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Abstract. Results of the development of protective chromium-containing coatings based on the 

FeCrNi and CrNi systems for fuel claddings within framework of the accident tolerant fuel 

(ATF) are presented in this paper. Coatings were deposited by the outer surface of cladding 

tubes fragments from E110 o.ch. alloy (sponge-based Zr-1%Nb) up to 500 mm length by 

complex ion-plasma treatment on ILUR-03 and KVK-10 installations. The results of the 

control tests carried out in high-temperature steam at the GAZPAR bench at 1200 ºC up to 400 

s showed that Cr-FeCrNi-Cr and Cr-CrNi-Cr coatings reduce total oxygen penetration into the 

alloy from 144 to 98 and 55 μm, respectively and Cr-CrNi-Cr coatings with a Mo barrier layer 

completely block the diffusion of oxygen into the material. 

1. Introduction 

One of the priority tasks of the world energy industry is to increase the lifetime of structural materials 

in WWER and PWR reactors cores in emergency conditions to increase safety level of its operation. 

Among the possible ways to improve fuel claddings to create the so-called tolerant fuel (ATF), stable 

in loss-of-coolant-accidents (LOCA), modification of surface layer of the material and protective 

coatings deposition by ion-plasma technologies is one of the most effective and technologically 

method. Researchers from different countries use various elements, alloys and compounds, such as Si, 

Cr, Al-Zr, FeCrAl, FeCrNi, TiAl, TiN, CrN, ZrN, however, chromium-containing coatings are 

mentioned as the most promising [1-5]. 
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2. Materials and tools 

Fragments of fuel claddings an external diameter of Ø9.1 mm and Ø9.5 mm up to 500 mm length 

made of alloy E110 o.ch. (sponge-based Zr-1% Nb) were used as samples for this research. Coatings 

were deposited by complex ion-plasma treatment on the ILUR-03 and KVK-10 installations (NRNU 

MEPhI, Department No. 9) operating in a semi-automatic mode [6, 7]. The treatment included the 

sequential execution of a series of operations: preliminary activation of the surface of Ar
+
 ion beams 

E<1 keV; layer-by-layer deposition of coatings using magnetron sputtering systems; intermediate 

processing of Ar
+
 ions with energies up to 35 keV using KVK-10 for surface doping with ion mixing 

mode [8, 9]. 

During processing at the ILUR-03 installation, shown at Figure 1 (a), the tubular sample was 

placed horizontally and sequentially moved through a vacuum chamber with an ion source into a 

chamber with 3 magnetrons mounted in the radial direction. In the KVK-10 installation, shown at 

Figure 1 (b), the samples are mounted vertically in a 6-seat cassette, which is placed in a vacuum 

chamber with 2 ion sources, 3 magnetrons and a high-energy ion implanter mounted on the periphery. 

The uniformity of processing is ensured by the stable operation of the devices, as well as by the 

control of the axial rotation speeds and the movement of the samples. 

 

a)  b)  

Figure 1. Photos of installations for complex ion-plasma surface treatment of materials ILUR-03 (a) 

and KVK-10 (b). 

 

Corrosion testing of samples were carried out on the GAZPAR stand (LUCH FSUE) by isothermal 

exposure in water steam at 1200 ºС and subsequent cooling of the samples in argon atmosphere at 

least with 20° C·s
-1

 according to the procedure described in [10]. The corrosion degree was estimated 

by the specific weight gain and the local oxidation depth (ECR, %), which was calculated as the 

relative thickness of the zirconium layer, which would turn into oxide, provided that all the absorbed 

oxygen went into the formation of stoichiometric zirconium oxide ZrO2. 

The surface topography and the transverse structure of the samples in initial state and with coatings 

before and after high temperature tests were studied in scanning electronic microscopes 

Carl Zeiss EVO 50 and JEOL JSM-6610LV (resolution up to 3 nm). Both devices are equipped with 

X-ray microanalysis consoles for investigation of the elemental composition surface of the samples 

using an energy dispersive detector (EDS, Inca X-act) and a wave dispersive detector (WDS, Inca 

Wave 500). 

