Таблица 3. Углеводородный состав дизельных фракций

Группа углеводородов	ДФ №1	ДФ №2	ДФ №3	ДФ №4	ДФ №5
w парафинов, %	49,74	62,58	58,72	63,46	62,60
w ароматики, %	24,85	16,90	26,55	17,03	22,38
w(ароматики)/w(нафтенов)	1,16	0,79	1,96	0,95	2,95

более приёмисто к ДД присадке. Наибольшая энтальпия взаимодействия наблюдается для парафиновых УВ, что говорит о том, что ДТ, содержащее наибольшее количество парафиновых УВ, будет отрицательно влиять на приёмистость ДТ к ДД присадке.

Ранее, был определён углеводородный состав ДФ (табл. 3) [1].

Наибольшее содержание ароматических УВ, наблюдается для ДФ №3 (26,55%), поэтому при добавлении присадки 0,01% наблюдается наибольшее снижение T_3 (21°С). Для ДФ №1 наблюдается аналогичная ситуация (снижение 19,8°С). Наибольшее количество парафинов наблюдается для ДФ №4 (63,46%) и ДФ №5 (62,60%), поэтому, при добавлении присадки

0,01%, наблюдается наименьшее снижение T_3 , 7,2°С для ДФ №4 и 12,9°С для ДФ №5.

Для ДФ №2 наблюдается также большое содержание парафинов (62,58%), и, низкое содержание ароматики (16,90%), что должно указывать на плохую приёмистость ДТ к ДД присадке. Однако, наблюдается большое снижение T_3 . Это связано с тем, что, в отличие от ДФ №1, 3, 5, в ДФ №2 — соотношение ароматики к нафтенам <0,8 (0,79). Таким образом, наибольшее влияние на приёмистость ДТ к ДД присадке оказывает содержание ароматики более 20% и соотношение ароматики к нафтенам <0,8. Содержание парафинов в составе дизельного топлива >60% ухудшает приёмистость ДТ к ДД присадке.

Список литературы

1. E.V. Frantsina, A.A. Grinko, N.I. Krivtsova [et al.] // Petroleum Science and Technology, 2020. – Vol. 38. – Iss. 4. – P. 338–344.

ЗАКОНОМЕРНОСТИ ВЛИЯНИЯ ФРАКЦИОННОГО СОСТАВА, СОДЕРЖАНИЯ ПАРАФИНОВЫХ И АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ В СОСТАВЕ ДИЗЕЛЬНОГО ТОПЛИВА НА ЭФФЕКТИВНОСТЬ ДЕЙСТВИЯ ДЕПРЕССОРОВ

И.А. Богданов

Научный руководитель – д.х.н., профессор ОХИ ИШПР ТПУ Е.И. Короткова Национальный исследовательский Томский политехнический университет 634050, Россия, г. Томск, пр. Ленина, 30, bogdanov ilya@tpu.ru

Одним из важнейших показателей качества дизельного топлива (ДТ), в том числе оказывающим значительное влияние на эффективность действия присадок является его состав.

В случае с депрессорными присадками наиболее сильное влияние на эффективность их действия оказывает фракционный состав, содержание ароматических и парафиновых углеводородов, что обусловлено механизмом действия данных присадок [1]. Именно влиянием состава топлива на эффективность действия присадок обусловлены ситуации, при которых добавление депрессора в ДТ не оказывает нужного эффекта на низкотемпературные свойства либо оказываемый эффект является незначительным.

Влияние фракционного состава

Для исследования влияния фракционного состава ДТ на эффективность действия депрессорных присадок была проведена серия исследований, суть которых заключалась в изменении содержания узких дизельных фракций (фракции с температурами выкипания 180–240 °C, 240–300 °C, 300–360 °C) в составе ДТ, последующем добавлении депрессора и определении низкотемпературных свойств смесей. По резуль-

татам исследований было установлено, что облегчение фракционного состава ДТ (увеличение доли легких фракций и/или снижение доли тяжелых фракций) нецелесообразно, в случае если в дальнейшем низкотемпературные свойства топлива планируется улучшать добавлением депрессорных присадок.

Влияние содержания ароматических углеводородов

Исследование влияния содержания ароматических углеводородов в составе ДТ проводилось на модельных смесях. Смеси получали путем добавления чистых ароматических углеводородов различного строения (толуол, тетралин) к прямогонным ДТ с добавлением депрессорных присадок. Было установлено, что добавление тетралина оказывает более выраженный негативный эффект на действие депрессора для всех низкотемпературных характеристик, чем добавление толуола. Данный вывод подтверждается механизмом взаимодействия депрессорных присадок с ароматическими углеводородами: к депрессорам более восприимчивы ароматические углеводороды, содержащие боковые парафиновые цепи, с увеличением числа колец и уменьшением длины боковых цепей восприимчивость к депрессорам снижается. Установленный эффект объясняется разницей в полярности данных соединений – дипольный момент тетралина почти в 2 раза выше дипольного момента толуола, в связи с чем тетрталин более активно взаимодействует с депрессором тем самым подавляя его эффект в отношении н-парафинов.

Список литературы

1. Данилов А.М. Применение присадок в топливах: справочник. — СПб.: ХИМИЗДАТ, 2010. — 368 с.

Влияние содержания н-парафинов

Влияние содержания н-парафинов на эффективность действия депрессорных присадок была изучена на топливных смесях, полученных при введении тяжелых н-парафинов (C_{19+}), выделенных из различных дизельных фракций, в прямогонные ДТ с добавлением депрессорных присадок. Используемые тяжелые н-парафины были получены по методике [2], их состав определен с использованием хроматографического комплекса Хроматек-Кристалл.

По результатам исследований установлено, что добавление тяжелых н-парафинов в концентрациях от 0,05 до 0,25 % мас. (в зависимости от состава исходного образца ДТ) позволяет значительно повысить эффективность действия депрессорных присадок. При этом дополнительное снижение предельной температуры фильтруемости относительно смеси с присадкой без добавления тяжелых н-парафинов составляет $10-22\,^{\circ}$ С, температуры застывания – $2-12\,^{\circ}$ С. Полученный эффект также находит своё объяснение в механизме действия депрессоров, которые могут начать действовать только после появление первых кристаллов н-парафинов. Вводя в смесь тяжелые н-парафины дополнительно, мы не только увеличиваем количество центров начальной кристаллизации, но и благодаря более тяжелым н-парафинам, ускоряем процесс появления первых кристаллов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-38-90156.

2. ГОСТ 11851-85 «Нефть. Метод определения парафина». — Москва: Стандартинформ, 2018. — 15 с.