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Abstract A novel glycosyl donor with a triisopropylsilyl (TIPS) nonpar-
ticipating group at O-2 is introduced for use in 1,2-cis-galactosylation.
Coupling the 2-O-TIPS-substituted thiogalactoside donor with a series
of mono- and disaccharide glycosyl acceptors was found to lead exclu-
sively to α-linked oligosaccharides. The observed exceptionally
high α-selectivity was interpreted in terms of conformational changes
in the glycosyl cation induced by the bulky 2-O-TIPS group.

Key words glycosylation, stereoselectivity, stereoselective synthesis,
conformation, protecting groups, triisopropylsilyl group, 4-(3-chloro-
propoxy)phenyl glycosides

Many naturally occurring biologically important glyco-

conjugates contain 1,2-cis-linked galactose.1 α-Galactosyl-

ceramide [Galα(1→1)Cer],2 known as KRN7000,3 and isoglo-

botrihexosylceramide [Galα(1→3)Galβ(1→4)Glcβ(1→1)Cer,

iGb3] are attractive synthetic targets for the treatment of

microbial infection, cancer, and autoimmune diseases.4 Gly-

cosphingolipids of the globo series [Galα(1→4)Galβ(1→4)Glcβ

(1→1)Cer] are present in the membrane of human erythro-

cytes as antigens and are recognized by antibodies of the P

blood-group system and various bacterial proteins.5 α-Ga-

lactosyl-containing glycotopes of the parasite Trypanosoma

cruzi are potential diagnostic antigens for Chagas disease.6

Development of new methodologies for chemical glyco-

sylation has emerged as an active area of research.7–9

Achievement of 1,2-cis stereoselectivity of glycosylation re-

lies on the use of nonparticipating protection, usually a

benzyl group, at O-2 in the molecule of glycosyl donor. The

effect of remote participation of acyl groups in benzylated

galactosyl donors on the result of glycosylation is well

known.10–13 However, this effect is not the single driving

force for achieving α-selectivity of galactosylation, which

depends on many factors such as the influence of the leav-

ing group13 in the glycosyl donor, the nature of the glycosyl

acceptor,14 and temperature or solvent. In spite of signifi-

cant progress in this field, achieving complete stereocontrol

over 1,2-cis galactosylation still remains an unsolved prob-

lem in this evolving area of carbohydrate chemistry.

It is important to note that synthetic routes circumvent-

ing a hydrogenolysis step, often used for removal of benzyl

protecting groups, are especially attractive for the prepara-

tion of glycosphingolipids containing 1,2-cis-linked galac-

tose and unsaturated moieties in the aglycone. Kiso and co-

workers discovered15 α-directed galactosylation with galac-

tosyl imidate 1 equipped with a di-tert-butylsilylene

(DTBS) group (Figure 1).

Figure 1  Known DTBS-containing galactosyl donors 1 and 2

This α-directing effect of the DTBS group is observed

even in the presence of participating groups at C-2 (OBz,

NPhth, NHTroc).16 A related thioglycoside 2 was tested for

the synthesis of Galα(1→2)Gal ceramide.17 Glycosyl donors

with 2-naphthylmethyl (NAP)18 and p-methoxybenzyl

(PMB)19 nonparticipating groups at O-2 were also used for

α-galactosylation.

Our current research is aimed at developing a benzyl-

free strategy proposed by us previously20,21 for assembling

complex oligosaccharides with 1,2-cis linkages, which ex-
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cludes a hydrogenolysis step and therefore facilitates the

preparation of compounds with groups sensitive to hydro-

genation. In this communication we report α-D-galacto-

sylation using the novel benzyl-free galactosyl donor 7
(Scheme 1) with TIPS protecting group at O-2 and benzoyl

groups at O-3, O-4, and O-6.

