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Abstract. The problem of reliable processing of heteroscedastic interval data occupies an important 

niche among urgent topics of measurement science. The paper is devoted to a combinatorial charac-

terization of so called ‘inrankings’ which are weak orders induced by input intervals of the interval 

fusion with preference aggregation (IF&PA) procedure. The procedure transforms the given m initial 

real line intervals into inrankings, which are a specific case of weak order relations (or rankings) over 

a set of n discrete values belonging to these intervals. The new notation of inranking appears as a 

result of restrictions imposed on the ordinary rankings by interval character of the initial data. In the 

paper, the inranking spaces properties are investigated from the combinatorial theory point of view. 

It is shown that the inranking space is a subset of the set of all weak orders with a single symbol of 

strict order. The cardinality of inranking space is defined by the triangle number for the given number 

n of the discrete elements. Cardinalities of other adjacent spaces are considered. 

1. Introduction 

The role of interval data integration and interpretation both in theory and practice of measurement data 

fusion can hardly be overestimated [1]. Suffice it to recall an importance of the confidence interval param-

eters estimation in a traditional statistical framework with various applications both in physical and social 

sciences [2]. In this paper we deal with the problem of heteroscedastic interval data processing. Heterosce-

dasticity means observations heterogeneity manifested as changeable variance of a regression model random 

error [3]. The random errors heteroscedasticity results in ineffi-

ciency of estimates obtained using the least square method. In turn, 

this can lead to inadequate statistical conclusions on estimated 

quantity values and their quality. 

Generally, the data fusion refers to a joint processing of data on 

some object obtained from multiple sources aiming to acquire 

fuller, more objective and accurate knowledge of a characteristic 

under investigation than knowledge derived from a single source 

[1]. The interval data fusion (figure 1) can be deemed as a proce-

dure intended to find an interval to be consistent with maximal num-

ber of the initial intervals and with maximal likelihood including a 
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Figure 1. Interval data fusion. 
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representing them value x*. Existing methods of the heteroscedastic interval data fusion, such as combina-

tion of weighted mean and χ2-test [3], different versions of approval voting [4], etc. do not provide simulta-

neously a uniqueness of the fusion outcome and its robustness in terms of an independence on particular 

law of the interval data probability distribution. In [5], the paper authors have been proposed the interval 

fusion with preference aggregation (IF&PA) and have demonstrated the method outcomes’ guaranteed im-

proved robustness and accuracy by Monte Carlo experimentation. The IF&PA procedure has been success-

fully applied in inter-laboratory comparison data processing, enhancement of multisensor readings accuracy 

and providing energy-accuracy trade-off in presence of outliers in wireless sensor network [6, 7, 8].  

The IF&PA transforms the given initial real line intervals into inrankings, which are a specific case of 

weak order relations (or rankings) over a set of discrete values belonging to these intervals. The inrankings 

appears as a result of restrictions imposed on the ordinary rankings by interval character of the initial data. 

Then, for the preference profile consisting of the inrankings, the IF&PA determines a single consensus 

ranking by a Kemeny rule [6, 9]; the highest ranked value in the consensus ranking is accepted as the fusion 

result.  

The new notation of inranking possesses a series of interesting properties. In this paper, we investigate 

these properties from the combinatorial theory point of view. The properties are particularly important for 

a development of new solutions when building search techniques of the consensus ranking for a given pref-

erence profile consisting of the inrankings.   

2. Terms and notations 
Preference aggregation supposes a use of the notation of ranking (or weak order) of n elements of a set A = 
{a1, a2, …, an} in the form λ = (a1 f a2…~ as ~ at f … ~ an). The ranking λ can be described as a union, λ = 
rÈt, of the two relations: strict order ρ, i.e. ai f aj, and tolerance τ (deemed as indifference, or tie), i.e. ai ~ 
aj. Then the relation λ specifies a binary relation of weak order on the set A [10]. It is easy to show that 

1-r = l and 1 1- -t = lÇl =rÈr . Set Λ(n, m) = {λ1, λ2, …, λm} of m rankings of n elements ai, i = 1, …, 
n, is called a preference profile for m and n given. 

