

На правах рукописи

ГРОМОВА ОЛЬГА ВАСИЛЬЕВНА

СПЕКТРОСКОПИЯ ВЫСОКОГО РАЗРЕШЕНИЯ МОЛЕКУЛ ТИПА АСИММЕТРИЧНОГО ВОЛЧКА: C₂H₄, SO₂, H₂S, ClO₂, NH₃ И ИХ ИЗОТОПОЛОГИ

Специальность 1.3.6 — «Оптика»

Диссертация

в виде научного доклада на соискание ученой степени доктора физико-математических наук Работа выполнена в ФГАОУ ВО «Национальном исследовательском Томском политехническом университете».

Научный консультант:

Уленеков Олег Николаевич

доктор физико-математических наук, профессор, Томский политехнический университет, профессор

Официальные оппоненты:

Быков Александр Дмитриевич доктор физико-математических наук, профессор, Институт оптики атмосферы, главный научный сотрудник

Краснощеков Сергей Вадимович

доктор физико-математических наук Московский государственный университет, ведущий научный сотрудник

Черепанов Виктор Николаевич

доктор физико-математических наук, доцент, Томский государственный университет, заведующий кафедрой Оптики и спектроскопии

Защита состоится «<u>14</u> » <u>июня</u> 2022 г. в 14 час. 30 мин. на заседании диссертационного совета ДС.ТПУ.02 Национального исследовательского Томского политехнического университета по адресу: 634050, г. Томск, проспект Ленина, д. 30.

С диссертацией можно ознакомиться в научно-технической библиотеке Томского политехнического университета и на сайте https://dis.tpu.ru.

Отзывы на научный доклад, заверенные печатью, просим отправлять по адресу: Российская Федерация, 634050, г. Томск, проспект Ленина, д. 30, Томский политехнический университет, ученому секретарю Ученого совета ТПУ.

Научный доклад разослан « ___ » _____ 2022 г.

Ученый секретарь диссертационного совета ДС.ТПУ.02

In

А.Л. Фомченко

оглавление

1	ВВЕДЕНИЕ					
2	OC	НОВНОЕ СОДЕРЖАНИЕ ДОКЛАДА	13			
	2.1	Модификация и усовершенствование метода решения обратной спектроскопической задачи для молекул типа асимметричного волч- ка с учетом большого числа взаимодействующих состояний ROV-				
		ENATOM	13			
		2.1.1 Молекула этилена	18			
		2.1.2 Молекула сероводорода	28			
	2.2	2.1.3 Молекула диоксида серы Модификация модели, алгоритма и создание на этой основе про- граммы анализа абсолютных интенсивностей молекул типа асим-	36			
		метричного волчка различной симметрий с учетом произвольного	19			
	2.3	числа резонирующих колеоательных состоянии	43			
		молекул в их смеси.	52			
	2.4	Разработка и практическое применение метода исследования спек- тров высокого разрешения для молекул типа асимметричного волч- ка в несинглетных электронных состояниях.	60			
	2.5	Модификация метода эффективных операторов, алгоритма и па- кета компьютерных программ с целью использования их для ис- следования спектров высокого разрешения молекул типа асим-				
		метричного волчка при наличии колебаний инверсионного типа	67			
3	3A]	КЛЮЧЕНИЕ И ВЫВОДЫ	75			
Π	убли	кации по теме диссертации	77			

1 ВВЕДЕНИЕ

Актуальность исследования.

Спектроскопия на протяжении многих лет была и продолжает оставаться наиболее надежным (если не единственным) источником высокоточной информации о строении и внутренних свойствах веществ/молекул. В свою очередь, такого рода информация является основополагающей для понимания практически любой проблемы при поиске ответов на вопросы, возникающие в области как академических естественных наук (в частности, различных разделов физики, химии, биологии), так и при решении многочисленных прикладных проблем народного хозяйства. Не обсуждая здесь обширный список различных разделов спектроскопии (спектроскопия твердого тела, спектроскопия жидкостей, атомная спектроскопия, спектроскопия плазмы и др.), представляется разумным остановиться более подробно на молекулярной спектроскопии высокого разрешения, которая и является предметом обсуждения данной диссертационной работы. Следует заметить, что даже и собственно молекулярная спектроскопия является настолько обширной областью деятельности, что говорить о ней в полном объеме в рамках одной работы не представляется возможным. Поэтому в данной работе речь пойдет о колебательно-вращательной спектроскопии высокого разрешения многоатомных (с числом ядер от трех до шести) молекул в газовой фазе, представляющих интерес для астрофизики и астрохимии, планетологии, химической физики, многих производственных процессов и др. С качественной точки зрения - это спектры, обусловленные переходами между отдельными колебательно-вращательными состояниями (или вращательными состояниями одного колебательного состояния) и расположенные в достаточно широком диапазоне частот от микроволи до ультрафиолетовой области спектра.

Несмотря на то, что колебательно-вращательная спектроскопия молекул интенсивно развивается в течение уже нескольких десятков лет, вплоть до настоящего времени остается много вопросов, которые требуют своего решения. Немаловажной причиной такого состояния являются постоянно возрастающие возможности экспериментальной техники во всех вышеуказанных диапазонах шкалы длин волн, что особенно ярко проявилось с появлением высокоточных лазерных и Фурье- спектрометров высокого разрешения. Постоянно возрастающие возможности экспериментальной техники с необходимостью требуют как усовершенствования традиционно используемых в спектроскопии, так и разработки новых эффективных методов анализа современных экспериментальных спектров высокого разрешения и извлечения из них физической информации. Важным моментом является то, что многоатомные молекулы различного типа (так называемые «нормальные» молекулы типа асимметричного, симметричного, сферического волчка, линейные молекулы, молекулы с «инверсионными» или «торсионными» колебаниями и внутренними вращениями, молекулы в несинглетных электронных состояниях) для своего корректного анализа требуют использования методов и моделей, основанных на различном (по ряду параметров, даже несовместимом) математическом аппарате. Предметом данной диссертационной работы является разработка таких новых (в том числе и усовершенствование уже имеющихся) методов анализа спектров высокого разрешения молекул типа асимметричного волчка различной симметрии, разработка на этой основе алгоритмов и создание компьютерных программ как для интерпретации сложных экспериментальных спектров, так и последующего решения обратных спектроскопических задач с целью определения параметров соответствующих эффективных гамильтонианов и параметров эффективных дипольных моментов различных молекул типа асимметричного волчка, практическое применение разработанных методов и подходов для анализа реальных спектров высокого разрешения молекул типа асимметричного волчка. Как следствие, получаемая при этом из анализа спектров физическая информация является либо абсолютно новой, либо существенно превосходит по качеству ранее известную в литературе, что позволяет улучшать решение проблем (а в ряде случаев и просто решать ранее нерешенные проблемы), в которых получаемая спектроскопическая информация используется или может использоваться. Все вышесказанное обусловливает актуальность исследований, представленных в данной работе.

Целью исследований является разработка новых (в том числе и усовершенствование уже имеющихся) методов анализа спектров высокого разрешения молекул типа асимметричного волчка различной симметрии, разработка на этой основе алгоритмов и создание компьютерных программ как для интерпретации сложных экспериментальных спектров, так и последующего решения обратных спектроскопических задач по определению параметров соответствующих эффективных гамильтонианов и параметров эффективных дипольных моментов конкретных молекул типа асимметричного волчка, практическое применение разработанных методов и подходов для анализа реальных спектров высокого разрешения молекул в синглетных (этилен C_2H_4 и его многочисленные изотопологи, различные изотопологи молекул SO_2 и H_2S , дейтерированные асимметричные изотопологи молекулы NH_3) и несинглетных (ClO₂) электронных состояниях.

Для достижения поставленной цели ставились следующие задачи:

- 1. Модификация и усовершенствование метода решения обратной спектроскопической задачи для молекул типа асимметричного волчка и на этой основе разработка алгоритма и создание комплекса программ ROVEN-ATOM (RO-Vibrational ENergies of Asimmetric TOp Molecules) на языке Фортран, позволяющего (а) выполнять исследования и решать обратную спектроскопическую задачу для молекул типа асимметричного волчка произвольной симметрии; (б) принимать во внимание различные типы (в том числе и гибридные) колебательно-вращательных полос; (в) учитывать большое число взаимодействующих полос, специальным образом варьируя параметры эффективного гамильтониана молекулы в условиях сильной корреляции параметров различных колебательных состояний.
- Разработка математической основы, алгоритма и создание на этой основе программы анализа абсолютных интенсивностей молекул типа асимметричного волчка различной симметрии с учетом произвольного числа резонирующих колебательных состояний.
- Разработка и практическое применение (исследование абсолютных интенсивностей, коэффициентов уширения и сдвига спектральных линий давлением) уникального метода определения концентраций (парциальных давлений) изотопологов многоатомных молекул в их смеси.
- 4. Разработка и практическое применение метода исследования спектров вы-

сокого разрешения для молекул типа асимметричного волчка в несинглетных электронных состояниях.

- 5. Модификация метода эффективных операторов, модификация алгоритма и пакета компьютерных программ с целью использования их для исследования спектров высокого разрешения молекул типа асимметричного волчка при наличии колебаний инверсионного типа.
- Выполняемые впервые (или с лучшими характеристиками по сравнению с известными в литературе) экспериментальные и теоретические исследования спектров высокого разрешения различных изотопологов этилена, диоксида серы, сероводорода, аммиака и диоксида хлора.