3. Results and discussion 

As preliminary experiments results shown (Figure 2) chrome coatings are prone to cracking and 

destruction under the influence of internal stresses arising during high-temperature oxidation in water 

steam due to thermal expansion and α → β phase transformation in zirconium at ~800 ºС, due to the 

natural fragility of chromium. Among the disadvantages of chromium coatings, one should also note 



17th International School-Conference "New Materials: Advanced Technologies"
IOP Conf. Series: Materials Science and Engineering 1005  (2020) 012009

IOP Publishing
doi:10.1088/1757-899X/1005/1/012009

3

 

 

 

 

 

 

the relatively high diffusion rate of Cr in Zr and the presence of a eutectic reaction at 1332 °C with, a 

brittle ZrCr2 phase forming. In this regard, more plastic compositions of FeCrNi and CrNi in various 

element ratios were used as the basis of coatings in this work. 

а)  b)  

Figure 2. The destruction of chromium coatings on samples of alloy E110 o.ch. after high-

temperature oxidation in pairs (HTO): a – 800 ºС, 5000 s (coating thickness 8-10 μm, SEM image), b 

– 1000 ºС, 5000 s (coating thickness 2-4 μm, optical image). 

As can be seen from Figure 3, the coatings deposited had a characteristic multilayer structure. The 

total thickness of the protective layer in different modes was ~ (2–10) μm. 

a)  b)  

c)  

 

 

 

 

Figure 3. SEM images of the transverse structure of 

alloy samples E110 o.ch. with coatings Cr-FeCrNi-Cr 

(a), Cr-CrNi-Cr (b) and Cr-CrNi-Cr with the Mo (c) 

sublayer: darker layers correspond to an increased Cr 

content. 

 

Analysis of the transverse structure of samples from alloy E110 o.ch. after oxidation at 1200 ºС 

with 500 s exposure showed that the structural phase state of the material is characterized by the 

presence of three distinct zones, which is consistent with the known results of other researchers [11]: 

ZrO2 oxide zones near the outer and inner surfaces; an intermediate diffusion zone of α-Zr(O), which 

is essentially a solid solution of oxygen in zirconium stabilized in the α phase; “live” cross-section 

ex.β-Zr sample not affected by corrosive oxygen. 

Oxide film on all samples has homogeneously dark gray color with no visible signs of destruction 

or shedding. As can be seen from Figure 4, the oxide layer on Zr-1% Nb alloy samples without 

coatings and with Cr-FeCrNi-Cr coatings has approximately the same thickness of 52±5 μm. There is 
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no thick oxide layer on samples with Cr-CrNi-Cr coatings and Cr-CrNi-Cr coatings with the Mo 

sublayer which indicates their high protective properties. It was shown that the presence of any 

coatings under study makes the α-Zr(O) zone structure more uniform and coarse-grained. Its thickness 

decreases from 85±5 μm for samples without coatings to 44±5 μm for samples with Cr-FeCrNi-Cr 

coatings and 33±5 μm for samples with Cr-CrNi-Cr coatings. No oxygen diffusion zone α-Zr(O) was 

detected on the samples with Cr-CrNi-Cr coatings and a Mo sublayer. It should be noted that samples 

with Cr-FeCrNi-Cr coatings have a weight gain of 12.0±0.5 mg·cm
-2

, which is larger than that on the 

samples in the initial state 10.9±0.2 mg·cm
-2

, which is associated with the active oxidation of coating 

elements, in particular Fe. Samples with Cr-CrNi-Cr coatings and Cr-CrNi-Cr coatings with the Mo 

sublayer have a significantly smaller gain of 6.6±0.5 mg·cm
-2

 and 6.1±0.5 mg·cm
-2

, respectively. 