Scheme 1  Synthesis of thiogalactosides 7 and 8. Reagents and condi-
tions: (a) Me2C(OMe)2, CSA, 20 °C, 24 h; (b) TIPSCl, NaH, THF; (c) 80% 
AcOH, 80 °C, 1 h (52% of 6 over three steps starting from 3); (d) BzCl, 
pyridine, 0 °C to 20 °C, 12 h (70% of 7); (e) BzCl, pyridine, СH2Cl2, 0 °C 
to 20 °C, 0.5 h (75% of 8); TIPS = (i-Pr)3Si, Bz = PhCO.

Synthesis of galactosyl donor 7 started from the known

ethyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methyleth-

yl)-1-thio-β-D-galactopyranoside (4),22 which can be easily

obtained from the known ethyl 1-thio-β-D-galactopyrano-

side (3)23 in neat 2,2-dimethoxypropane using the well-es-

tablished procedure24 for exhaustive acetalization that is

based on detailed studies of equilibria in the reaction solu-

tion25 (Scheme 1). The TIPS group was introduced by silyla-

tion of O-2 in mixed acetal 4 with TIPSCl in THF using NaH

as the base (4→5). It should be noted that a related silyla-

tion of 4-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-me-

thoxy-1-methylethyl)-β-D-galactopyranoside with TIPSCl

in the presence of imidazole in DMF proceeds with similar

efficiency (53% yield) although requires a higher tempera-

ture (60 °C) and longer reaction time (62.5 h).26 Acidic

cleavage of the isopropylidene acetals led to triol 6. De-

pending on the conditions of benzoylation, we were able to

prepare either tribenzoate 7 or dibenzoate 8 with a hydroxy

group at O-3 (Scheme 1). The remaining hydroxyl at C-3 in

partially protected dibenzoate 8 may be used for further

functionalization if required. It is interesting to note that

benzoylation of ethyl 1-thio-2-O-triisopropylsilyl-β-L-fuco-

pyranoside also gave either dibenzoyl or monobenzoyl de-

rivatives.21

We tested the applicability of this galactosyl donor 7 in

1,2-cis galactosylation of model glycosyl acceptors protect-

ed exclusively with O-benzoyl groups (that are fully com-

patible with a benzyl-free strategy20,21). Thus, for the cur-

rent study we used the known methyl galactosides 9–12
containing free hydroxy groups at C-2,27 C-3,28 C-4,29 or

C-630 (Figure 2, Scheme 2 and Scheme 3) and novel O-ben-

zoylated 4-(3-chloropropoxy)phenyl (CPP) lactosides 24
and 26 with free hydroxy groups at C-4′ or C-3′, respectively

(Scheme 4 and Scheme 5).

Figure 2  Galactosyl acceptors 9–12

Coupling31 of galactosyl donor 7 with primary alcohol 9
promoted by NIS–TfOH system (Scheme 2) resulted in ex-

clusively α-linked disaccharide 13, isolated in 83% yield af-

ter gel chromatography. Glycosylation of galactosyl accep-

tors 10 and 11 with hydroxy groups at C-2 or C-3 by galac-

tosyl donor 7 promoted by a milder NIS–AgOTf system

(Scheme 2) also led to only α-linked disaccharides 14 and

15, respectively, isolated in high yields after gel chromatog-

raphy (Scheme 2).

Scheme 2  Glycosylation of alcohols 9–11 with galactosyl donor 7. Re-
agents and conditions: (a) 1. NIS, TfOH, CH2Cl2, MS 4 Å, –40 °C to –20 °C, 
then 12 h at –20 °C; 2. Gel chromatography on Bio-Beads S×3, toluene 
(83% of 13); (b) 1. NIS, AgOTf, CH2Cl2, MS 4 Å, –40 °C to –25 °C, then 1 
h at –25 °C; 2. Gel chromatography on Bio-Beads S×3, toluene (14 
(84%) or 15 (82%)).

