погрешность расчета составила менее 10%. Таким образом, разработанная математическая модель является адекватной и может применяться

Список литературы

 Mederos F.S., Ancheyta J. Mathematical modeling and simulation of hydrotreating reactors: Cocurrent versus countercurrent operations // Applied Catalysis A: General, 2007. – Vol. 332. – P. 8–21. для исследования и оптимизации процесса гидроочистки вакуумного газойля, полученного из высоковязкой казахстанской нефти.

 Korsten H., Hoffman U. Three-phase reactor model for hydrotreating in pilot trickle-bed reactors // AIChE Journal, 1996. – Vol. 42. – №5. – P. 1350–1360.

ОЦЕНКА ТЕРМОДИНАМИЧЕСКОЙ ВЕРОЯТНОСТИ ПРОТЕКАНИЯ РЕАКЦИЙ ОБРАЗОВАНИЯ НАФТЕНОВ ПЕРЕРАСПРЕДЕЛЕНИЕМ ВОДОРОДА В ЦИКЛООЛЕФИНАХ ПРИ ПЕРЕРАБОТКЕ НА ЦЕОЛИТЕ

Н.С. Багдасарян, А.А. Алтынов Научный руководитель – инженер ОХИ ИШПР А.А. Алтынов Национальный исследовательский Томский политехнический университет 634034, Россия, г. Томск, пр. Ленина, 30, 10030077@mail.ru

На сегодняшний день одним из наиболее активно развивающихся направлений в области катализа является использование цеолитных катализаторов [1]. В последние годы все большее внимание уделяется цеолитам в качестве катализаторов переработки нефти и газа, а также синтеза некоторых органических веществ.

Одним из процессов, в котором цеолиты используются в качестве катализаторов, является цеоформинг. Процесс цеоформинга обеспечивает повышение детонационной стойкости бензина, при этом, в отличие от каталитического риформинга, в данном процессе становится возможным отказаться от дорогостоящего платинового катализатора и циркуляции водородсодержащего газа.

В настоящее время в нефтеперерабатывающей промышленности все более актуальным становится использование математических моделей производств на физико-химической основе. Для построения математической модели цеоформинга необходимы знания химизма процесса, то есть основных протекающих реакций, а также знание термодинамических и кинетических параметров данных реакций.

В формализованную схему превращения стабильного газового конденсата на цеолитном катализаторе включены реакции образования нафтенов перераспределением водорода в циклоолефинах. Целью данной работы является расчет термодинамических параметров данных реакции.

Для достижения данной цели были решены следующие задачи:

 Проведен анализ данных продуктов цеоформинга стабильного газового конденсата с помощью хроматографического метода;

2) Составлен список теоретических возможных реакций;

3) Для сформированного списка реакций осуществлен расчет термодинамических параметров в программном пакете Gaussian (GaussianView 5.0) [2].

Расчет осуществлялся при условиях реализации процесса цеоформинга: температура – 648, 673 и 698 К (375, 400 и 425 °С соответственно), давление – 2,5 атм.

Представленные результаты позволяют заключить, что протекание всех рассмотренных реакций в условиях проведения процесса цеоформинга легкого углеводородного сырья термодинамически возможно ($\Delta G < 0$). Кроме того, из представленных результатов наглядно видно, что значение энергии Гиббса максимально для реакции №7, продуктом которой является 1,3,4-триметилциклогексан.

Работа выполнена при поддержке Гранта Президента Российской Федерации №МК-351.2020.3.

N⁰	Реакция	ΔH,	ΔS ,	ΔG ,
		кДж/моль	кДж/моль∙К	кДж/моль
648 K				
1	3 (6-метилциклогексен-1) = 2 (метилциклогексан) + толуол	-177,28	1,93	-178,53
2	3 (6-этилциклогексен-1) = 2 (этилциклогексан) + этилбензол	-177,94	-15,62	-167,81
3	3 (3,6-диметилциклогексен-1) = 2 (1,4-ди- метилциклогексан) + п-ксилол	-182,74	17,66	-194,18
4	3 (3-этил-6-метилциклогексен-1) = 2 (1-этил-4-ме- тилциклогексан) + 1-этил-4-метилбензол	-188,40	-26,14	-171,46
5	3 (5,6-диметилциклогексен-1) = 2 (1,2-ди- метилциклогексан) + о-ксилол	-176,68	-31,84	-156,04
6	3 (5-метил-6-этилциклогексен-1) = 2 (1-метил-2-э- тилциклогексан) + 1-метил-2-этилбензол	-171,81	-7,75	-166,79
7	3 (3,5,6-триметилциклогексен-1) = 2 (1,3,4-триме- тилциклогексан) + 1,3,4-триметилбензол	-192,98	25,52	-209,51
673 К				
1	3 (6-метилциклогексен-1) = 2 (метилциклогексан) + толуол	-177,33	1,85	-178,58
2	3 (6-этилциклогексен-1) = 2 (этилциклогексан) + этилбензол	-178,03	-15,81	-167,39
3	3 (3,6-диметилциклогексен-1) = 2 (1,4-ди- метилциклогексан) + п-ксилол	-182,80	17,57	-194,62
4	3 (3-этил-6-метилциклогексен-1) = 2 (1-этил-4-ме- тилциклогексан) + 1-этил-4-метилбензол	-188,68	-26,57	-170,80
5	3 (5,6-диметилциклогексен-1) = 2 (1,2-ди- метилциклогексан) + о-ксилол	-176,76	-31,96	-155,25
6	3 (5-метил-6-этилциклогексен-1) = 2 (1-метил-2-э- тилциклогексан) + 1-метил-2-этилбензол	-171,88	-7,85	-166,60
7	3 (3,5,6-триметилциклогексен-1) = 2 (1,3,4-триме- тилциклогексан) + 1,3,4-триметилбензол	-193,03	25,43	-210,15
698 K				
1	3 (6-метилциклогексен-1) = 2 (метилциклогексан) + толуол	-177,38	1,78	-178,62
2	3 (6-этилциклогексен-1) = 2 (этилциклогексан) + этилбензол	-178,09	-15,93	-166,98
3	3 (3,6-диметилциклогексен-1) = 2 (1,4-ди- метилциклогексан) + п-ксилол	-182,85	17,48	-195,06
4	3 (3-этил-6-метилциклогексен-1) = 2 (1-этил-4-ме- тилциклогексан) + 1-этил-4-метилбензол	-188,96	-26,98	-170,13
5	3 (5,6-диметилциклогексен-1) = 2 (1,2-ди- метилциклогексан) + о-ксилол	-176,82	-32,06	-154,44
6	3 (5-метил-6-этилциклогексен-1) = 2 (1-метил-2-э- тилциклогексан) + 1-метил-2-этилбензол	-171,95	-7,94	-166,41
7	3 (3,5,6-триметилциклогексен-1) = 2 (1,3,4-триме- тилциклогексан) + 1,3,4-триметилбензол	-182,48	10,91	-190,09

Таблица 1. Термодинамические параметры реакций

Список литературы

- 1. Алтынов А.А., Богданов И., Белинская Н.С., Попок Е.В., Киргина М.В. // Электронный научный журнал «Нефтегазовое дело», 2019. – №2. – С. 217–242.
- 2. Ochterski J.W. Thermochemistry in Gaussian. Gaussian, 2000. – P. 19.