Полученные результаты элементного состава ряски на территории 10 районов Томской области позволили установить внутрирегиональную специфику концентрирования элементов в макрофите. Микроэлементный состав растений семейства рясковых характеризуется высокой информативностью относительно экогеохимического состояния среды произрастания.

Литература

- 1. Адам А.М. Экология Северного промышленного узла г. Томска. Проблемы и решения. [Текст] / А.М. Адам Томск: Изд-во ТГУ, 1994. 260 с.
- 2. Барановская, Н. В. Региональная специфика элементного состава волос детей, проживающих на территории Томской области / Н.В. Барановская, Д.В. Швецова, А.Ф. Судыко // Известия Томского политехнического университета. Инжиниринг георесурсов. 2011. Т. 319. №. 1. С. 212-220
- 3. Рихванов Л. П. и др. Эколого-геохимические особенности природных сред Томского района и заболеваемость населения. Томск: Курсив, 2006 216 с.
- 4. Черняев, Е. В. Твердые полезные ископаемые Томской области [Текст] /Е.В. Черняев, В. К. Бернатонис, Г. Ю. Боярко // Региональная геология. Геология месторождений полезных ископаемых. 2001. С. 361-368.
- Ekperusi, A. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective [Text] / A. Ekperusi, F. Sikoki, E. Nwachukwu //Chemosphere. – 2019. – T. 223. – P. 285-309
- 6. Favas, P. Biogeochemistry of uranium in the soil-plant and water-plant systems in an old uranium mine [Text] / P. Favas, et al. // Science of the Total Environment. 2016. T. 568. P.350-368.
- Landolt, E. Biosystematic investigations in the family of duckweeds (Lemnaceae), Vol. 4: the family of Lemnaceae-a monographic study, Vol. 2 (phytochemistry, physiology, application, bibliography) [Text] /E. Landolt; R. Kandeler // Veroeffentlichungen des Geobotanischen Instituts der ETH, Stiftung Ruebel (Switzerland). – 1987.
- Sasmaz, M Bioaccumulation of uranium and thorium by Lemna minor and Lemna gibba in Pb-Zn-Ag tailing water [Text]
 /M. Sasmaz, E. Obek, A. Sasmaz // Bulletin of environmental contamination and toxicology. 2016. T. 97. №. 6. –
 P. 832-837:

МИНЕРАЛЬНЫЕ И ТЕХНОГЕННЫЕ ЧАСТИЦЫ В СОСТАВЕ ТВЕРДОЙ ФАЗЫ СНЕГОВОГО ПОКРОВА В РАЙОНЕ РАЗМЕЩЕНИЯ СОРСКОГО ГОК (РЕСПУБЛИКА ХАКАСИЯ)

Беспалова А.И.¹, Белошейкина А.В.²

Научный руководитель – доцент А.В. Таловская¹

¹Национальный исследовательский Томский политехнический университет, г. Томск, Россия ²ООО «ХАКАСТИСИЗ», г. Абакан, Россия

Горнодобывающая промышленность, достаточно развитая в современном мире, оказывает воздействие на все существующие компоненты геоэкологической среды [3]. При буровзрывных работах на месторождениях, транспортировке добытой руды, пыления отвалов и хвостохранилищ в атмосферный воздух поступает огромное количество пыли. Сорский горно-обогатительный комбинат является одним и крупнейших предприятий по добычи молибдена на территории России [5].

Горно-обогатительный комбинат находится в пределах Батенёвского кряжа в восточной части отрогов Кузнецкого Алатау. По административному районированию расположен на территории Усть-Абаканского района Республики Хакасия, в 105 км к северо-западу от города Абакан, является градообразующим предприятием города Сорска. Российские балансовые запасы меди составляют 92,7 млн т, молибдена - 1956 тыс. т (на 2011 год). Доказанные запасы Сорского месторождения составляют около 58,1 млн. тонн разведанных запасов молибденовой руды, прогнозные запасы - 140,3 млн [5]. На Сорском медно-молибденовом месторождении получают медный и молибденовый концентраты. Главенствующее направление ветра юго-западное. Горные образования средней высоты (от 620 до 1200 м), которыми представлена местность, перемежаются широкими равнинами и короткими ущельями. Сорское месторождение находится на стыке степной, лесостепной и горно-таежной зон, расположено на высоте 850 – 880 м над уровнем моря. Месторождение находится в месте пересечения северо-западной и северовосточной тектонических зон [5].