Glycosylation of galactosyl acceptor 12 with a hydroxy

group at C-4 by galactosyl donor 7 promoted by NIS–TfOH

system (Scheme 3) gave the expected α-linked disaccharide

16, isolated in 70% yield, along with a small amount of di-

saccharide 17 (5%) resulted from an unusual ring contrac-

tion of the galactosyl acceptor 12 during the course of the

glycosylation.
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Scheme 3  Glycosylation of alcohol 12 with galactosyl donor 7. Reagents 
and conditions: (a) 1. NIS, TfOH, CH2Cl2, MS 4 Å, –40 °C to –20 °C, then 
12 h at –20 °C; 2. Gel chromatography on Bio-Beads S×3, toluene; 3. 
chromatography on SiO2 (70% of 16 and 5% of 17).

We then tested the applicability of galactosyl donor 7 in

the synthesis of protected trisaccharides 27 and 28 corre-

sponding to glycosphingolipids of the globo and isoglobo

series and bearing a 4-(3-chloropropoxy)phenyl (CPP) agly-

cone, which is a homologue of the known20d,32 4-(2-chlo-

roethoxy)phenyl (CEP) aglycon. The CPP group may be con-

sidered as a multipurpose aglycone with dual function,

which can easily be removed by oxidation (as with the 4-

methoxyphenyl group) or, alternatively, functionalized af-

ter replacement of the chlorine atom with an azido group

(as with ω-chloroalkyl aglycones) to give an 4-(3-azido-

propoxy)phenyl group that may be used in click chemistry.

On the other hand, the azide may be directly converted into

an amine. These opportunities can be further used for the

preparation of a wide range of neoglycoconjugates.33

The β-anomer of lactose octaacetate 1834 was glycosi-

dated with 4-(3-chloropropoxy)phenol35 (CPP-OH) in the

presence of BF3·OEt2/Et3N 36 to afford glycoside 19. Lactosyl

acceptor 24 with an unprotected hydroxy group at C-4′ was

obtained from 19 using the following standard steps essen-

tially as described previously37 (Scheme 4): removal of the

O-acetyl groups (19→20), installation of 4′,6′-O-ben-

zylidene protection (20→21) with subsequent O-benzoyla-

tion (21→22), removal of the 4′,6′-O-benzylidene group un-

der acidic conditions (22→23) and selective O-benzoylation

(23→24). The possibility of direct one-step transformation

of 22 to 24 by regioselective opening of 4′,6′-O-benzylidene

acetal under oxidative conditions (dimethyldioxirane)38

was not explored. There are a few methods39–41 for the

preparation of O-benzoylated lactosyl glycosides with a hy-

droxyl group at C-3′ including a recently proposed42 ap-

proach for O-benzoylation of the axial hydroxy group in

vicinal cis-diols. Diol 25, readily available from 20, was con-

verted via intermediate formation of its orthoester into lac-

tosyl acceptor 26 with the hydroxy group at C-3′.

Coupling of galactosyl donor 7 with lactosyl acceptor 24
bearing the hydroxy group at C-4′ promoted by NIS–TfOH

system afforded exclusively α-linked trisaccharide 2743 iso-

lated in 89% yield after gel chromatography (Scheme 5). Our

data compare well with the previous results for glycosyla-

tion of lactosyl acceptors with a phenylthio aglycone, a hy-

droxy group at C-4′ and O-benzoyl groups at the other posi-

tions, by DTBS-containing galactosyl imidate 137 or 2,3,4,6-

tetra-O-benzyl-β-D-galactosyl fluoride.44
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Glycosylation of lactosyl acceptor 26 with a hydroxy

group at C-3′ promoted by a milder NIS–AgOTf system also

afforded exclusively the α-linked trisaccharide 28, isolated

in 84% yield after gel chromatography (Scheme 5).

Having established the efficacy of the galactosyl donor

7, there remains the important question concerning the un-

derlying reasons for such a high α-selectivity, which ap-

pears to be counterintuitive as syn attack of the nucleo-

phile, occurs, with respect to the exceptionally bulky TIPS

group at O-2.