Научная новизна. Работа направлена на решение одной из важных проблем физики микромира, связанной с получением новой физической информации как качественного, так и количественного характера о структуре и внутренних свойствах различных, но, вместе с тем, конкретных многоатомных молекул, представляющих интерес для задач химической физики, астрофизики, физики и химии атмосфер Земли и планет солнечной системы, проблемы глобального потепления климата, неразрушающего контроля, лазерной физики, получения сверхчистых материалов и многих других проблем науки и техники. Все лежащие в основе выполняемых исследований теоретические методы и подходы являются либо новыми, либо существенным совершенствованием известных. Все исследования реальных спектров высокого разрешения носят комплексный характер и выполняются либо в ранее не исследованных для рассматриваемых молекул-изотопологов спектральных диапазонах, либо позволяют существенно улучшить и расширить имеющуюся в мировой литературе на данный момент информацию. В частности:

 Модифицирован и усовершенствован метод решения обратной спектроскопической задачи для молекул типа асимметричного волчка и на этой основе разрабоан алгоритм и создан комплекс программ ROVENATOM на языке Фортран, позволяющий (а) выполнять исследования и решать обратную спектроскопическую задачу для молекул типа асимметричного волчка произвольной симметрии; (б) принимать во внимание различные типы (в том числе и гибридные) колебательно-вращательных полос; (в) учитывать большое число взаимодействующих полос, специальным образом варьируя параметры эффективного гамильтониана молекулы в условиях сильной корреляции параметров различных колебательных состояний.

- 2. Разработан математический базис и, на этой основе, разработаны алгоритмы и созданы программы анализа абсолютных интенсивностей молекул типа асимметричного волчка различной симметрии с учетом произвольного числа резонирующих колебательных состояний.
- Разработан и практически применен для исследования спектров высокого разрешения уникальный метод определения концентраций (парциальных давлений) изотопологов многоатомных молекул в их смеси в условиях, когда уравнения термодинамики неработоспособны.
- 4. Для свободных радикалов типа асимметричного волчка в несинглетных электронных состояниях развит подход, позволяющий с высокой точностью описывать спин-вращательно-колебательные взаимодействия, на этой основе разработаны алгоритмы и комплекс компьютерных программ для исследования ИК спектров высокого разрешения такого типа объектов. Будучи применен к молекуле ClO₂, развитый подход позволил более чем в 20 раз улучшить воспроизведение спин-колебательно-вращательной структуры фундаментальных полос этой молекулы.
- 5. Для молекул типа асимметричного волчка при наличии колебаний инверсионного типа модифицирован разработанный ранее метод эффективных операторов, модификацирован соответствующий алгоритм и пакет компьютерных программ с целью использования их для исследования спектров высокого разрешения такого типа молекул.
- 6. Выполнены впервые или с существенно лучшими по сравнению с известными в литературе характеристиками экспериментальные и теоретические исследования спектров высокого разрешения для более чем 130 колебательно-вращательных полос поглощения различных изотопологов этилена (¹²C₂H₄, ¹²C¹³CH₄, ¹³C₂H₄, C₂H₃D, C₂H₂D₂ trans, C₂H₂D₂ cis, CH₂ = CD₂, C₂HD₃, C₂D₄), диоксида серы (³²S¹⁶O₂, ³³S¹⁶O₂, ³⁴S¹⁶O₂, ³⁴S¹⁶O¹⁸O, ³²S¹⁸O₂), сероводорода (H₂³²S, H₂³³S, H₂³⁴S, H₂³⁶S, HD³²S, HD³³S, HD³⁴S,

 $D_2^{32}S$, $D_2^{33}S$, $D_2^{34}S$), аммиака ($^{15}NH_2D$, $^{15}NHD_2$) и диоксида хлора ($^{35}Cl^{16}O_2$), содержащих в общей сложности более четверти миллиона линий поглощения.

Практическая значимость работы определяется прежде всего большим объемом (более 130 колебательно-вращательных полос поглощения различных изотопологов этилена, диоксида серы, сероводорода, диоксида хлора и аммиака, содержащих в общей сложности более четверти миллиона линий поглощения) новой количественной информации о параметрах спектральных линий различных молекул типа асимметричного волчка, которая является чрезвычайно востребованной при решении различных как чисто академических, так и многочисленных прикладных задач самых различных областей науки и промышленности. Разработанные в процессе выполнения работы подходы, модели и алгоритмы и созданные на этой основе пакеты прикладных программ являются весьма важным и эффективным инструментом для выполнения исследований спектров высокого разрешения различных молекул типа асимметричного волчка, которые не вошли в данную работу.

Методология и методы исследования. В ходе выполнения работы использовалась как традиционные методы и результаты квантовой механики и теории колебательно-вращательных взаимодействий в многоатомных молекулах, методы теории групп (теории симметрии), теории углового момента и теории неприводимых тензорных операторов, методы вычислительной математики (с использованием языков программирования FORTRAN и MAPLE), так и оригинальные разработанные в коллективе (в том числе и при непосредственном участии автора данной диссертационной работы) методы исследования спектров молекул типа асимметричного волчка. Экспериментальные исследования (большая часть из которых также выполнялась при непосредственном участии автора данной работы) выполнены с использованием методов Фурьеспектроскопии высокого разрешения (Фурье-спектрометры Bruker IFS 120HR, Bruker IFS 125HR, Bruker IFS 125HR (Zurich prototype)).

Научные положения, выносимые на защиту:

1. Основанный на использовании результатов теории изотопозамещения метод определения параметров эффективного дипольного момента различ-

ных изотопологов молекулы типа асимметричного волчка по экспериментальным значениям таких параметров для основной изотопической модификации позволяет оценивать концентрацию отдельных изотопологов в их смеси с точностью до 1%.

- 2. Разработанный на основе теории неприводимых тензорных систем подход и созданный на его основе пакет программ для описания спин-колебательно-вращательных спектров высокого разрешения свободных радикалов типа асимметричного волчка в несинглетных электронных состояниях, будучи применен к молекуле ClO₂, позволяет более чем в 20 раз улучшить воспроизведение положений линий фундаментальных полос этой молекулы.
- 3. Разработанный в работе и основанный на использовании метода эффективных вращательных операторов подход к описанию спектров высокого разрешения молекул типа асимметричного волчка при наличии в них инверсионных колебаний и многочисленных инверсионно-колебательно-вращательных взаимодействий различного типа позволяет описывать сложные инверсионно-колебательно-вращательные спектры таких молекул с точностью сопоставимой с погрешностями эксперимента.
- 4. Развитые на основе результатов операторной теории возмущений Ван-Флека в проекционной формулировке подходы и созданные на этой основе алгоритмы и программы анализа энергетической колебательно-вращательной структуры и абсолютных интенсивностей линий молекул типа асимметричного волчка различной симметрии с учетом всех возможных в такого типа молекулах резонансных взаимодействий и с учетом произвольного числа взаимодействующих состояний позволяют описывать современные спектры высокого разрешения с точностями не хуже погрешностей эксперимента как для положений, так и для абсолютных интенсивностей линий.

Апробация работы.

Материалы, вошедшие в диссертацию, докладывались и обсуждались на следующих научных конференциях:

- 1. 22-ом международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Дижон, Франция, 2011);
- 2. 22-ой международной конференции по молекулярной спектроскопии высокого разрешения (Прага, Чехия, 2012);
- 3. 23-ем международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Будапешт, Венгрия, 2013);
- 4. 23-ей международной конференции по молекулярной спектроскопии высокого разрешения (Болонья, Италия, 2014);
- 5. 24-ом международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Дижон, Франция, 2015);
- 24-ой международной конференции по молекулярной спектроскопии высокого разрешения (Прага, Чехия, 2016);
- 7. 25-ом международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Хельсинки, Финляндия, 2017);
- 8. 3-ей международной конференции по ангармонизму в молекулах и кластерах среднего размера (Будапешт, Венгрия, 2018);
- 9. 25-ой международной конференции по молекулярной спектроскопии высокого разрешения (Бильбао, Испания, 2018);
- 10. 26-ом международном коллоквиуме по молекулярной спектроскопии высокого разрешения (Дижон, Франция, 2019).

Отдельные части работы представлялись в рамках научных докладов в качестве приглашенного ученого в Техническом университете Брауншвейга (г. Брауншвейг, Германия), ЕТН Zurich (г. Цюрих, Швейцария) и Бургундском университете (г. Дижон, Франция).

В общей сложности было сделано более 40 докладов.

Степень достоверности полученных результатов. Достоверность полученных результатов подтверждается использованием современных методов и

подходов в планировании и реализации как экспериментальных, так и теоретических исследований, корреляцией (там, где это возможно проследить) результатов автора с известными ранее результатами и выводами. Результаты, полученные при выполнении исследований, находятся в поле современных парадигм о взаимосвязи структуры и свойств веществ и не противоречат фундаментальным теоретическим воззрениям на природу происходящих в объектах микромира процессов.

Публикации по теме научного доклада. Результаты проведенных исследований опубликованы в 52 статьях уровня Q1-Q2 (в 2012-2021 гг.) в рецензируемых журналах, индексируемых Scopus и WoS.

