Состав	Фторанги- дрит, г.	Техническая сера, %	Na ₂ SO ₄ , %.	B/B	Полимер-вяжу- щее отношение
Контроль		_		0,33	0
C-1	1200	5	2	0,35	0,05
C-2		10		0,40	0,1
C-3		15		0,48	0,15
C-4		25		0,65	0,25

Таблица 1. Рецептурные характеристики исследуемых полимерангидритовых смесей

Представленные на рисунке 2 б, результаты исследования микроструктуры образцов, позволяют наблюдать формирование полимер-гипсового конгломерата плотной структуры с характерными контактами новообразований, обеспечивающих повышенные значения прочности на сжатие.

По результатам проведенных исследований было установлено, что применение термопластичной добавки [7], позволяет сформировать композиционный материал с удовлетворительными физико-техническими характеристиками. Показано, что увеличение полимер-гипсового

отношения способствует повышению прочностных характеристик, достигая максимально возможного значения при введении 15% технической серы. Исходя из результатов, необходимо отметить потребность в проведении подробных физико-химических исследований для определения минерально-фазового и компонентного состава полученного материала.

Работа выполнена при финансовой поддержке Ижевского государственного технического университета им. Калашникова в рамках гранта № РНИИ-2021-07.

Список литературы

- 1. Отходы производств и потребления резерв строительных материалов: монография / В.И. Бархатов, И.П. Добровольский, Ю.Ш. Капкаев. Челябинск: Изд-во Челяб. гос. ун-та, 2017. 477 с.
- 2. Пономаренко А.А. Технология кондиционирования и применения фторангидрита в составе цементов общестроительного назначения. Диссертация на соискание ученой степени кандидата технических наук. — Екатеринбург, 2014.
- 3. Будников П.П. Зорин С.П. Ангидритовый цемент. – М. Госстройиздат, 1954. – С. 90.
- 4. Патуроев В.В. Полимербетоны. М.: Стройиздат, 1987. — 286 с.
- 5. Гуменюк А.Н., Полянских И.С., Первушин Г.Н., Гордина А.Ф., Яковлев Г.И., Хазеев Д.Р. Структурирующая добавка на основе отхода производства для минеральных вяжущих // Строительные материалы, 2019. №7. С. 41—46. DOI: https://doi.org/10.31659/0585-430X-2019-772-7-41-46.

СОВЕРШЕНСТВОВАНИЕ БИОЛОГИЧЕСКОЙ ОЧИСТКИ СТОЧНЫХ ВОД НА ПРЕДПРИЯТИИ ЛЕСОПЕРЕРАБАТЫВАЮЩЕЙ ПРОМЫШЛЕННОСТИ

Д.Р. Хузина

Научный руководитель – профессор О.Б. Назаренко

Национальный исследовательский Томский политехнический университет 634050, Россия, проспект Ленина, 30, drh-7@mail.ru

Актуальной задачей современного мира является совершенствование очистки сточных вод, в связи с развитием промышленности, сельского хозяйства и градостроительства.

Наиболее эффективным, надежным и рекомендуемым методом очистки сточных вод, с

точки зрения санитарной охраны водоемов, является биологическая очистка аэробным и анаэробным способами.

Целью работы является изучение совершенствование биологической очистки сточных вод в лесоперерабатывающей промышленности. На первом этапе осуществляли заборы проб для микроскопического исследования видового и количественного состава микроорганизмов активного ила в аэротенках. Вели подсчет организмов методом количественного учета, классифицировали их по морфологическим, физиологическим и функциональным признакам.

Расчет количества микроорганизмов на дозу ила производили по формуле (1).

$$C = \frac{X}{V_{\text{Ka}\Pi} \bullet m} \tag{1}$$

где: C — количество организмов в пробе; X — количество экземпляров; Vкап — объем капли (0,01 мл); m — доза ила по массе.

Видовой состав активного ила и количественные параметры в течение 3-х месяцев представлены в таблице 1.

Из таблицы 1 следует, что анализ проб активного ила из аэротенка показал хороший видовой состав, приблизительно 22 вида.

Ноябрь и январь выражены преобладанием коловраток (Callidina vorax), что свидетельству-

ет об ухудшении работы аэротенков. Их появление характеризует работу с низкими нагрузками, продленной аэрацией, полное окисление [2]. В декабре наблюдали отсутствие коловраток в активном иле из-за низкой температуры воды (6°C).

В период с декабря по январь присутствует большое содержание свободноплавающих инфузорий (Охуtricha, Aspidiska, Cyclidium), что указывает на причину неравномерного распределения стоков, а также концентрации активного ила. Для устранения данной проблемы необходимо улучшить аэрацию, уровнять концентрацию ила и отрегулировать распределение стоков между линиями [2].

