proposed an efficient formal rule for convolution of the N multiple 

optimal permutations, the output profile B(N, n), into an exact single final consensus ranking, 

which can include ties. The convolution rule is as follows: in the final consensus ranking, 

alternatives are arranged in ascending order of their rank sums (total ranks) calculated for the 

output profile B; some two alternatives are considered to be tolerant if they have the same rank 

sums in B. The equivalent convolution rule can be also applied as follows: in the final consensus 

ranking, alternatives are arranged in descending order of row sums (total scores) calculated for a 

tournament table built for B; some two alternatives are deemed to be tolerant if they have the same 

row sums. It is shown that, for any alternative, its total rank and total score are equal in sum to the 

output profile dimension N´n. The convolution rules are validated using Borda count. 

1. Introduction 

In this paper we consider a preference aggregation procedure in the form of Kemeny rule. Being 

essentially the multiple heterogeneous properties measurement in an ordinal scale, preference aggregation 

belongs to a circle of problems relevant to measurement science [1]. Additionally, in the recent few years, 

the preference aggregation and the processing of ranked data have attracted considerable interest within a 

much broader consideration covered by such a rapidly developing area of artificial intelligence as machine 

learning [2]. Appropriate methods are used to solve newly emerging problems, such as crowd 

sensing/labeling, sentiment analysis, meta-search engines, interval data fusion and others [2–7]. 

The preference aggregation is a single consensus ranking determination for m rankings (voters), 

possibly including ties, of n alternatives (candidates). This is a classical problem that has been intensively 

investigated firstly as a Voting Problem in the framework of Social Choice Theory [8]. 

Let we have a set A = {a1, a2, ..., an} of n alternatives and a set L = {l1, l2, ..., lm} of rankings defined 

over the set A, where each of m rankings (also called preference relation or weak order) has a form of 



Joint IMEKO TC1-TC7-TC13-TC18 Symposium 2019

Journal of Physics: Conference Series 1379 (2019) 012053

IOP Publishing

doi:10.1088/1742-6596/1379/1/012053

2

chain of size n, e.g. l = a2 f a1 f... f as ~ at f... f ap ~ aq, and may include f, a strict preference relation 

r, and ~, a tolerance relation (or tie) t, so that l = rÈt. The set L(m, n) is called a preference profile for 

the given m rankings of n alternatives. 

We will use the following obvious short notation for a ranking:  

 lk = a2 f a1 f... f as ~ at f... f ap ~ aq Û 21…(st)…(pq).                                 (1) 

For example, a2 f a5 ~ a1 f a3 ~ a4  f a6 Û 2(51)(34)6 or a3 f a1 f a5f a2 f a6 f a4 Û 315264. 

Let Pn be a set of all n! strict order relations f on A; each strict order r Î Pn is in one-to-one 

correspondence with a permutation of first n natural numbers ¥n = {1, 2, …, n}; in this sense, we will treat 

notions of strict (or linear) order and permutation as synonyms. 

Preference aggregation goal is to determine a consensus ranking b that is a single preference relation 

that would give an integrative characterization of the profile L(m, n).  

There are many rules to find the consensus ranking [9]. We use the Kemeny rule [10] consisting in 

determination of such linear order (Kemeny ranking) b Î Pn of the alternatives of A that the distance D(β, 

L) (defined in terms of the number of pairwise inconsistencies between rankings) from b to the rankings 

of the initial profile L(m, n)  is minimal for all possible strict orders r (permutations), that is  

 argmin iji j
p

<
b = å ,                                        (2) 

where 
1
[1 sgn( , )], , 1,..., ,

m k k
ij i jk

p a a i j n
=

= - =å  is an element of the (n´n) profile matrix [pij] = Р, rows 

and columns of which are labeled by the alternatives' numbers (indexes); 
1,

sgn( , ) 0, ~

1,

i j

i j i j

i j

a a

a a a a

a a

ì
ï

= í
ï-î

i ja ai ji j

j

i ja ai ji j

 is a 

function that reveals the sign (or direction) of the pair (ai, aj)Îl. 

The Kemeny rule (2) is an optimization problem, called the Kemeny Ranking Problem (KRP), which 

means the determination of such a transposition of the profile matrix rows and columns that the sum of 

elements of its upper triangle submatrix, i.e. ( , ) iji j
D p

<
r L = å , is minimal.  