 
Consider a collection of m closed intervals 1{ }m

k kI =  in the real line, where each interval has a middle point 

xk, a lower bound xk – ek and upper bound xk + ek, so that Ik = [xk – ek, xk + ek]; xk, ek Î ¡. Introduce a range 

of actual values (RAV) A = {а1, а2, …, аn}, over which the strict order (inherited from the real line) a1 < a2 

< …< an exists. The discrete set A can be produced starting from the given continuous intervals 1{ }m
k kI =  in 

three steps shown in figure 2. First, RAV's lower and upper bounds are chosen, i.e. 

1 min{ | 1, ..., }k ka x k m= -e = and max{ | 1, ..., }n k ka x k m= + e = correspondingly. Then, to gene-

rate elements а2, а3, …, аn–1, the obtained interval [a1, an] is partitioned into n – 1 equal subintervals of 

length h = (an – a1)/(n – 1), and the i-th RAV's element becomes аi = аi–1 + h, i = 2, …, n. Finally, the set A 

Figure 2. Stages of conversion of a set of intervals to a preference profile. 
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= {a1 < a2 < …< an} of strictly ordered discrete values аi, i = 1, …, n, is used to shape the preference profile 

Λ(n, m) representing the initial intervals 1{ }m
k kI =  [5]. The conditions for formation of the profile are discussed 

at the beginning of next section. 

3. Inrankings and inranking spaces 

For any interval Ik, k = 1, …, m, we have k kA A A= È , k kA AÇ =Æ , where the subset Ak includes all the 

elements of A belonging to the interval Ik, and its complement Āk includes all the rest elements of A. The 

ranking induced by interval Ik will be called the inranking lk, if it satisfies the following four conditions for 

i, j = 1, …, n: 

ai Î Ak Ù aj Ï Ak Þ ai f aj;        (1) 

ai, aj Î Ak Ú ai, aj Ï Ak Þ ai ~ aj;           (2) 

ai Ï Ak Ù aj Î Ak Þ ai < aj;        (3) 

ai, aj Î Ak are neighbors Þ j º i + 1.            (4) 

Notice that the k-th ranking consists of two equivalence classes composed of elements of the sets Ak and 

Āk. Elements of the class Ak are strictly preferred over elements of the class kA , i.e. always lk = k kA Ak kA Ak kk k . 

Hence, the ranking contains a single symbol of strict order f and n – 2 symbols of tolerance ~.  Example 1. 

One of possible ranking for n = 5 could be λk = {a2 ~ a3 ~ a4 f a1 ~ a5}, where Ak = {a2 ~ a3 ~ a4}, Āk = {a1 ~ 

a5} and k kA Ak kA Ak kk k = {a2 ~ a3 ~ a4} f {a1 ~ a5}.   

For notational convenience, ranking elements will be denoted by their indexes, and subsets Ak and Āk 

will be shown by parenthesizing appropriate sets of indexes. Then the symbols f and ~ are omitted. 

Example 2.  The inranking from example 1, {a2 ~ a3 ~ a4 f a1 ~ a5}, can be concisely represented as 

(234)(15).   

The condition (4) is necessary as series of elements {ai} of the set A is strongly monotonic, i.e., ai < ai+1 

for all i Î ¥. The class Ak

 

Í A can include merely sequential subseries of elements of A without breaks, that 

is, indexes of these elements must constitute a segment of the natural series. It means that the difference of 

indexes for any two neighbor elements ai and aj in Ak cannot be larger than 1, i.e., j º i + 1. 

A concrete preference profile always consists of inrankings taken from the space of all possible ones. 

Hence, now we try to answer the question how many different inrankings exist for given n.  

Let us denote the space of weak orders via Ω0 and the space of inrankings via Ω2. We need also to 

consider the space Ω1 elements of which satisfy the conditions (1)–(3) but violate the condition (4). In fact, 

the members of Ω1 are just those having a single symbol of strict order f. Clear that  

2 1 0W ÍW ÍW ,       (5) 

for which the following expressions are valid: 

1 2 2 1 1 1 2 2

1 2 2 1

( ), , ,

| | | | | | .