Личный вклад автора. Автор принимал непосредственное участие в определении направления исследования, планировании и проведении экспериментов, анализе и интерпретации экспериментальных данных, обобщении результатов и написании статей. Под руководством автора по теме данной работы подготовлена и защищена диссертация на соискание ученой степени кандидата физико-математических наук и 9 магистерских диссертаций. Еще одна диссертация на соискание ученой степени кандидата физико-математических наук и одна диссертация на соискание степени PhD планируются на 2022 год. Отдельные части работы выполнялись при поддержке грантов Президента Российской Федерации для молодых российских ученых (Исследование фундаментальных свойств веществ и внутренней динамики молекул методами спектроскопии высокого разрешения, 2014-2015 гг.), РФФИ (Исследование спектров высокого разрешения этилена: энергетическая структура, интенсивности и полуширины линий колебательно-вращательных спектров, 2018-2020 гг.), РНФ (Исследование фундаментальных свойств веществ методами спектроскопии высокого разрешения, 2018-2020 гг.), международных грантов ДААД, Германия (Спектроскопия высокого разрешения молекулы сероводорода SO₂ и его дейтерированых изотопологов, 2015 г.), концерна Фольксваген, Германия (Соединения серы в астрохимии и астробиологии: лабораторные и теоретические исследования, 2016-2020 гг.; Колебательное возбуждение органических молекул в космосе и атмосферах: экспериментальные и теоретические исследования, 2020-2022 гг.) и проектов ВИУ (2016-2020 гг.).

2 ОСНОВНОЕ СОДЕРЖАНИЕ ДОКЛАДА

2.1 Модификация и усовершенствование метода решения обратной спектроскопической задачи для молекул типа асимметричного волчка с учетом большого числа взаимодействующих состояний ROVENATOM.

Развитый ранее в работе ¹ метод решения обратной спектроскопической задачи для молекул типа асимметричного волчка, который затем использовался авторами для исследования спектров высокого разрешения различных молекул типа XY₂ и дважды дейтерированного изоторолога CH_2D_2 метана (все симметрии C_{2v}), в рамках данной работы был модифицирован с целью возможности его применения к более сложным объектам, в том числе применительно к молекулам иной симметрии, а также и для возможности учитывать при анализе экспериментальных данных наличие колебательного квази-континуума (десятков близко расположенных колебательно-вращательных полос различной симметрии). Основой для развиваемого подхода послужила модель гамильтониана молекулы типа асимметричного волчка из вышеуказанной работы:

$$H^{vib.-rot.} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H_{v\tilde{v}}, \qquad (2.1)$$

¹Ulenikov, O.N. High-Resolution Fourier Transform Spectra of CH₂D₂: Pentade of the Lowest Interacting Vibrational Bands $\nu_4(A_1)$, $\nu_7(B_1)$, $\nu_9(B_2)$, $\nu_5(A_2)$, and $\nu_3(A_1)$ / O.N. Ulenikov, R.N. Tolchenov, M. Koivusaari, S. Alanko, R. Anttila // Journal of Molecular Spectroscopy. - 1994 - Vol. 167. - P. 109-130.

$$H^{vv} = E^{v} + [A^{v} - \frac{1}{2}(B^{v} + C^{v})]J_{z}^{2} + \frac{1}{2}(B^{v} + C^{v})J^{2} + \frac{1}{2}(B^{v} - C^{v})J_{xy}^{2} -\Delta_{K}^{v}J_{z}^{4} - \Delta_{JK}^{v}J_{z}^{2}J^{2} - \Delta_{J}^{v}J^{4} - \delta_{K}^{v}[J_{z}^{2}, J_{xy}^{2}] - 2\delta_{J}^{v}J^{2}J_{xy}^{2} + H_{K}^{v}J_{z}^{6} + H_{KJ}^{v}J_{z}^{4}J^{2} + H_{JK}^{v}J_{z}^{2}J^{4} + H_{J}^{v}J^{6} + [J_{xy}^{2}, h_{K}^{v}J_{z}^{4} + h_{JK}^{v}J^{2}J_{z}^{2} + h_{J}^{v}J^{4}] + L_{K}^{v}J_{z}^{8} + L_{KKJ}^{v}J_{z}^{6}J^{2} + L_{JK}^{v}J_{z}^{4}J^{4} + L_{KJJ}^{v}J_{z}^{2}J^{6} + L_{J}^{v}J^{8} + [J_{xy}^{2}, l_{K}^{v}J_{z}^{6} + l_{KJ}^{v}J^{2}J_{z}^{4} + l_{JK}^{v}J^{4}J_{z}^{2} + l_{J}^{v}J^{6}] + .(2.2)$$

 J_{α} ($\alpha = x, y, z$) - это компоненты оператора углового момента относительно фиксированной в молекуле координатной системы; $J_{xy}^2 = J_x^2 - J_y^2$; [..., ...] - обозначение антикоммутатора; A^v , B^v , и C^v - вращательные параметры колебательного состояния (v), и остальные параметры - это параметры центробежного искажения различного порядка малости.

При $v \neq \tilde{v}$ соответствующие операторы в (2.1) описывают резонансные эффекты различного типа. В частности, если $v \neq \tilde{v}$, но оба колебательных состояния имеют одинаковую симметрию, то оператор $H_{v\tilde{v}}$ в (2.1) соответствует резонансу Ферми (в том числе, резонанс Дарлинга-Деннисона или любой другой чисто колебательный резонанс):

$$H_{v\tilde{v}} = {}^{v\tilde{v}}F_0 + {}^{v\tilde{v}}F_KJ_z^2 + {}^{v\tilde{v}}F_JJ^2 - {}^{v\tilde{v}}F_{KK}J_z^4 - {}^{v\tilde{v}}F_{KJ}J_z^2J^2 - {}^{v\tilde{v}}F_{JJ}J^4 + \dots + {}^{v\tilde{v}}F_{xy}(J_x^2 - J_y^2) - {}^{v\tilde{v}}F_{Kxy}[J_z^2, (J_x^2 - J_y^2)] - {}^{v\tilde{v}}F_{Jxy}J^2(J_x^2 - J_y^2) + .(2.3)$$

При $v \neq \tilde{v}$ и разных симметриях колебательных состояний операторы $H^{v\tilde{v}}$ соответствуют трем различным типам резонанса Кориолиса. При этом, если симметрия произведения колебательных функций v и \tilde{v} совпадает с симметрией вращательного оператора J_y , то соответствующий оператор описывает резонанс Кориолиса a—типа и имеет вид:

$$H_{v\tilde{v}} = iJ_{y}H_{v\tilde{v}}^{(1)} + H_{v\tilde{v}}^{(1)}iJ_{y} + [J_{x}, J_{z}]H_{v\tilde{v}}^{(2)} + H_{v\tilde{v}}^{(2)}[J_{x}, J_{z}] + [iJ_{y}, (J_{x}^{2} - J_{y}^{2})]H_{v\tilde{v}}^{(3)} + H_{v\tilde{v}}^{(3)}[iJ_{y}, (J_{x}^{2} - J_{y}^{2})] + \dots$$
(2.4)

Аналогично, если симметрия произведения колебательных функций v и \tilde{v} совпадает с симметрией вращательного оператора J_x , то соответствующий оператор описывает резонанс Кориолиса *b*-типа и имеет вид:

$$H_{v\tilde{v}} = iJ_{x}H_{v\tilde{v}}^{(1)} + H_{v\tilde{v}}^{(1)}iJ_{x} + [J_{y}, J_{z}]H_{v\tilde{v}}^{(2)} + H_{v\tilde{v}}^{(2)}[J_{y}, J_{z}] + [iJ_{x}, (J_{x}^{2} - J_{y}^{2})]H_{v\tilde{v}}^{(3)} + H_{v\tilde{v}}^{(3)}[iJ_{x}, (J_{x}^{2} - J_{y}^{2})] + \dots,$$

$$(2.5)$$

и если симметрия произведения колебательных функций v и \tilde{v} совпадает с симметрией вращательного оператора J_z , то соответствующий оператор описывает резонанс Кориолиса *с*-типа и имеет вид:

$$H_{v\tilde{v}} = iJ_{z}H_{v\tilde{v}}^{(1)} + [J_{x}, J_{y}]H_{v\tilde{v}}^{(2)} + H_{v\tilde{v}}^{(2)}[J_{x}, J_{y}] + [iJ_{z}, (J_{x}^{2} - J_{y}^{2})]H_{v\tilde{v}}^{(3)} + H_{v\tilde{v}}^{(3)}[iJ_{z}, (J_{x}^{2} - J_{y}^{2})] + \dots$$
(2.6)

Отдельные входящие в (2.4)-(2.6) операторы $H_{v\tilde{v}}^{(i)}$, i = 1, 2, 3, ... в общем виде можно представить как:

$$H_{v\tilde{v}}^{(i)} = \frac{1}{2} {}^{v\tilde{v}}C^{i} + {}^{v\tilde{v}}C^{i}_{K}J^{2}_{z} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{J}J^{2} + {}^{v\tilde{v}}C^{i}_{KK}J^{4}_{z} + {}^{v\tilde{v}}C^{i}_{KJ}J^{2}_{z}J^{2} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{JJ}J^{4} + {}^{v\tilde{v}}C^{i}_{KKJ}J^{2}_{z}J^{2} + {}^{v\tilde{v}}C^{i}_{KKJ}J^{4}_{z}J^{2} + {}^{v\tilde{v}}C^{i}_{KJJ}J^{2}_{z}J^{4} + \frac{1}{2} {}^{v\tilde{v}}C^{i}_{JJJ}J^{6} + \dots$$
(2.7)

Модификация подхода, алгоритмов и соответствующего комплекса компьютерных программ на языке FORTRAN включала в себя три пункта:

(a) распространение метода на молекулы других типов симметрии повлекло за собой необходимость модификации схемы резонансных взаимодействий в каждом конкретном типе молекул симметрии C_2 , C_s , C_i , C_{2v} , C_{2h} , D_2 , D_{2h} ;

