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Introduction 
One of the most complicated and challenging problems for rendering realistically looking terrain is water 
simulation. Below are some popular methods to perform this task: 

1. Procedural water. It simulates the visual effects of water surface, but not the water physics. 
This approach is suitable for large unbounded surfaces simulation, such as oceans. The most realistic results 
were obtained by J. Tessendorf in 2004. 

2. Smooth particle hydrodynamics. In this method water is represented by set of particles; the 
approach perfectly fits for simulating spray, splashing, and runnels. It is computationally expensive and not 
suitable for simulating rivers, lakes and oceans. 

3. Height fields. The method represents water surface as a 2D-function ( , )z f x y . The 

advantage of this approach is transition from 3D-volume to 2D-surface, and, as a consequence, reduction of 
computational complexity. However, there is no possibility to simulate breaking waves, because at each 
point of surface there is only one height value. 

The above methods have some advantages and disadvantages; it is necessary for a researcher to make 
the appropriate choice of the method according to the task, programming, mathematics skills and hardware 
resources. 

 
Task 

Our task is to develop a water model to be used on Interactive Sandbox, an installation for real-time 
terrain generating [4]. A good-looking and physically correct liquid model will add realism and functionality 
to the installation. 

For our purpose, we need the water model, which satisfies the conditions below: 
1. it provides realistic appearance of water; 
2. water interacts with terrain and adapts to its changes in real time;  
3. it is computationally as inexpensive as possible. 
4. it allows simulating other liquids, for example, volcanic lava. 
 

Shallow water equations 
Shallow water equations (also called Saint Venant equations) are a set of hyperbolic partial 

differential equations describing the dynamics of a thin fluid surface in terms of its height and flow.  
 

 
Figure 1. Shallow water equations 

 
Here h is the water depth, hu is the discharge along the x-axis, hv is the discharge along the y-axis, g 

is the gravitational constant, and B is the bathymetry (see Figure 1).  

 
Figure 2. Variables for shallow water equations in 1D 
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The usage of shallow water equations has some limitations. As mentioned above we cannot simulate 
breaking waves and splashing particles, however, this method is perfect for modelling water domains whose 
surface area is much greater than its height. With the help of shallow water equations we can simulate not 
only small lakes, rivers, puddles, pools and ponds but also large surfaces of water. 

 
Numerical scheme 

We are interested in a simple, accurate, and robust numerical method for the Saint-Venant system. A 
good numerical method for the system should accurately capture both the steady states and their small 
perturbations (quasi-steady flows). From practical point of view, one of the most important steady-state 
solutions is a stationary one (lake at rest): 

 
u=0, h+B=Const. 

 
Methods having this property are called well balanced. 
In addition, the method should handle dry (h = 0) or near dry zones (positivity preserving property). 

In these cases, due to numerical oscillations, h can become negative and all computations can simply break 
down. 

Such a method which is both well-balanced and positivity preserving was suggested by A. Kurganov 
and G. Petrova in 2007 [2]. The system of differential equations is discretized on a regular Cartesian grid 
using the so-called central upwind scheme (Figure 3): 

 

 
Figure 3. Central upwind scheme of discretization 

 
Here ( )j tU  is a two-component vector of conserved quantities w and hu (three-component vector in 

case of 2D), where w is a sum of water height and bathymetry height at the point, and hu is the discharge 
along the x-axis. ( )j tS is an appropriate discretization of the cell averages of the source term, and 1/2( )j tH

is a central-upwind numerical flux along the x-axis. 
After obtaining all necessary values, this system can be solved using a second order stability 

preserving Runge-Kutta method. 
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where ( )jR U  is the right part of equation in Figure 3. 

 
Implementation using GPU 

Unfortunately, implementation of Kurganov-Petrova scheme on CPU does not give us satisfactory 
results. Intel Core i5 processor can calculate only 50 vertices in each direction with acceptable frame rate (30 
frames per second). This is not enough for two reasons: firstly, the surface is not smooth and does not look 
good enough, and, secondly, Kinect sensor that is used in Interactive sandbox produces the height map with 
resolution at least 320 x 240 points, so we need to obtain the appropriate resolution in water calculations.  

GPUs have in recent years developed from being hardware accelerators of computer graphics into 
high-performance computational engines.  

In our case we can use computations on GPU to implement Kurganov-Petrova scheme in parallel. We 
divide the entire algorithm into four stages. At each stage we perform calculations for each vertex 
independently from others. That is exactly how GPU can be used in non-graphic computations.  

To implement the algorithm we use graphics API OpenGL and its feature called Frame buffer object. 
We use the first program to perform the first stage of algorithm in parallel for each vertex (the program 
performed on GPU is called shader). Then this data is used to fill the texture which can be used at the 
second stage. After all four stages proceed, we obtain the solution, which includes water height at this point, 
and use this value to render water surface. 
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Visualization 
To visualize the liquid surface we use some well-known and not very computationally expensive 

techniques, which, nevertheless, give very good results. 
1. To compute lighting we use standard ADS-model (which divides the light into three components – 

ambient, diffuse and specular); 
2. We use skybox texture to simulate the effect of real environment around the scene. 
3. For water to look realistically we use reflections of skybox and of terrain part which is above the 

water surface. To perform this we render the scene with terrain into the texture and then apply this texture to 
the water to obtain reflection. 

4. As in real life, in our implementation water transparency depends on its height. 
 

Blending liquids 
Algorithm allows simulating two or more liquids on terrain simultaneously. Computations for them 

are performed in parallel, so there is no reduction of a frame rate. We cannot simulate physical interaction of 
fluids without particle system, but usage of specially computed color blending factor gives good visual 
results. 

 
Results 

The result of rendering can be seen in Figure 4. 

 
Figure 4. Final result of rendering 

 
The water surface has resolution 320 x 240, obtained frame rate was 40 frames per second. The 

program was tested on the notebook with Intel Core i5 processor and NVIDIA GeForce 640M video card. 
The developed user interface allows user to add water in certain points with a mouse, change terrain, move 
lighting source, and tune water visualization to make it more transparent, and etc. 
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