W =W È W ÇW W ÇW =Æ W ÇW =Æ

W = W + W ÇW
    (6) 

The space Ω0 plays the part of universal set for the sets Ω1 and Ω2. The space Ω1 consists of the space Ω2 

of inrankings and the space of forbidden rankings f 2 1W =W ÇW . 

Cardinalities of the space |Ω0| and its subspaces |Ω1| and |Ω2| are connected to Stirling numbers of the 

second kind Sn,q that defines number of unordered partitions of n-element set into q non-empty subsets [11]: 

0 ,0
!

n
n qq

q S
=

W =å ,       (7) 
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Composition of the spaces Ω1, Ω2 and 2 1W ÇW for n = 1, …, 5, at corresponding cardinalities of Ω0 and 

Ak, is shown in table 1. It is clear from table 1 that cardinality of the inranking space |Ω2| in dependence on 

n follows the series 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, …, elements of which are called triangle numbers Tn 

[12]. A triangle number and, hence, the cardinality |Ω2| are defined by formula: 

Table 1. Composition of spaces Ω1, Ω2 and Ωf for n = 1, …, 5. 

|Ω0| |Ak| Ω1 |Ω1| Ω2 |Ω2| Ωf |Ωf| |Yk| n – |Ak| + 1 

n = 1 

1 1 1 1 1 1 Æ 0 1 1 

n = 2 

3 
1 12, 21 

3 
12, 21 

3 
Æ 

 0 
1 2 

2 (12) (12) Æ 2 1 

n = 3 

13 

1 1(23), 2(13), 3(12) 

7 

1(23), 2(13), 3(12) 

6 

Æ 

1 

2 3 

2 (12)3, (23)1, (13)2 (12)3, (23)1 (13)2 2 2 

3 (123) (123) Æ 6 1 

n = 4 

75 

1 
1(234), 2(134), 3(124), 

4(123) 

15 

1(234), 2(134), 3(124), 

4(123) 

10 

Æ 

5 

6 4 

2 

(12)(34), (23)(14), 

(13)(24), (24)(13), 

(14)(23), (34)(12) 

(12)(34), (23)(14), 

(34)(12) 

(14)(23), (13)(24), 

(24)(13) 
4 3 

3 
(123)4, (134)2, (124)3, 

(234)1 
(123)4, (234)1 (124)3, (134)2 6 2 

4 (1234) (1234) Æ 24 1 

n = 5 

541 

1 

1(2345), 2(1345), 

3(1245), 4(1235), 

5(1234) 

30 

1(2345), 2(1345), 

3(1245), 4(1235), 

5(1234) 

15 

Æ 

16 

24 5 

2 

(12)(345), (13)(245), 

(14)(235), (15)(234), 

(23)(145), (24)(135), 

(25)(134), (34)(125), 

(35)(124), (45)(123) 

(12)(345), (23)(145), 

(34)(125), (45)(123) 

(13)(245), 

(14)(235), 

(15)(234), 

(24)(135), 

(25)(134), 

(35)(124) 

12 4 

3 

(123)(45), (124)(35), 

(125)(34), (134)(25), 

(135)(24), (145)(23), 

(234)(15), (235)(14), 

(245)(13), (345)(12) 

(123)(45), (234)(15), 

(345)(12) 

(124)(35), 

(125)(34), 

(134)(25), 

(135)(24), 

(145)(23), 

(235)(14), 

(245)(13) 

12 3 

4 

(1234)5, (1235)4, 

(1245)3, (1345)2, 

(2345)1 

(1234)5, (2345)1 
(1235)4, (1245)3, 

(1345)2 
24 2 

5 (12345) (12345) Æ 120 1 
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( ) ( )2 1,
1

( 1) 1 1
( ) .