(б) для молекул типа асимметричного волчка низкой симметрии возникла необходимость принимать во внимание возможность проявления в спектрах так называемых гибридных полос поглощения, что потребовало модификации как схемы интерпретации спектров, так и модификации модели и пакета программ;
(в) с увеличением числа атомов в молекуле (в нашем случае – при исследовании спектров этилена и его изотопологов) возникает необходимость одновременного учета большого числа сильно взаимодействующих близко расположенных колебательно-вращательных полос (колебательный квазиконтинуум). В подобных условиях при попытке решения обратной спектроскопической задачи, с одной стороны, возникает необходимость учета большого числа параметров резонансных взаимодействий, а, с другой стороны, начинают проявляться многочисленные и сильные корреляции между спектроскопическими параметрами (в первую очередь, между параметрами центробежного искажения) различных колебательно-вращательных полос. Обратная спектроскопическая задача при этом становится некорректной и требует для своего решения так называемой регуляризации. Реализация пунктов (a) и (б) не потребовала принципиальных изменений в модели и свелась к модификации программного обеспечения для интерпретации спектров и решения обратной спектроскопической задачи. В то же время, для реализации третьего пункта (а именно, для выполнения регуляризации решаемых обратных спектроскопических задач) возникла необходимость в выполнении специальных исследований и создании пакета программ на языке программирования MAPLE. Наиболее разумным и эффективным способом регуляризации обратных задач, подобных решаемым в данной работе, является численный расчет (оценка) значений части из коррелирующих друг с другом параметров модели, исходя из физических соображений. В нашем случае делалось два типа таких оценок. Во-первых, на основе общей колебательновращательной теории² было показано, что с точностью 1-2 % все основные (наибольшие) параметры резонансных взаимодействий типа Кориолиса (являющиеся причиной так называемых случайных резонансов) могут быть оценены, исходя из практически всегда известных гармонических частот/центров основных колебательных полос исследуемой молекулы (на этой основе создана программа на языке MAPLE для выполнения соответствующих расчетов). Во-вторых, в рамках разрабатываемой в коллективе системы аналитических вычислений для молекул типа асимметричного волчка с учетом четвертого порядка операторной теории возмущений³ было показано, что квартичные и секстичные центробежные параметры эффективных гамильтонианов исследуемых в данной работе молекул отличаются при переходе от одного колебательного состояния

 $^{^{2}}$ Papousek, D
 Molecular vibrational–rotational spectra / D. Papousek, M.R. Aliev // Amsterdam: Elsevier; 1982.

³Ulenikov, O.N. Analytical computer calculations for polyatomic molecules: anharmonic, resonance interaction, ro-vibrational, centrifugal distortional parameters for asymmetric top molecules/ O.N. Ulenikov, A.S. Zhilyakov, E.S. Bekhtereva, **O.V. Gromova** // *HRMS*, 26th Colloquium, Dijon, France, 26 - 30 Aug, 2019

к другому не более чем на 5-10 %. Это обстоятельство послужило основой для выполнения дополнительной регуляризации решаемых обратных спектроскопических задач и дало нам возможность специальным образом модифицировать программный комплекс для решения обратной спектроскопической задачи, позволяя при необходимости единообразно варьировать одноименные параметры центробежного искажения различных колебательно-вращательных полос. Как уже отмечалось выше, развитый подход и созданный на его основе комплекс программ на языках FORTRAN и MAPLE использовался далее для обширных исследований спектров высокого разрешения различного типа молекул.

2.1.1 Молекула этилена

В данном разделе приводятся результаты использования разработанных подходов и созданных на их основе компьютерных программ для исследования спектров высокого разрешения (положения линий поглощения) различных изотопологов молекулы этилена (все приведенные здесь результаты являются новыми, либо существенно превосходят известные на момент выполнения исследований литературные данные). Этилен – естественная составляющая Земной атмосферы, оказывающая влияние на физико-химические процессы в атмосфере и глобальный климат. Благодаря высокой реакционной способности по отношению к гидроксильным (OH) радикалам, этилен играет значительную роль в тропосферной химии и образовании озона.^{4,5} Этилен действует как гормон в растениях, и его роль в биохимии растений, физиологии, метаболизме млекопитающих и экологии является предметом обширных исследований.^{6,7} Вклад этилена в химию атмосферы делает этилен климатически значимым газом, и его концентрация в воздухе, источники и поглотители представляют интерес для атмосферной науки. Этилен является одним из наиболее важных веществ для изучения в астрофизике (Betz⁸, Griffith et al.⁹, Schulz et al.¹⁰, Cernicharo et al.¹¹) и был найден в атмоферах планет-гигантов Солнечной системы и их спутников (Saslaw и Wildey¹², Encrenaz et al.,¹³ Bar–Nun и Podolak,¹⁴ Hanel et

 $^4 \rm Abeles, F.B$ Ethylene: an urban air pollutant / F.B. Abeles, H. E. Heggetad // J Air Pollut Control Assoc. - 1973. - Vol .23. - P. 517–21.

 5 Niki, H. Mechanism for hydroxyl radical initiated oxidation of olefin–Nitric oxide mixtures in parts per million concentrations / H. Niki, P.D. Maker, C.M. Savage, L.P. Breitenbach // J Phys Chem - 1978. - Vol. 82. - P. 135-7.

⁶Coheur, P.F. ACE–FTS observation of a young biomass burning plume: First reported measurements of C_2H_4 , C_3H_6O , H_2CO and PAN by infrared occultation from space / P.F. Coheur, H. Herbin, C. Clerbaux, D. Hurtmans, C. Wespes, M. Carleer, S. Turquety, C.P. Rinsland, J. Remedios, D. Hauglustaine, C.D. Boone, P.F. Bernath // *Atm Chem Phys.* -2007. – Vol. 7. – P. 5437–46.

⁷Wang, F. Ethylene signaling and regulation in plant growth and stress responses / F. Wang, X. Cui, Y. Sun, C-H. Dong // Plant Cell Reports. -2013. -32. - P. 1099-109.

⁸Betz, L. Ethylene in IRC.10216.// Astrophys J. -1981. - Vol. 244. - P. L103-5.

 9 Griffith CA. Thermal infrared imagining spectroscopy of Shoemaker–Levy 9 impact sities: spatial and vertical distributions of NH₃, C₂H₄, and 10 μ m dust emission / C.A. Griffith, B. Bézard, T.K. Greathouse, D.M. Kelly, J.H. Lacy, K.S. Noll // *Icarus.* –1997. – Vol. 128. – P. 275–93.

 10 Schulz, B. Detection of C₂H₄ in Neptube fom ISO/PHTS observations / B. Schulz, T. Encrenaz, B. Bézard, P. Romani, E. Lellouch, S.K. Atreya // Astron Astrophys. -1999. - Vol. 350. - P. L13-7.

¹¹Cernicharo, J. Walters LBFM. Methylpolyynes and small hydrocarbons in CRL 618 / J. Cernicharo, A.M. Heras, J.R. Pardo, A.G.G.M. Tielens, M. Guelin, E. Dartois et al. // Astrophys J. -2001. - Vol. 546. - P. L127-30.

¹²Saslaw, W.C. On the chemistry of Jupiter's upper atmosphere / W.C. Saslaw, R.L. Wildey // *Icarus.* -1967. - Vol. 7. - P. 85-93.

 $^{^{13}}$ Encrenaz, T. A tentative identification of C₂H₄ in the spectrum of Saturn / T. Encrenaz, M. Combes, Y. Zeau, L. Vapillon, J. Berenze // Astron Astrophys J. –1975. – Vol. 42. – P. 355–6.

¹⁴Bar–Nun, A. Podolak M. The photochemistry of hydrocarbons in Titan's atmosphere / A. Bar–Nun, M. Podolak // *Icarus.* –1979. – Vol. 38. – P. 115–22.

al.,¹⁵ Maguire et al.,¹⁶ Kunde et al.,¹⁷ Kostiuk et al.,¹⁸,¹⁹ Bezard et al.,²⁰ Coustenis et al.,^{21,22} Vervack et al.,²³ Romani et al.,²⁴ Greathouse et al.,²⁵ Hesman et al.²⁶) Для физической химии этилен представляет большой интерес как молекула – прототип многих органических молекул с точки зрения исследования и лучшего понимания их спектров, динамики и внутримолекулярных потенциальных гиперповерхностей. Важно, что понимание многих как чисто академических, так и прикладных проблем требует высокоточной спектроскопической информации о свойствах не только наиболее распространенной в природе молекулы С₂Н₄, но и многочисленных стабильных изотопологов этилена. В рамках данной диссертационной работы спектры высокого разрешения различных изотопологов этилена регистрировались в различных диапазонах шкалы длин волн на Фурье-спектрометрах высокого разрешения Bruker IFS 120, Bruker IFS 125 и Bruker IFS 125 (Цюрих прототип) в Техническом университете Брауншвейга (Германия), Университета Оулу (Финляндия) и Технологическом университете Наньянг (Сингапур). В качестве иллюстрации обзорные спектры девяти различных изотопологов этилена в диапазоне $600-1600 \text{ см}^{-1}$ приведены на рисунке 2.1. Можно видеть, что количество различных полос поглощения на спектрах 4-8 существенно больше и сами спектры существенно сложнее по сравнению с

 20 Bézard, B. Detection of ethylene (C₂H₄) on Jupiter and Saturn in non–auroral regions / B. Bézard, J.L. Moses, J. Lacy, T. Greathouse, M. Richter, C. Griffith // Bull Am Astron Soc. -2001. - Vol. 33. - P. 1079.