Clearly since the set Pn is finite, the Kemeny ranking always exists, however it is not always unique as 

the optimal distance value may correspond to not the only transposition of the profile matrix rows and 

columns, that is
1 2

1 2( , ) ( , ) ... ( , ) N
ij ij N iji j i j i j

D p D p D p
< < <

b L = = b L = = = b L =å å å , where N is 

a number of Kemeny rankings (optimal permutations) [2,3,11,12]. Furthermore, it was shown in [1] that in 

certain situations the number of multiple optimal permutations may exceed 107 even for small m = 4 and n 

= 15 and also the solutions may rank the alternatives in significantly different ways what produces much 

more ambiguity than that inherent in the initial profile L.  

Example 1. Let the following profile be given: L(3,3) = {1~32; 31~2; 2~31}. Then the KRP has two 

solutions: b1 = 312 and b2 = 321, both having minimal distance to the profile D(b1, L) = D(b2, L) = 5. The 

considered profile L(3,3) is shown in figure 1 as belonging to the weak order space for n = 3. !   

In order to solve the KRP we use the recursive algorithm of our own design, RECURSALL, 

implementing the branch & bound technique, allowing to find all possible Kemeny rankings for a given 

preference profile [4]. It is convenient to term the initial preference profile L(m, n) as input profile and the 

multiple optimal permutations as output profile B(N, n) = {b1, b2, ..., bN}, B Ì Pn (see figure 2). 
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Clear that special efforts to deal with the phenomenon of the KRP multiple optimal solutions, where Ns 

>> m, are needed. The rest of the paper is devoted to development of an efficient formal rule for 

convolution of the output profile into a single final consensus ranking bfin. 

 
 

 

Figure 2. Stages of the final consensus ranking determination. 

2. Convolution rule for the KRP multiple solutions 

A rule for convolution of the set of optimal permutations can be formulated as follows. Let B(N, n) = {b1, 

b2, …, bN}, B Ì Pn, be an output profile of the KRP applied to an input profile L(m, n) = {l1, l2, ..., lm} 

given over some set of alternatives A = {a1, a2, ..., an} and rank k
ir  be a position of an alternative ai in the 

consensus ranking bk Î B, k = 1, …, N. Let a total rank ri of the alternative ai is defined as 
1

N k
i ik

r r
=

= å . 

Then, for all i < j, i, j = 1, …, n,  

ri < rj Þ ai f aj and ri = rj Þ ai ~ aj,                                                    (3) 

where both relations f and ~ are in the single final consensus ranking bfin. 

Thus, the final consensus ranking may include tolerances as well as an arbitrary lk Î L, i.e. generally 

speaking, bfin = rÈt and bfin Ï Pn. 

Example 2. Table 1 and figure 3 show an example of convoluting two optimal permutations into a single 

bfin. One can see that alternatives 1, 3, 5, and 6 have different positions in two optimal solutions b1 and b2, 
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Figure 1. Toward s multiplicity of the KRP solutions: preference profile {l1, l2, l3} and consensus  

rankings b1 and b2 in the weak order space for n = 3. 
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however, their distances to the initial profile are D(b1, L) = D(b2, L) = 58. The convolution rule (3) allows 

to find their true positions in bfin, namely as in the ranking 421(35)6. !  

 

Table 1. Example of the convolution rule (3) application. 

Input profile L Output profile B Ranks of alternatives in B Final solution bfin 

l1: 1 2  6 4(3 5) 

l2: 4 5 1 2 3 6 

l3: 2(51)(34)6 

l4: (63)4 2(15) 

l5: 3 4 (26) 51                         

b1:  4  2  1  3  6  5 

b2:  4  2  5  1  3  6 

 a1 a2 a3 a4 a5 a6 
1
ir  3 2 4 1 6 5 

2
ir  4 2 5 1 3 6 

1 2
i ir r+  7 4 9 2 9 11 

 

Short form: 

4 2 1 (35) 6 

Extended form: 

a4 f a2 f a1 f a3 ~ a5 f a6                         

 

The convolution rule (3) guarantees determination of an exact single optimal permutation bfin for any 

output profile B. 

 

 

3. Convolution rule justification 

Let the output profile B(N, n) be represented by the (n´n) tournament table S = [sij], where

1
( , ), , 1,...,

N k k
ij i jk

s a a i j nr=
= =å I , is the matrix element and 

1 if  ( , )
( , )

0 if  ( , )
i j

i j
i j

a a
a a

a ar
Îrì

= í Ïrî
I  is the indicator 

function1. 