К главным источникам воздействия на территории ГОКа относятся: карьер, отвалы, хвостохранилище, обогатительная фабрика, породные отвалы, отстойники оборотного водоснабжения, ТЭЦ, транспортная техника.

В зимнее время года индикатором экологического состояния территории может служить снеговой покров. В ранее проведенных исследованиях на территории Сорского ГОКа были выявлены значения пылевой нагрузки на территорию [1]. Изучение снегового покрова показало неравномерное распределение пылевой нагрузки – она варьировалась от высокой до низкой степени загрязнения (834 и 3,6 мг/(м² в сут.) соответственно). Исходя из этого, становится актуально изучение минерально-вещественного состава пылевых частиц, осевших из атмосферы на снеговой покров.

Целью работы является изучение минеральных и техногенных частиц в составе твердой фазы снегового покрова в зоне влияния Сорского горно-обогатительного комбината — одного из крупных горнодобывающих предприятий в стране.

Отбор снеговых проб производился по стандартной методике [6]. Закладывался шурф на всю мощность снегового покрова, кроме 5 см, прилегающих к почвенному покрову. Вес каждой пробы составлял от 15 до 18 кг. Размер шурфа – 1х1 м². Отбор осуществляли на нескольких ключевых участках: промплощадка (ключевой участок №1), северо-западная часть от хвостохранилища (ключевой участок №2), юго-западная часть от хвостохранилища

(ключевой участок №3), территория г. Сорска (ключевой участок №4), северо-восточная часть от отвала №7 (ключевой участок №5), восточная часть от отвала №8 (ключевой участок №6). В 2016 году было отобрано 35 проб снегового покрова [1]. Также было отобрано 5 проб в фоновом районе, который находится на расстоянии 10 км в юго-западном направлении от месторождения.

Пробы твердой фазы снега для определения минерального состава изучены на рентгеновском дифрактометре (Bruker Phaser D2) в лабораториях МИНОЦ «Урановая геология» ОГ ТПУ. Для анализа была использована истертая до состояния пудры навеска, массой не менее 1 г. Результаты были проанализированы в программе Diffrac.eva с использованием базы дифрактограмм минералов PDF2. Кроме того, проводился анализ проб на бинокулярном стереоскопическом микроскопе Leica EZ4D с видео приставкой согласно запатентованной методике (патент № 2229737) сотрудников каф. ГЭГХ (в н.в. отделение геологии) [4].

Результаты рентгеновской дифрактометрии показали наличие в пробах кристаллической и аморфной фазы (таблица). Кристаллическая фаза представлена кварцем, полевыми шпатами, глинистыми и слюдистыми минералами, которые могут представлять собой минералы вскрышных пород, вероятно поступающие за счет ветрового перенос с объектов предприятия во время добычи, транспортировки и погрузки. также обнаружены нерудные минеральные фазы молибденита. Аморфная часть твердой фазы снега может отражать присутствие техногенных частиц, представленных выбросами теплоэнергетики.

В пробах с районов всех ключевых участках прослеживается наличие таких минералов как кварц, альбит, мусковит, хлорит, молибденит. На ключевом участке №1 (промплощадка) был обнаружен каолинит, на территории г. Сорска (ключевой участок №4) — кальцит, актинолит и флогопит. Ортоклаз наблюдается на ключевых участках №2 и 3. Преобладающее количество обнаруженных минеральных частиц совпадает с характерным составом вскрышных пород, что возможно является следствием оседания минеральных частиц на снеговом покрове в результате разработки горнодобывающего месторождения. Кроме того, необходимо отметить наличие молибденита на территории г. Сорска, что может быть связано с дальним переносом от объектов месторождения.