²¹Coustenis, A. Titan's atmosphere from ISO mid–infrared spectroscopy / A. Coustenis, A. Salama, B. Schulz,
 S. Ott, E. Lellouch, Th. Encrenaz et al. // *Icarus.* -2003. - Vol. 161. - P. 383-403.

¹⁵Hanel, R.A. Infrared observations of the saturnian system from Voyager 1 / R.A. Hanel, B.J. Conrath, F.M. Flasar, V. Kunde, W. Maguire, J. Pearl et al.// *Science.* –1981. – Vol. 212. – P. 192–200.

 $^{^{16}}$ Maguire, W.C. $\rm C_3H_8$ and $\rm C_3H_4$ in Titan's atmosphere / W.C. Maguire, R.A. Hanel, D.E. Jennings, V.G. Kunde, R.E. Samuelson // Nature. –1981. – Vol. 292. – P. 683–6.

 $^{^{17}}$ Kunde, V.G. C₂H₄, HC₃N and C₂N₂ in Titan's atmosphere / V.G. Kunde, A.C. Aikin, R.A. Hanel, D.E. Jennings, W.C. Maguire, R.E. Samuelson // Nature. -1981. – Vol. 292. – P. 686–8.

¹⁸Kostiuk, T. Infrared studies of hydrocarbons on Jupiter / T. Kostiuk, F. Espenak, M.J. Mumma, P. Romani // *Infrared Phys.* –1989. – Vol. 29. – P. 199–204.

 $^{^{19}}$ Kostiuk, T.Temperature and abundances in the Jovian auroral stratosphere 2. Eyhylene as a probe of the microbar region / T. Kostiuk, P. Romani, F. Espenak, T.A. Livengood, J.J. Goldstein //*J Geophys Res.* –1993. – Vol. 98. – P. 18823–30.

²²Coustenis, A. The composition of Titan's stratosphere from Cassini/CIRS mid-infrared spectra / A. Coustenis, R.K. Achterberg, B.J. Conrath, D.E. Jennings, A. Marten, D. Gautier et al. // *Icarus.* -2007. – Vol. 189. – P. 35–62.

 $^{^{23}}$ Vervack Jr, R.J. New perspectives on Titan's upper atmosphere from a reanalysis of the Voyager 1 UVS solar occultations / R.J. Vervack Jr, B.R. Sandel, D.F. Strobel // *Icarus.* -2004. - Vol. 170. - P. 91–112.

²⁴Romani, P.N. Temporally varying ethylene emission on Jupiter / P.N. Romani, D.E. Jennings, G.L. Bjoraker, P.V. Sada, G.H. McCabe, R.J. Boyle // *Icarus.* -2008. – Vol. 198. – P. 420–34.

 $^{^{25}}$ Greathouse, T.K. A spatially resolved high spectral resolution study of Neptune's stratosphere / T.K. Greathouse, M. Ritcher, J. Lacy, J. Moses, G. Orton, T. Encrenaz // *Icarus.* -2011. – Vol. 214. – P. 606–21.

²⁶Hesman, B.E. Elusive ethylene detected in Saturn's northern storm region / B.E. Hesman, G.L. Bjoraker, P.V. Sada, R.K. Achterberg, D.E. Jennings, P.N. Romani, A.W. Lunsford, L.N. Fletcher, R.J. Boyle, A.A. Simon-Miller, C.A. Nixon, P.G.J. Irwin // Astrophys J. –2012. – Vol. 760. – P. 24.

первыми тремя и последним. Данный факт является ярким проявлением различной симметрии изотопологов этилена. Несколько спектров высокого разрешения в районах Q-ветвей различных изотопологов приведены на рисунках 2.2-2.5 в качестве иллюстрации качества экспериментально зарегистрированных спектров. Отсюда же можно увидеть чрезвычайно сложную и запутанную картину отдельных серий переходов, причиной чему являются многочисленные резонансные взаимодействия, корректный учет которых стал возможен в рамках разработанного в работе подхода. В процессе исследования спектров всех без исключения изотопологов было выяснено, что известные из литературы параметры (вращательные энергии) их основных колебательных состояний плохо (иногда до десятков раз хуже, чем точности нашего эксперимента) описывают «экспериментальные» комбинационные разности. В связи с этим, для всех девяти изотопологов на основе анализа экспериментальных данных были определены комбинационные разности основных колебательных состояний (в общей сложности более 30 000), из анализа которых были определены улучшенные параметры основных колебательных состояний и соответствующая их вращательная структура. Эта новая информация использовалась затем в процессе интерпретации спектров. В общей сложности для девяти изотопологов этилена было исследовано более 60 полос поглощения, содержащих в общей сложности более 135 000 колебательно-вращательных переходов (статистическая информация об исследованных полосах поглощения приведена в таблице 2.1). На этой основе, в свою очередь, как результат решения соответствующих обратных задач, были определены параметры эффективных гамильтонианов с учетом всех необходимых для каждой задачи резонансных эффектов (в силу ограниченности объема данного текста, соответствующая информация здесь не приводится, однако читатель может найти все полученные результаты в цитируемых в работе статьях).

Рисунок 2.1. Экспериментально зарегистрированные спектры высокого разрешения в диапазоне нижних фундаментальных полос для молекулы этилена и ее изотопологов.

Рисунок 2.2. Фрагмент спектра высокого разрешения молекулы ${}^{12}C_2H_2D_2 - cis$ в районе *Q*-ветви полосы ν_3 . Аномально сложная картина *Q*-кластеров обусловлена наличием сильных резонансных взаимодействий с полосами ν_{12} и $2\nu_{10}$.

Рисунок 2.3. Фрагмент спектра высокого разрешения молекулы C_2HD_3 в районе Q-ветви полосы ν_{12} . Экспериментальные условия: давление образца 100 Па, оптическая длина пути поглощения 4 м; комнатная температура; число сканов 350.

Рисунок 2.4. Фрагмент спектра высокого разрешения молекулы $CH_2=CD_2$ в районе Q-ветви полосы ν_{12} . Экспериментальные условия: давление образца 30 Па, оптическая длина пути поглощения 16 м; комнатная температура; число сканов 560. Для серии $^{Q}Q_{15}(J)$ переходов (для $J \ge 24$) можно видеть влияние сильного резонансного взаимодействия между полосами ($v_{12} = 1, A_1$) и ($v_7 = 2, A_1$).

Полоса	Центр $/$ см ⁻¹	J^{MAKC}	K_a^{MAKC}	Число переходов	Число энергий
	1	$^{12}\mathbf{C}_{2}\mathbf{H}_{4}$			
1	2	3	4	5	6
$\nu_4,^{27}$	1025.5898	36	11	1118	302
$\nu_7, {}^{27}$	948.7709	50	21	5062	1307
$ u_{10},^{27}$	825.9268	40	17	4676	916
$ u_{12}, {}^{27}$	1442.4424	48	17	2902	1086
$\nu_7 + \nu_{10} - \nu_{10}, {}^{28}$	955.0821	27	14	930	404
$\nu_{10} + \nu_{12} - \nu_{10},^{28}$	1439.0381	20	9	370	185
$ u_8 + u_{10},^{29} $	1766.6650	35	18	1570	598

Таблица 2.1: Статистическая информация для полос молекулы этилена и ее изотопологов.

²⁷Ulenikov, O. N. High resolution spectroscopic study of C₂H₄: Re-analysis of the ground state and ν_4 , ν_7 , ν_{10} , and ν_{12} vibrational bands / O. N. Ulenikov, **O. V. Gromova**, Yu. S. Aslapovskaya, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 118. – P. 14-25.

²⁸Ulenikov, O. N. High resolution FTIR study of the $\nu_7 + \nu_{10} - \nu_{10}$ and $\nu_{10} + \nu_{12} - \nu_{10}$ "hot" bands of C₂H₄ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, G. A. Onopenko, Yu. S. Aslapovskaya, K.-H. Gericke, S. Bauerecker, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2014. – Vol. 149. – P. 318-333.

²⁹Ulenikov, O. N. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The $\nu_8 + \nu_{10}$ band of the ¹²C₂H₄ molecule / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, N. V. Kashirina, S. Bauerecker,

п	тт / —1	TMAKC	темакс	TT	TT		
Полоса	центр / см	Jmane	K _a mane	Число	Число 		
	19	a12 arr		переходов	энергий		
	15	$C^{12}CH_4$					
	2	3	4	5	6		
$ u_{12},^{30}$	1439.3461	52	18	2410	950		
$\nu_2,^{30}$	1606.0945	30	11	910	395		
$ u_3,^{30}$	1336.8380	22	8	480	211		
$2\nu_{10},^{30}$	1659.9060	27	12	14	6		
	1	$^{3}\mathbf{C}_{2}\mathbf{H}_{4}$					
1	2	3	4	5	6		
$\nu_4,^{31}$	1025.8043	38	10	660	228		
$\nu_{7},^{31}$	943.7625	43	21	3870	1049		
$ u_{10},^{31}$	824.9151	33	16	2420	593		
$\nu_{12},^{31}$	1436.6510	52	18	2550	1064		
$\nu_7 + \nu_{10} - \nu_{10},^{32}$		20	10	640	168		
$\nu_{10} + \nu_{12} - \nu_{10},^{32}$		23	9	270	136		
$\nu_8 + \nu_{10},^{33}$	1752.6841	34	17	1200	516		
	(C_2H_3D					
1	2	3	4	5	6		
$\nu_{10},^{34}$	732.1426	31	20	4650	671		
$\nu_{7},^{34}$	806.4722	46	18	8500	1220		
$\nu_{8},^{34}$	943.5032	50	26	6530	952		
$ u_4,^{34}$	1000.0395	33	11	5450	781		
$\nu_{6},^{34}$	1125.2769	42	21	2800	404		
$\mathbf{C}_{2}\mathbf{H}_{2}\mathbf{D}_{2}-trans$							
1	2	3	4	5	6		
$\nu_8 + {\nu_{10}}^{35}$	1536.9380	31	21	2361	550		
$ u_7 + u_8,^{35} $	1586.1607	44	18	2150	656		
$\nu_6 + \nu_{10},^{35}$	1674.5950	28	18	2021	441		

V.-M. Horneman // Journal of Molecular Spectroscopy. - 2015. - Vol. 313. - P. 4-13.