а)  b)  

c)  d)  

Figure 4. SEM images of the transverse structure of E110 o.ch. samples in the initial state (a) and with 

the coatings Cr-FeCrNi-Cr (b), Cr-CrNi-Cr (c) and Cr-CrNi-Cr with the Mo sublayer (after corrosion 

tests 1200 ºС 400 s: arrows indicate the α-Zr(O) region. 

Elemental analysis of samples with Cr-FeCrNi-Cr coatings showed that the coating atoms are 

noticeably redistributed over the cross section of the sample as a result of exposure at high temperature 

in water steam. Fe and Cr atoms shown noticeably dissolving in the alloy under the oxides, along with 

participation in the formation of (FeCrNi)Ox, Cr2O3, FemOn oxides, and thereby slow down the 

diffusion of oxygen deep into the material, inhibiting oxidation, which can be seen from Figure 5. 

Moreover, an increased concentration of chromium atoms is observed up to depths of 100-120 μm, 

and iron - up to 200-300 μm, and then the signal goes to background values. 

There are characteristic multiphase structures near the surface of the E110 o.ch. alloy shown at 

Figure 6, formed as a result of intense diffusion motion of atoms from the Cr-CrNi-Cr and Cr-CrNi-Cr 

coatings with the Mo sublayer: a dense Cr2O3 layer near the outer surface and transition regions with 

different contents of Zr, Cr, O, Mo (Tables 1 and 2), in particular, ZrCr2 precipitates under that are 

found. 
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Figure 5. Fe, Cr, O distribution over 

the depth of a sample coated with Cr-

FeCrNi-Cr after oxidation in steam at 

1200 °C for 400 s: the arrows indicate 

the interface between ZrO2, α-Zr(O), 

ex.β-Zr and the maximum penetration 

of Fe atoms (X-ray microanalysis 

data). 

а)   b)  

Figure 6. Transverse structure of the E110 o.ch. alloy sample coated with Cr-CrNi-Cr (a) and Cr-

CrNi-Cr with the Mo (b) sublayer after the HTO 1200 ºС 400 s: the numbers show the elemental 

composition measurement ranges in tables 1 and 2 respectively. 

Table 1. The elemental composition of various regions of E110 o.ch. sample with Cr-CrNi-Cr coating 

after HTO 1200 ºС 400 s.  

Measurement area 
Element content, % 

O Cr Zr 

1 – Cr2O3 33.8 65.8 0.0 

2 – Cr + Zr 0.0 98.0 2.0 

3 – ZrCr2 + О
 

1.2 50.7 45.9 

 

Table 2. The elemental composition of various regions of E110 o.ch. sample with Cr-CrNi-Cr coating 

and Mo sublayer after HTO 1200 ºС 400 s. 

Measurement area 
Element content, % 

O Cr Zr Mo 

1 – Cr2O3 35.6 64.4 0.0 0.0 

2 – Cr + Zr 0.0 96.2 0.6 3.2 

3 – Cr + Zr + Mo 0.0 37.9 48.4 13.7 
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Thus, the Mo barrier layer between E110 alloy and coating Cr-CrNi-Cr inhibits the dissolution of 

coating elements in sample material and blocks penetration of oxygen from high-temperature steam 

deep into the cladding effectively, preventing brittle α-Zr(O) phase formation. It became possible to 

save more than 100 μm of cladding live section in comparison with samples without coatings, which is 

clearly seen from Figure 7. 

 

 

 

 

 

 

 

 

 

Figure 7. Schematic dependence of 

the cladding from E110 o.ch. live 

cross-section, retained after high-

temperature oxidation in steam at 

1200 °C for 400 s, depending on 

the type of coating deposited. 

4. Conclusion 

Protective coatings Cr-FeCrNi-Cr and Cr-CrNi-Cr for cladding tubes from E110 o.ch. alloy, 

effectively inhibit the oxygen penetration deep into the material during high-temperature tests at 

1200 ºС with a up to 400 s exposure have been developed. It was shown that use of the Mo barrier 

layer allows to block oxygen diffusion and prevent the dissolution of coating elements in the sample 

material, thereby preserving more than 100 μm of the cladding live cross section. 
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