Таблица Минеральный состав проб твердой фазы снега на некоторых ключевых участках Сорского ГОКа, %

Фаза/Минерал	Формула	№ ключевого участка			
		1	2	3	4
Кристаллическая:		79	79,2	78,8	80,2
кварц	SiO ₂	20	15,9	15,7	18,7
альбит	Na[AlSi ₃ O ₈])	20,7	37,3	25,6	28,3
мусковит	$KAl_2(AlSi_3O_{10})(OH)_2$	20	12	45,3	15,7
микроклин	K[AlSi ₃ O ₈]	31,5	-	-	23,4
хлорит	$(Mg,Fe)_3(Si,Al)_4O_{10}(OH)_2$	4,7	3,9	5,7	2,9
	(Mg,Fe) ₃ (OH) ₆				
каолинит	Al ₄ [Si ₄ O ₁₀](OH) ₈	2,7	-	-	-
кальцит	CaCO ₃	-	-	-	4,1
актинолит	Ca ₂ (Mg,Fe) ₅ [Si ₈ O ₂₂](OH) ₂	-	6,3	-	4,4
молибденит	MoS_2	0,4	0,5	0,3	0,4
флогопит	$KMg_3[Si_3AlO_{10}]\cdot(F,OH)_2$	-	-	-	2,1
ортоклаз	K(AlSi ₃ O ₈)	-	24,1	7,4	-
Аморфная		21	20,8	21,2	19,8
Пылевая нагрузка, мг/(м ² *сут.) [1]		834	12,8	3,6	111

Примечание: данные рентгеновской дифрактометрии; «-» – не обнаружено

По ранее проведенным исследованиям проб на бинокулярном микроскопе также были найдены минеральные частицы (85%), а также частицы техногенного (15%) происхождения [2]. К природным минеральным типам частиц были отнесены кварц (бесцветные прозрачные частицы разной окатанности), амфибол (имеют игольчатую форму, прямоугольную спайность и черный цвет), слюда (частицы разного цвета, чешучайтые), полевой шпат (белые и розовые, призматической формы), пирит (частицы кубической формы желтоватого цвета), халькопирит (латунно-желтый оттенок), молибденит (свинцово-серый с жирным металлическим блеском). Кроме этого были выделены частицы техногенного происхождения: угольная пыль (черные частицы уплощенной формы), шлак (частицы черного цвета, бесформенные) [2].

Сопоставление содержания пылевой нагрузки на территорию с минерально-вещественным составом проб твердой фазы снега, отобранных в районе расположения ГОКа и г. Сорска, показало определенную зависимость. Одной из причин высоких значений пылевой нагрузки является наличие угольной пыли, шлака и некоторых нерудных частиц минералов, таких как амфиболы, полевые шпаты, кварц, в твердом осадке снега.

В г. Сорске наблюдается наибольшая доля техногенных частиц по сравнению с другими ключевыми участками Сорского ГОКа, несмотря на то, что минеральный состав практически идентичен. Причиной тому могут являться выбросы местных котельных, работающих на угле. Небольшая разница в минеральном составе г. Сорска может быть связана с использованием противогололедных мероприятий на территории города.

Таким образом, в результате проведенных исследований в пробах твердого осадка снега были обнаружены частицы природного и техногенного происхождения, вносящие свой вклад в формирование пылевой нагрузки в районе исследования.

Литература

- 1. Белошейкина А. В. Оценка загрязнения территории Сорского горно-обогатительного комбината (Республика Хакасия) по данным исследования снежного покрова [Текст] / А. В. Белошейкина, А. В. Таловская // Проблемы геологии и освоения недр: труды XXI Международного симпозиума имени академика М. А. Усова студентов и молодых ученых, посвященного 130-летию со дня рождения профессора М. И. Кучина, Томск, 3-7 апреля 2017 г.: в 2 т. Томск: Изд-во ТПУ, 2017. Т. 1. С. 701-702.
- Беспалова А.И. Оценка уровня пылевого загрязнения снегового покрова на территории горно-обогатительного комбината (Республика Хакасия) [Текст] / А.И. Беспалова, А.В. Таловская, Е.Г. Язиков // Экологические проблемы. Взгляд в будущее: сборник трудов IX Международной научно-практической конференции. – Ростовна-Дону. - Таганрог, 2020. – С. 61-65.
- 3. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2019 году» [Электронный ресурс]. Режим доступа: https://www.mnr.gov.ru/docs/gosudarstvennye_doklady
- 4. Оценка эколого-геохимического состояния территории г. Томска по данным изучения пылеаэрозолей и почв: монография [Текст] / Е.Г Язиков, А.В. Таловская, Л.В. Жорняк. Томск: Изд-во Томского политехнического университета, 2010. 264 с.
- Пат. 2229737 Российская Федерация. Способ определения загрязненности снегового покрова техногенными компонентами [Текст] / Е.Г. Язиков, А.Ю. Шатилов, А.В. Таловская; заявитель и патентообладатель Томский политехнический университет. - № 2002127851; опубл. 27.05.2004.
- 6. Путеводитель по району геоэкологической практики в Хакасии: учебное пособие [Текст] / Л.П. Рихванов, Е.Г. Язиков, С.И. Арбузов, А.Ю. Шатилов, В.Г. Язиков, В.М. Худяков. 3-е изд. Томск: Изд-во Томского политехнического университета, 2012. 91 с.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ ТВЕРДОЙ ФАЗЫ СНЕГОВОГО ПОКРОВА ГОРОДСКОЙ ТЕРРИТОРИИ (НА ПРИМЕРЕ Г. ЮРГА) Будаева Ю.С.