³⁰Ulenikov, O. N. Ethylene-1-¹³C (¹³C¹²CH₄): First analysis of the ν_2 , ν_3 and $2\nu_{10}$ bands and re–analysis of the ν_{12} band and of the ground vibrational state / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, Yu. S. Aslapovskaya, T. L. Tan, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2017. – Vol. 187. – P. 403-413.

³¹Ulenikov, O. N. High resolution ro-vibrational analysis of interacting bands ν_4 , ν_7 , ν_{10} , and ν_{12} of ¹³C₂H₄ / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, C. Maul, S. Bauerecker, M. G. Gabona, T. L. Tan // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2014. – Vol. 151. – P. 224-238.

³²Ulenikov, O. N. Ro-vibrational analysis of the hot bands of ¹³C₂H₄: $\nu_7 + \nu_{10} - \nu_{10}$ and $\nu_{10} + \nu_{12} - \nu_{10} / O. N. Ulenikov,$ **O. V. Gromova**, E. S. Bekhtereva, N. V. Kashirina, G. A. Onopenko, C. Maul, S. Bauerecker // Journal of Molecular Spectroscopy. – 2015. – Vol. 317. – P. 32-40.

³³Ulenikov, O. N. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The $\nu_8 + \nu_{10}$ band of ${}^{13}C_2H_4 / O.$ N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2015. – Vol. 164. – P. 117-128.

³⁴Zhdanovich S.A., Kuzhnetsov S.I., Zhange F., **Gromova O.V.**, Bekhtereva E.S., Ulenikov O.N., Bauerecker S. Ethylene C₂H₃D isotopologue: High resolution study of ν_6 , ν_4 , ν_8 , ν_7 and ν_{10} fundamentals // The 24th International Conference on High Resolution Molecular Spectroscopy: Book of Abstracts. Prague, Czech Republic, August 30 – September 03, 2016. – P.175.

$\nu_6 + \nu_7,^{35}$	1727.1767	27	17	1699	435			
Полоса	Центр /см ⁻¹	Јмакс	K_a^{MAKC}	Число переходов	Число энергий			
$CH_2 = CD_2$								
1	2	3	4	5	6			
$\nu_{10},^{36}$	684.6410	31	20	1450	519			
$\nu_{7},^{36}$	750.5677	46	18	3170	798			
$ u_4,^{36}$	890.4378	33	11	186	39			
$ u_{8},^{36}$	943.4057	50	26	3980	1070			
$ u_3,^{36}$	1029.8555	44	20	1500	714			
$ u_{6},^{36}$	1142.2742	42	21	1900	780			
$2\nu_{10},^{37}$	1371.493	24	7	320	180			
$\nu_{12},^{37}$	1383.9443	48	20	1960	959			
	C ₂ E	$\mathbf{I}_2\mathbf{D}_2 - ci$	s					
1	2	3	4	5	6			
$\nu_{12}, {}^{38}$	1341.1505	50	21	3836	1106			
$2\nu_{10},^{39}$	1330.6509	35	7	89	28			
$ u_3,^{39}$	1217.8848	30	13	3836	411			
$\nu_8 + \nu_{10},^{39}$	1423.9862	25	2	3	1			
$ u_{10},^{40}$	662.8704	35	18	1978	576			
$ u_8,^{40}$	760.0106	18	7	36	7			
$ u_7,^{40}$	842.2092	45	22	4672	1091			
$\nu_4,^{40}$	983.5527	19	7	23	6			
$ u_6,^{40}$	1039.7670	42	12	3483	853			
$ u_2,^{41}$	1572.6891	21	7	327	81			
$\nu_7 + \nu_8,^{41}$	1600.0152	40	16	1511	568			

 35 Ulenikov, O. N. First high resolution study of the interacting $\nu_8 + \nu_{10}$, $\nu_6 + \nu_{10}$, $\nu_6 + \nu_7$ bands and re-analysis of the $\nu_7 + \nu_8$ band of $trans - d_2$ -ethylene / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, Yu. S. Aslapovskaya, A. G. Ziatkova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2016. - Vol. 184. - P. 76-88.

³⁶Ulenikov, O. N. Study of the high resolution FTIR spectrum of $CH_2 = CD_2$ in the region of 1300-1450 cm⁻¹: The $\nu_{12}(A_1)$ and $2\nu_{10}(A_1)$ bands / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, K. B. Berezkin, E. A. Sklyarova, C. Maul, K.-H. Gericke, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2015. - Vol. 161. - P. 180-196.

³⁷Ulenikov, O. N. Study of resonance interactions in polyatomic molecules on the basis of highly accurate experimental data: Set of strongly interacting Bands $\nu_{10}(B_1)$, $\nu_7(B_2)$, $\nu_4(A_2)$, $\nu_8(B_2)$, $\nu_3(A_1)$ and $\nu_6(B_1)$ of $CH_2=CD_2 / O. N.$ Ulenikov, O. V. Gromova, E. S. Bekhtereva, K. B. Berezkin, N. V. Kashirina, T. L. Tan, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 180. – P. 14-28.

³⁸Ulenikov, O. N. Re-analysis of the high resolution FTIR spectrum of $C_2H_2D_2 - cis$ in the region of 1280-1400 cm⁻¹ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, I. A. Konov, Y. V. Chertavskikh, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 170. – P. 69-82.

³⁹Ulenikov, O. N. Ro–vibrational analysis of the ${}^{12}C_2H_2D_2 - cis$ molecule spectra in the region of 1150–1450 cm⁻¹: The ν_{12} , ν_3 , $2\nu_{10}$ and $\nu_8 + \nu_{10}$ bands / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, Y. V. Konova, A. N. Kakaulin, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 250. No.107021.

⁴⁰Konov I.A., Chertavskikh Yu.V., **Gromova O.V.**, Bekhtereva E.S., Ulenikov O.N., Bauerecker S. High resolution analysis of the ν_4 , ν_6 , ν_7 , ν_8 and ν_{10} vibrational bands of $C_2H_2D_2 - cis$ // The 24th International Conference on High Resolution Molecular Spectroscopy: Book of Abstracts. Prague, Czech Republic, August 30 – September 03, 2016. – P.170.

$2\nu_7,^{41}$	1685.2895	25	9	508	173		
$ \nu_6 + \nu_{10},^{41} $	1698.0641	35	12	1021	357		
$\nu_2 + \nu_6,^{42}$	2608.4715	35	17	1987	623		
Полоса	Центр $/$ см $^{-1}$	J^{MAKC}	K_a^{MAKC}	Число	Число		
				переходов	энергий		
	($C_2 HD_3$					
1	2	3	4	5	6		
$\nu_{12},^{43}$	1288.6209	43	14	1748	585		
$2\nu_{10},^{43}$	1260.4880	16	10	14	8		
$\mathbf{C}_2\mathbf{D}_4$							
1	2	3	4	5	6		
$ u_{10},^{44}$	593.3420	47	27	5040	1247		
$ u_7,^{45}$	719.7701	59	33	5551	2105		
$ u_4,^{45}$	729.8672	37	8	143	37		
$\nu_{12},^{45}$	1076.9831	60	28	2849	1614		
$ u_7 + u_{10} - u_{10},^{46} $		25	18	740	233		
$\nu_{10} + \nu_{12} - \nu_{10},^{46}$		20	10	550	174		
$ u_9,^{47}$	2341.8350	41	24	4700	915		
$\nu_2 + \nu_7 + \nu_8,^{47}$	3005.2152	13	6	320	112		

⁴¹Konova Yu.V., Konov I.A., **Gromova O.V.**, Bekhtereva E.S., Bauerecker S, Ulenikov O.N. Analysis of resonans in the band located in the region of 1500–1750 cm⁻¹ in the $C_2H_2D_2-cis$ molecule// The 25th International Conference on High Resolution Molecular Spectroscopy: Book of Abstracts. Bilbao, Spain, September 03–07, –2018. – P.265.

⁴²Ulenikov, O. N. First high-resolution analysis of the $\nu_2 + \nu_6$ band of the $C_2H_2D_2 - cis$ isotopologue of ethylene / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Y. V. Konova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2019. - Vol. 233. - P. 99-109.

⁴³Ulenikov, O. N. First high resolution ro-vibrational analysis of C_2HD_3 in the region of the ν_{12} band / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, C. Sydow, M. Schiller, T. Blinzer, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2018. – Vol. 218. – P. 86-99.

⁴⁴Ulenikov, O. N. Extended high–resolution analysis of the ν_{10} band of C_2D_4 / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. L. Fomchenko, M. A. Merkulova, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2018. – Vol. 219. – P. 262-273.

⁴⁵lenikov, O. N. High resolution analysis of C_2D_4 in the region of 600-1150 cm⁻¹ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, F. Zhang, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 182. – P. 55-70.