A sum of elements of i-th row of the table S is termed as the score zi of the alternative ai , i.e. for i = 1, 

…, n, 
1

n

i ijj
z s

=
= å . Then multiple permutations can be also convoluted using the scores zi as follows: for 

all i < j, i, j = 1, …, n,  

zi > zj Þ ai f aj and zi = zj Þ ai ~ aj,                                                   (4) 

where both relations f and ~ are in the single final consensus ranking bfin. 

The convolution rule (4) guarantees determination of an exact single optimal permutation bfin for any 

output profile B, and the single optimal permutation is the same as that found using the rule (3). In fact, 

the rule (4) coincides with the preference aggregation rule well known as Borda count [13]. 

                                                           
1 For the indicator function, the following statements are hold: (ai, aj) Î r Û ai f aj and (ai, aj) Ï r Û ai p aj. 

Initial profile matrix P The profile matrix re-arranged 

by consensus ranking b
1
 

Figure 3. Profile matrices from Example 2. 

The profile matrix re-arranged by 

consensus ranking b
2
 

 1 2 3 4 5 6 

1 0 6 4 6 6 4 

2 4 0 4 6 2 3 

3 6 6 0 5 5 3 

4 4 4 5 0 2 4 

5 4 8 5 8 0 6 

6 6 7 7 6 4 0 

 4 2 1 3 6 5 

4 0 4 4 5 4 2 

2 6 0 4 4 3 2 

1 5 6 0 4 4 6 

3 5 6 6 0 3 5 

6 6 7 6 7 0 4 

5 8 8 4 5 6 0 

 4 2 5 1 3 6 

4 0 4 2 4 5 4 

2 6 0 2 4 4 3 

5 8 8 0 4 5 6 

1 6 6 6 0 4 4 

3 5 6 5 6 0 3 

6 6 7 4 6 7 0 
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For any output profile B(N, n) represented by a corresponding tournament table [sij], the following 

equation is valid: 

, 1,...,i ir N n z i n= × - = .                                                             (5) 

Example 3. Table 2 shows the values of scores and rank sums calculated for the profile alternatives from 

Example 2. The alternatives are sorted in accordance with rules (3) and (4). It can be seen the fairness of 

expression (5) for these data.     

Table 2. Scores and rank sums of the output profile В from Example 2. 

Alternatives a4 a2 a1 a3 a5 a6 

Total score zi 10 8 5 3 3 1 

Total rank  ri 2 4 7 9 9 11 

N×n =  zi + ri 12 12 12 12 12 12 

 

The expression (5) can serve as a basis for justification of the convolution rule (3) validity. Indeed, let 

a social score function f assigns a nonempty choice set C Ì A to a profile B. It was proved by H.P. Young 

in [13] that “for any fixed number n of alternatives, there is one and only one social score function that is 

neutral, consistent, faithful, and has cancellation property – namely, Borda’s rule”. The properties of the 

function f listed in the Young’s statement are deemed as the set of axioms necessary and sufficient in 

order to have a fully characterized preference aggregation rule [14]. Thus, the scores zi, implementing 

Borda rule, guarantee that the rule (4) leads to convolution of the output profile В(N, n) into the exact and 

single consensus ranking bfin. It follows from (5) that social score functions f coincide for the rules (3) and 

(4).   

4. Conclusion 

It was shown in the paper that the multiple optimal permutations, i.e. the output profile B(N, n)  = {b1, b2, 

..., bN}, as solutions of the KRP for m rankings, including ties, of n alternatives can be efficiently 

transformed into an exact single final consensus ranking bfin, which can also include ties. The proposed 

convolution rule is as follows: in the final consensus ranking bfin, alternatives are arranged in ascending 

order of their rank sums calculated for the output profile B; in bfin some two alternatives are tolerant to 

each other if they have the same rank sums in the output profile. The equivalent convolution rule can be 

also applied as follows: in the final consensus ranking bfin, alternatives are arranged in descending order of 

row sums (total scores) zi calculated for a tournament table S of the output profile B; in bfin some two 

alternatives are tolerant to each other if they have the same row sums of the tournament table.  

It was also shown that, for any i-th alternative, its total rank ri and total score zi are equal in sum to a 

constant value N×n, that is the dimension of the output profile B. The convolution rules validity has been 

shown using such well known preference aggregation rule as Borda count. 
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