Научные руководители: доцент А.В. Таловская, ассистент Е.С. Торосян Национальный исследовательский Томский политехнический университет, г. Томск, Россия

Количественная и качественная характеристика состояния воздушной среды зависит от промышленных предприятий территории, а также оказывает влияние на состояние органов дыхательной и кровеносной систем у населения [8]. В г. Юрга функционирует комплекс разноплановых производств (свыше 60% выбросов загрязняющих веществ приходится на обрабатывающий сектор — машиностроение, металлургия, производство строительных материалов). Немаловажное воздействие оказывается при эксплуатации тепловых котлов на ТЭЦ, ответственную за обеспечение теплом жилых и производственных помещений города.

Цель работы — анализ геохимических особенностей твердой фазы снегового покрова с территории г. Юрга. Снеговой покров — природная среда накопления загрязняющих веществ из атмосферного воздуха в течение длительного зимнего периода, он активно используется исследователями в работах в городах [3,7,9,11].

Снегогеохимическая съемка по регулярной сети со сгущением и разрежением точек в зависимости от доступности снега на территории г. Юрга проводилась в 2016 году сотрудниками Юргинского филиала ТПУ (ассистент Торосян Е.С.). Отбор осуществлялся согласно методике создания шурфа. Всего было отобрано 46 проб. Объектом исследования являлись пробы твердой фазы снега, подготовка которых проводилась в соответствии с методическими рекомендациями и включала последовательное таяние снега, очистку снеготалой воды от крупных посторонних включений, фильтрацию через фильтры типа «синяя лента». Пробы сушились при комнатной температуре, затем взвешивались и пропускались через сито с диаметром ячейки 1 мм [2, 5, 10].

Твердая фаза снега с территории г. Юрга была проанализирована инструментальным нейтронноактивационным анализом на базе исследовательского ядерного реактора ИРТ-Т НИ ТПУ (аналитики Судыко А.Ф., Богутская Л.В.). В результате выполнения анализов были определены содержания 28 химических элементов.

Проводился расчет следующих показателей для твердой фазы снегового покрова. Коэффициент концентрации рассчитывался по формуле: $K_c = C/C_{\phi}$, где C – концентрация химического элемента в пробе (мг/кг); C_{ϕ} – фоновая концентрация элемента (мг/кг) [2, 5].

Для расчета коэффициента концентрации использовались данные по региональному фону [1, 11], для Zn, Nd, As, Hg – локального фона [9, 12].

Суммарный показатель загрязнения рассчитывался по формуле: $Z_c = \sum K_c - (n-1)$, где n- число элементов с $K_c > 1$ [2, 5]. По значению суммарного показателя загрязнения можно определить степень загрязнения снегового покрова в соответствии с принятой градацией [2, 5]: низкая (менее 64), средняя (64-128), высокая (128-256) и очень высокая (более 256). Данные по содержанию ртути в пробах представлены в соответствии с [66].

В твердой фазе снегового покрова территории г. Юрга наиболее высокие коэффициенты концентрации по сравнению с фоном приходятся на редкоземельные и радиоактивные элементы, а также ряд тяжелых металлов (таблица).

На территории г. Юрга значение суммарного показателя загрязнения повсеместно указывает на высокую степень загрязнения снегового покрова и опасный уровень заболеваемости в соответствии с градациями [2, 3, 5].