В декабре наблюдали резкое увеличение числа Oligochaeta и Naididae, по причине чистки вторичных отстойников.

Таким образом, видовой состав активного ила, количественные параметры и систематизация микроорганизмов позволили выявить круг ключевых проблем и предположить возможные причины возникновения и способы их разрешения.

Таблица 1. Видовой и количественный состав биоценоза в течение 3-х месяцев

Название микро-	Ноябрь, 18.11.2020	Декабрь, 18.12.2020	Январь, 18.01.2021		
организмов	Количество микроорганизмов				
Amoeba limax	143	205	183		
Pelomyxa palustris	74	52	69		
Arcella discoides	254	250	265		
Arcella vulgaris	614	600	630		
Gromia neglecta	78	90	75		
Oicomonas multabilis	64	79	67		
Bodo putrinus	20	29	22		
Podophrya fixa	25	32	36		
Tokophrya guadripavtita	20	0	0		
Vorticella convallaria	689	745	720		
Vorticella microstoma	230	299	269		
Carchesium poalypinum	361	400	388		
Opercularia coarctata	89	60	77		
Epistylis plicatilis	75	80	69		
Oxytricha	180	795	715		
Aspidiska	269	899	820		
Cyclidium	100	233	280		
Callidina vorax	572	0	411		
Cathypna luna	130	0	0		
Philodina roseola	200	0	348		
Naididae	197	1130	1000		
Oligochaeta	251	1500	1200		

Список литературы

- 1. Рекомендации по проведению гидробиологического контроля на сооружениях биологической очистки с аэротенками. – М.: Пермь, 2004. – 52 с.
- 2. Жмур Н.С. Технологические и биохимические процессы очистки сточных вод на сооружениях с аэротенками. М.: АКВАРОС, 2003. 512 с.

РАЗРАБОТКА ФИЗИЧЕСКИХ И ХИМИЧЕСКИХ МЕТОДОВ ОЧИСТКИ РАСТВОРОВ СОДЕРЖАЩИХ АКТИВНЫЕ ФАРМАЦЕВТИЧЕСКИЕ СОЕДИНЕНИЯ

А.А. Цхе¹, С.А. Сосновский², В.И. Сачков², А.В. Мостовщиков¹ Научный руководитель – к.т.н., доцент Л.О. Роот¹

¹Национальный исследовательский Томский политехнический университет 634050, Россия, а. Томск, пр. Ленина, 30, anny0393@mail.ru

²Национальный исследовательский Томский государственный университет 634050, Россия, г. Томск, пр. Ленина, 36, ssa777@mail.ru

Введение

Одно из направлений практической химии связано с появлением фармактивных соединений (ФС) в водной среде. В данной работе, в качестве примера, приведены результаты исследований по очистке воды от ФС, в лабораторных условиях с применением низкотемпературной плазмы и наномембран.

Экспериментальная часть

Установка представляет собой колонну, состоящую из секций. Каждая секция установки представляет собой пакет наномембранных элементов, чередующихся с уплотнительными прокладками. В установке применялись наномембраны серии Hidrotek. В виде рабочего раствора применяли водный раствор нестероидного противовоспалительного препарата (НПВП) из группы производных фенилуксусной кислоты. На рис. 1 показана схема установки.

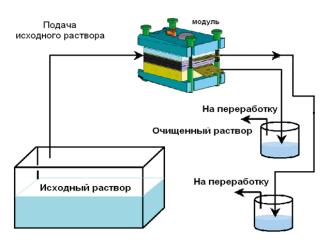
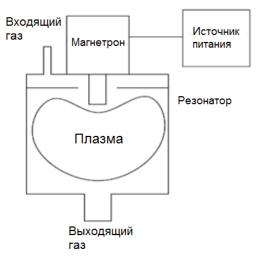



Рис. 1. Схема установки

В условиях наномембранной очистки селективность в отношении НПВП из группы производных фенилуксусной кислоты оставалась на достаточно высоком уровне в течение всего времени экспериментов (98% на наномембране серии Hidrotek NF 90-4040 и 93% на Hidrotek NF 270-4040).

Так же наша работа заключалась в исследовании воздействия активных частиц, созданных в низкотемпературной плазме микроволнового разряда, на водные среды с ФС. В виде рабочего раствора применяли водный раствор НПВП из группы производных фенилуксусной кислоты. В качестве плазмообразующего газа применялись аргон, углекислый газ и воздух. На рис. 2 показана принципиальная схема плазменной установки.

Рис. 2. Принципиальная схема плазменной установки