2 12

n

n n n k i
i

n n n n
T S A

n +
=

+ + +
W = = = = = =

- å      (8) 

The cardinality |Ωf| of the space of forbidden rankings is defined by equation: 

f 2 1| | | | 2 1 ( 1) / 2n
nF n nW = W ÇW = = - - + .                      (9) 

Evidently, the cardinality |Ω1| is defined by 

1 ,22 1 2 1n
n n nT F SW = + = + = - .           (10) 

It follows from equations (8)–(10) that numbers Tn can be found among Stirling numbers of the second 

kind and in Pascal triangle [11, 13].  

4. Inranking Generating Sets 

Inrankings, as well as any weak orders, are shaped of sets of strict orders. Let us demonstrate this by a 

simple example. 

Example 3. Given two strict orders r1 = 213 and r2 = 231. Then lying between them (generated by them) 

weak order is λk = 2(13) or in extended notation λk = {a2 f a1 ~ a3}.   

Designate the permutations set of elements of Ak through 1 | |!{ , ..., }
k

AP = p p , and the permutations set of 

elements of kA  through 1 | |!{ , ..., }
k

A
¢ ¢ ¢P = p p . 

The set of strict orders { }k
k gY = r , g = 1, …, | |! | |!k kA A× , will be called a generating set for an inrank-

ing k k kA Al = kA Akk  if {( , ) | , }k u v u vv¢ ¢ ¢ ¢Y =P´P = p p p ÎP p ÎP , where the Cartesian product’s element 

( , )u v¢p p  is deemed as a result of concatenation operation r = up ¸ v¢p  of two permutations up  and v¢p . 

Example 4. Let λk = (234)(15). Then the generating set Yk consists of |Yk| = 3!·2! = 12 following strict 

orders rg, g = 1, …, 12: 23415, 23451, 24315, 24351, 32415, 32451, 34215, 34251, 42315, 42351, 43215, 

43251.   

Given cardinality |Ak|, at any n, the number of generating sets is defined by the expression (n – |Ak| + 1). 

Hence, the total number of generating strict orders for all possible inrankings can be calculated as 

( ) | |! | |! ( | | 1)k k k kN A A A n A= × × - + .      (11) 

One can claim that for given n a union of generating sets for |Ak| = 1 coincides with the single generating 

set for |Ak| = n!. All possible cardinalities | |! | |!k k kA AY = ×  and (n – |Ak| + 1) for different |Ak| and n = 1, 

…, 5 are shown in the ninth and tenth columns of table 1 correspondingly. 

The introduced notations can be illustrated using permutohedra. Figure 3 shows the space of all strict 

orders for n = 5 and the space W2 of all corresponding inrankings. For clarity, we use five permutohedra 

which are truncated octahedra with central nodes corresponding to inrankings 1(2345), 2(1345), 3(1245), 

4(1235) and 5(1234). There are shown only links between inrankings and facet centers of permutohedra 

containing weak orders. Inranking designations are shown with bold font. Each of the truncated octahedra 

represents a generating set for inrankings with | |kA = 1. In color there are shown subsets of the generating 

sets belonging to the permutohedron for  inrankings at | |kA = 2, 3, 4. 

Figure 4 shows the generating set for the inranking λk = (234)(15) discussed in examples 1–4. One can 

see that centers of edges and facets of permutohedra correspond to weak orders. As above, there are shown 
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only links between facet centers of permutohedra and the inranking (234)(15). The number of permutohedra 

is defined by the cardinality | |kA  = 3.  

 
 

Figure 3. The space of all strict orders for n = 5 and the space W2 of all corresponding inrankings. 

5. Conclusion 

It is shown that produced by the IF&PA procedure inranking space is a subset of the set of all weak orders 

with a single symbol of strict order. The cardinality of inranking space is defined by the triangle number for 

the given number of the discrete elements of the RAV. Knowing properties of the spaces can help to rec-

ommend an effective mode of the interval data fusion applications. The properties are particularly important 

for improvement of search techniques of the consensus ranking for a given preference profile consisting of 

the inrankings. 
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Figure 4. Generating set for the inranking λk = (234)(15). 
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