A common theme in discussions on achieving 1,2-cis

stereoselectivity of galactosylation involves appealing to

stereocontrol by participation of remote acyl groups (at O-

4, O-6, and sometimes at O-3) in otherwise benzylated ga-

lactosyl donors; although it is accepted that other factors

may dominate.10–14 In connection with this, it should be

noted that the few known examples of galactosyl donors

with benzyl-type protecting groups at O-2 and O-benzoyl

groups at all other positions (as with 7) suggest moderate

1,2-cis selectivity; although the ‘participating’ O-benzoyl

groups are present.45,46 Thus, in galactosylation by 3,4,6-tri-

O-benzoyl-2-O-benzyl-α-D-galactopyranosyl chloride for-

mation of the desired α-linked glycoside (61%) was accom-

panied by formation of substantial amounts of the β-linked

glycoside (19%).45 The proper choice of solvent was critical

to the stereochemical outcome of galactosylation with

methyl 3,4,6-tri-O-benzoyl-2-O-(4-methoxybenzyl)-1-thio-

β-D-galactopyranoside, and the desired α-linked galacto-

side could be formed only when diethyl ether was used as

the solvent, while glycosylation in dichloromethane gave

the unwanted 1,2-trans isomer.46 For this reason, the high

1,2-cis selectivity observed in reactions with galactosyl do-

nor 7 (which has an almost identical protecting group pat-

tern) in dichloromethane cannot be explained by remote

participation of the O-benzoyl groups. Moreover, our previ-

ous study21 of the closely related 2-O-TIPS-substituted thio-

fucosyl donors with O-acyl groups at remote positions re-

vealed that no remote participation by acyl groups at O-3

and O-4 seemed to be required to favor α-selective fuco-

sylation with 2-O-TIPS-substituted glycosyl donors, since

complete α-selectivity was also observed for glycosyl do-

nors with nonparticipating12 O-trifluoroacetyl groups.

Apart from invoking remote participation, the known

methods for controlling glycosylation stereochemistry are

based on locking the glycosyl cation conformation by for-

mation of an additional cycle (for example, by introduction

of a silylene (Figure 1) or benzylidene protecting group).7,8

We propose that a similar fixation of the conformation of

the glycosyl cation (as in the case of formation of an addi-

tional cycle) can be achieved by introducing the bulky TIPS

group at O-2 which would prefer a quasi-equatorial orien-

tation in the glycosyl cation (which becomes locked in the
4H3 conformation), so that syn attack of a nucleophile (lead-

ing to 1,2-cis product) would be favored (Scheme 6). This

hypothesis is indirectly supported by our previously pub-

lished results on the use of a TIPS group at O-2 of a glycosyl

donor for stereoselective 1,2-cis glycosylation in the syn-

thesis of D-arabinofuranosides20 with a conformationally

mobile five-membered furanose ring, as well as in the case

of L-fucopyranose (6-deoxy-L-galactopyranose) deriva-

tives21 with a more rigid six-membered pyranose ring. The

beneficial effect of a single silylation of O-2 in glycosyl do-

nors seems to be more or less general since the α-selectivi-

ty of glycosylation by thioglycoside donors with the gluco-

configuration was reported to increase if 2-O-TBS or 2-O-

TIPS groups were present.47 It is important to note that a

larger number of bulky silyl (especially TIPS) groups in a

glycosyl donor does not result in higher 1,2-cis stereoselec-

tivity of glycosylation,48 although it increases the reactivity

of the glycosyl donor.49

Scheme 6  Conformational changes in glycosyl cation induced by the 
bulky 2-O-TIPS group may favor syn attack of a nucleophile leading to 
1,2-cis product

In conclusion, our study has demonstrated that glycosyl

donor 7 with one TIPS protecting group at O-2 and O-ben-

zoyl groups at other positions can be used for efficient for-

mation of α-glycosidic linkages with galactose. The ob-

served exceptionally high α-selectivity may be a conse-

quence of the stereoelectronic effects associated with

conformational changes in the glycosyl cation induced by

the bulky 2-O-TIPS group.
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