⁴⁶Ulenikov, O. N. First study of the ro-vibrational structure of the g-symmetry vibrational states of C_2D_4 from the analysis of hot bands: The $\nu_7 + \nu_{10} - \nu_{10}$ and $\nu_{10} + \nu_{12} - \nu_{10}$ bands / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2017. - Vol. 187. - P. 178-189.

⁴⁷Fomchenko A.L., Kuznetsov A.V., Zhang F., **Gromova O.V.**, Pashayan-Leroy E. Study of the highresolution Fourier spectrum of the ν_9 and $\nu_2 + \nu_7 + \nu_8$ bands of the C₂D₄ molecule // Russian Physics Journal-2019. - Vol. 62(2). - P. 370-377.

Рисунок 2.5. Обзорные спектры молекулы C_2D_4 (верхняя часть рисунка) в области 1020 – 1140 см⁻¹. На средней и нижней частях приведены более детально фрагменты Q-ветви полосы ν_{12} . 27

2.1.2 Молекула сероводорода

Сероводород играет важную роль в процессах, происходящих в Земной атмосфере, в частности, образовываясь в больших количествах при извержении вулканов и в результате антропогенной деятельности человека. Принимая участие в серном «цикле серы», различные изотопологи сероводорода создают основу для изучения процессов, происходивших в ранней истории Земли⁴⁸. Известно, ^{49, 50, 51, 52, 53, 54, 55} что сероводород содержится в больших количествах в атмосферах планет — газовых гигантов Солнечной системы, внеземных планет, коричневых карликов, межзвездных облаках и т.д. При этом в межзвездной среде обнаружена не только основная модификация сероводорода, но и его различные изотопические разновидности.^{49, 56, 57, 58, 59, 60}

Как и в предыдущих разделах диссертации, экспериментальные спектры высокого разрешения различных изотопологов сероводорода ($H_2{}^{32}S$, $H_2{}^{33}S$, $H_2{}^{34}S$, $H_2{}^{36}S$, $HD{}^{32}S$, $HD{}^{33}S$, $HD{}^{34}S$, $D_2{}^{32}S$, $D_2{}^{34}S$) были зарегистрированы на Фурьеспектрометрах высокого разрешения Bruker IFS 120 и Bruker IFS 125 в Техническом университете Брауншвейга (Германия) и все исследования сероводорода выполнены впервые или с лучшими характеристиками, чем было известно в литературе на момент выполнения работ (в том числе, спектры изотополога $H_2{}^{36}S$

 $^{^{48}}$ Farquhar, J. Atmospheric influence of earth's earliest sulfur cycle / J. Farquhar, H. Bao, M. Thiemens // Science. -2000. – Vol. 289. – P. 756–758.

⁴⁹Thaddeus, P. Interstellar hydrogen sulfide / P. Thaddeus, R.W. Wilson, M.L. Kutner, K.B. Jefferts, A.A. Penzias // Astrophys J. –1972. – Vol. 176. – P. L73–76.

 $^{^{50}}$ Crovisier J. Physics and chemistry of comets: recent results from comets Hyakutake and Hale–Bopp: Answers to old questions and new enigmas. // Faraday Discuss. –1998. – Vol. 109. – P. 437–452.

⁵¹Wakelam, V. Sulphur–bearing species in the star forming region L1689N / V. Wakelam, A. Castets, C. Ceccarelli, B. Lefloch, E. Caux, L. Pagani // Astron Astrophys. -2004. - Vol. 413. - P. 609–622.

⁵²Visscher, C. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. II. Sulfur and phosphorus / C. Visscher, K. Lodders, B. Fegley Jr // Astron Astrophys. -2006. - Vol. 648. - P. 1181-1195.

⁵³Zahnle, K. Atmospheric sulfur photochemistry on hot jupiters / K. Zahnle, M.S. Marley, R.S. Freedman, K. Lodders, J.J. Fortney // Astrophys J. -2009. - Vol. 701. - P. L20-24.

⁵⁴Aladro, R. A λ = 1.3 mm and 2 mm molecular line survey towards M82 / R. Aladro, S. Martin, J. Martin-Pintado, R. Mauersberger, C. Henkel, B. Ocana Flaquer et al. // Astron Astrophys. -2011. - Vol. 535. - P. A84.
⁵⁵Justtanont, K. Herschel/hifi observations of o-rich agb stars: molecular inventory / K. Justtanont, T. Khouri,

M. Maercker, J. Alcolea, L. Decin, H. Olofsson et al. // Astron Astrophys. -2012. - Vol. 537. - P. A144.

⁵⁶Ukita, N. Hydrogen sulfide in a circumstellar envelope / N. Ukita, M. Morris // Astron Astrophys. -1983.
- Vol. 121. - P. 15–18.

 $^{^{57}}$ Minh, Y.C. Detection of interstellar hydrogen sulfide in cold, dark clouds / Y.C. Minh, W.M. Irvine, L.M. Ziurys // Astrophys J. -1989. – Vol. 345. – P. L63–66.

 $^{^{58}}$ Minh, Y.C. Observations of the H₂S toward OMC–1 / Y.C. Minh, L.M. Ziurys, W.M. Irvine, D. McGonagle // Astrophys J. –1990. – Vol. 360. – P. 136–141.

⁵⁹Macdonald, G.H. A 330–360 GHz spectral survey of G 34.3+0.15. I. Data and physical analysis / G.H. Macdonald, A.G. Gibb, R.J. Habing, T.J. Millar // Astron Astrophys Suppl. –1996. – Vol. 119. – P. 333–367.

⁶⁰Vastel, C. First detection of doubly deuterated hydrogen sulfide / C. Vastel, T.G. Phillips, C. Ceccarelli, J.C. Pearson // Astrophys J. –2003. – Vol. 593. – P. L97–L100.

ранее не были известны вообще). Статистическая информация о всех исследованных в работе молекулах и их полосах поглощения приведена в таблице 2.8. Как видно из таблицы, всего исследовано 37 полос поглощения, содержащих в общей сложности более 25 000 колебательно-вращательных линий, положения которых измерены с высокой точностью (порядка $1 \times 10^{-4} - 3 \times 10^{-4}$ см⁻¹). Как иллюстрация качества зарегистрированных спектров высокого разрешения различных изотопологов сероводорода, на фигурах 2.6, 2.8, 2.9 приведены спектры в различных участках шкалы длин волн. Полученные в результате решения обратных спектроскопических задач параметры эффективных гамильтонианов позволяют воспроизводить исходные спектры и предсказывать спектры в иных диапазонах с точностью не хуже экспериментальных ошибок в каждом конкретном случае. Для иллюстрации качества выполненного теоретического анализа на фигурах 2.7 и 2.9 помимо экспериментально зарегистрированных спектров приведены также соответствующие «симулированные» спектры, рассчитанные с использованием параметров эффективных гамильтонианов, полученных из решения обратных задач (при этом абсолютные интенсивности линий рассчитаны с использованием параметров эффективных дипольных моментов, о которых речь пойдет в следующем разделе научного доклада).

Полоса	Центр /см ⁻¹	J^{MAKC}	K_a^{MAKC}	Число переходов	Число энергий
		TT 320			
		\mathbf{H}_2 ⁵² S			
1	2	3	4	5	6
ν_2^{61}	1182.5770	24	17	1564	333
$2\nu_2 - {\nu_2}^{61}$		18	14	703	215
$4{\nu_2}^{62}$	4661.6729	17	8	505	132
$5{\nu_2}^{63}$	5797.2335	14	7	210	90

Таблица 2.2: Статистическая информация для полос молекулы сероводорода и его изотопологов.

⁶¹Ulenikov, O. N. Extended analysis of the high resolution FTIR spectra of $H_2^M S$ (M=32, 33, 34, 36) in the region of the bending fundamental band: The ν_2 and $2\nu_2 - \nu_2$ bands: Line positions, strengths, and pressure broadening widths / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, P. A. Glushkov, A. P. Scherbakov, V.-M. Horneman, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2018. - Vol. 216. - P. 76-98.

 62 Ulenikov, O. N. Ro-vibrational analysis of the first hexad of hydrogen sulfide: Line position and strength analysis of the 4ν₂ band of H₂³²S and H₂³⁴S for HITRAN applications / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, F. Zhang, N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 255. №.107236.

⁶³Ulenikov, O. N. Extended FTIR high resolution analysis of hydrogen sulfide in the region of the second

$\nu_1 + 3{\nu_2}^{63}$	6074.5814	13	8	331	108
$3\nu_2 + {\nu_3}^{63}$	6077.5953	14	11	288	104
$ u_1 + \nu_2 + {\nu_3}^{63} $	6289.1739	19	11	876	216
$2\nu_1 + {\nu_2}^{63}$	6288.1465	18	10	710	194
$\nu_2 + 2{\nu_3}^{63}$	6385.3720	11	5	37	9
Полоса	Центр $/$ см $^{-1}$	J^{MAKC}	K_a^{MAKC}	Число	Число
				переходов	энергий
		$\mathbf{H}_2{}^{34}\mathbf{S}$			
1	2	3	4	5	6
${\nu_2}^{61}$	1181.5042	20	14	1019	249
$2\nu_2 - {\nu_2}^{61}$		14	8	182	91
$\nu_1 + \nu_2 + {\nu_3}^{63}$	6283.9584	16	8	350	111
$2\nu_1 + {\nu_2}^{63}$	6283.0124	12	9	184	86
$4{\nu_2}^{62}$	4657.4934	13	5	69	38
		$\mathbf{H}_{2}{}^{33}\mathbf{S}$			
1	2	3	4	5	6
${\nu_2}^{61}$	1182.0242	17	14	685	216
$2\nu_2 - {\nu_2}^{61}$		9	6	23	17
$\nu_1 + \nu_2 + {\nu_3}^{63}$	6286.4841	12	8	177	70
		$\mathbf{H}_{2}{}^{36}\mathbf{S}$			
1	2	3	4	5	6
ν_2^{61}	1180.5428	11	8	103	60
		$\mathbf{D}_2^{32}\mathbf{S}$			
1	2	3	4	5	6
${\nu_2}^{64}$	855.4041	30	21	1742	535
$2{\nu_2}^{65}$	1705.1405	25	18	1440	342
$2\nu_2 - {\nu_2}^{65}$	849.7364	24	16	1078	
$3{ u_2}^{66}$	2549.0740	20	11	699	216
$\nu_1 + {\nu_2}^{67}$	2742.6659	28	18	1687	399

hexad: Line positions and ro-vibrational energies of $H_2^M S$ (M=32, 33, 34) / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, F. Zhang, C. Maul, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 240. \aleph .106710

⁶⁴Sydow, C. Extended analysis of the FTIR high–resolution spectrum of $D_2^{32}S$ in the region of the ν_2 band / C. Sydow, O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, P. A. Glushkov, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – Vol. 224. – P. 460-473.

⁶⁵Ulenikov, O. N. Comprehensive ro-vibrational analysis of di-deuterated hydrogen sulfide in the region of the ν_2 , $2\nu_2$ and $2\nu_2 - \nu_2$ bands: $D_2^{32}S$, $D_2^{34}S$ and $D_2^{33}S$ isotopologues / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, T. Ersin, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2020. - Vol. 252. No.107106.

⁶⁶Ulenikov, O. N. Line strength analysis of the second overtone $3\nu_2$ band of $D_2^{32}S$ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, Y. B. Morzhikova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2021. – Vol. 270. No.107686.

⁶⁷Ulenikov, O. N. Extended high resolution analysis of the second triad of $D_2^{32}S$, $D_2^{33}S$ and $D_2^{34}S / O. N. Ulenikov, E. S. Bekhtereva,$ **O. V. Gromova**, A. S. Belova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020.– Vol. 245. No.106879.

$ u_2 + {\nu_3}^{67} $	2754.4616	28	19	1841	439					
Полоса	Центр $/c M^{-1}$	J^{MAKC}	K_a^{MAKC}	Число	Число					
				переходов	энергий					
		$\mathbf{D}_2^{34}\mathbf{S}$								
1	2	3	4	5	6					
${\nu_2}^{64}$	853.9885	24	18	1227	367					
$2{\nu_2}^{65}$	1702.3231	20	12	537	193					
$2\nu_2 - {\nu_2}^{65}$	848.33457	17	9	321						
$ u_1 + {\nu_2}^{67} $	2738.3315	18	12	567	190					
$ u_2 + {\nu_3}^{67} $	2749.7439	23	12	648	220					
		$\mathbf{D}_2{}^{33}\mathbf{S}$								
1	2	3	4	5	6					
${\nu_2}^{64}$	854.6754	20	17	727	255					
$2{\nu_2}^{65}$	1703.6906	18	8	170	83					
$ u_1 + {\nu_2}^{67} $	2740.4339	14	1	22	12					
$ u_2 + {\nu_3}^{67} $	2752.0270	14	1	34	18					
$\mathbf{H}\mathbf{D}^{32}\mathbf{S}$										
1	2	3	4	5	6					
${\nu_2}^{68}$	1032.7152	25	17	2684	415					
${\nu_3}^{69}$	2621.4557	22	15	1533	304					
		$\mathbf{H}\mathbf{D}^{34}\mathbf{S}$								
1	2	3	4	5	6					
ν_2^{68}	1031.5076	21	14	1212	263					
		00								
		$HD^{33}S$								
1	2	3	4	5	6					
${ u_2}^{70}$	1032.0933	19	12	787	203					

 $^{^{68}}$ Sydow, C., Extended analysis of FTIR high resolution spectra of HD³²S and HD³⁴S in the region of the ν_2 band: Positions and strengths of individual lines / C. Sydow, O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, Z. Xintong, P. A. Glushkov, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. -2019. - Vol. 225. - P. 286-300.

 $^{^{69}}$ Ulenikov, O. N. Extended analysis of the ν_3 band of HD³²S: Line positions, energies, and line strengths / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – Vol. 230. – P. 131-141.

⁷⁰Ulenikov, O. N. First detection of the rare hydrogen sulfide isotopologue: The pure rotational and ν_2 bands of HD³³S / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – Vol. 232. – P. 108-115.

Рисунок 2.6. Обзорные спектры сероводорода (график (a)) в области 700-1800 сm⁻¹. Экспериментальные условия: температура 297 К; оптическая длина пути поглощения 4 и 163 м, число сканов 1210 и 1960, давление образца 200 и 450 Па. График (b): соответствующий "симулированные" спектры полос ν_2 и $2\nu_2 - \nu_2$ в этой области. Графики (c), (d), (e), and (f): "симулированные" спектры полосы ν_2 молекул $H_2^{32}S$, $H_2^{34}S$, $H_2^{33}S$, $H_2^{36}S$, соответственно. График (g): "симулированный" спектр полосы $2\nu_2 - \nu_2$ для $H_2^M S$ (M = 32, 33, 34).

Рисунок 2.7. Фрагмент спектра высокого разрешения сероводорода (график (a)) в районе 1223.0-1225.5 сm⁻¹. График (b): соответствующий "симулированный" спектр полос ν_2 и $2\nu_2 - \nu_2$ в этой области. Графики (c), (d), (e), and (f): "симулированные" спектры каждой отдельной из молекул $H_2^{32}S$, $H_2^{34}S$, $H_2^{33}S$, $H_2^{36}S$. График (g): "симулированный" спектр полосы $2\nu_2 - \nu_2$ молекул H_2^MS (M = 32, 33, 34).

Рисунок 2.8. Экспериментальный обзорный спектр молекулы HDS в области 700-1400 см⁻¹ (график а). Центры полос ν_2 молекул HD³²S, HD³³S, and HD³⁴S обозначены темными треугольниками. Графики с-е - "симулированные" спектры молекул HD³²S, HD³³S и HD³⁴S. График. b - суммарный "симулированный" спектр.

Рисунок 2.9. Экспериментальные обзорные спектры молекул $D_2^M S$ (M = 32, 33, 34) в области 2300-2900 см⁻¹. На нижней части рисунка 2.9 представлен "симулированный" спектр.

2.1.3 Молекула диоксида серы

Диоксид серы (так же, как и этилен) является важной составляющей для задач, решаемых в различных областях науки и техники, таких, например, как химия, лазерная физика и различные производственные проблемы. Он присутствует в больших количествах в атмосферах Венеры (где содержание диоксида серы в атмосфере в миллионы раз выше, чем на Земле) и Луны, также как в межзвездной среде,^{71, 72, 73} и, как следствие, играет важную роль как в планетологии, так и в астрофизике. Диоксид серы весьма важен для решения задач Земной атмосферы и климатологии поскольку SO₂, выбрасываемый в огромных количествах в стратосферу, например, при извержении вулканов 74, 75, 76, 77, 78 преобразуется в H₂SO₄-аэрозоль, который может влиять на химические процессы в атмосфере, и, следовательно, на климат.^{79, 80} В целом, SO₂ является одним из наиболее важных компонент в атмосферном цикле Земли.⁸¹ Следует заметить, что не только ³²S¹⁶O₂ (наиболее распространенная модификация), но и различные изотопологи диоксида серы представляют большой интерес для астрофизики и астрохимии. В качестве иллюстрации можно отметить наблюдение горячих скоплений молекул в Большом Магеллановом Облаке, ⁸² процессы об-

⁷¹Bezard, B. The abundance of sulfur dioxide below the clouds of Venus / B. Bezard, C. DeBergh, B. Fegley, J-P Maillard, D Crips, T Owen, J.B. Pollack, D. Grinspoon // *Geophys Res Lett.* -1993 -T.20. - P. 1587-1590.

 $^{^{72}}$ Moullet, A. Exploring Io's atmospheric composition with APEX: First measurement of $^{34}SO_2$ and tentative detection of KCl / A. Moullet, E. Lellouch, R. Moreno, M. Gurwell, J.H. Black, B. Butler // Astrophys J. -2013. - Vol. 776. - No. 32.

⁷³Marcq, E. Variations of sulfur dioxide at the cloud top of Venus's dynamic atmosphere / E. Marcq, J-L. Betraux, F. Montmessin, D. Belyaev // Nature Geoscience. - 2013 - T.6. - P. 25-28.

 $^{^{74}}$ P.J. Wallace Volcanic SO₂ emissions and the abundance and distribution of exsolved gas in magma bodies. // J Volcanol Geotherm Res. -2001. - Vol. 108. - P. 85-106.

 $^{^{75}}$ Mankin, W.G. Airborne observations of SO₂, HCl, and O₃ in the stratospheric plume of the Pinatubo Volcano in July 1991 / W.G. Mankin, M.T. Coffey, A. Goldman // *Geophys Res Lett.* -1992. - Vol. 19. - P. 179–182.

 $^{^{76}}$ Goldman, A. Pinatubo SO₂ column measurements from Mauna Loa / A. Goldman, F.J. Murcray, C.P. Rinsland, R.D. Blatherwick, S.J. David, F.H. Murcray, D.G. Murcray // *Geophys Res Lett.* -1992. - Vol. 19. - P. 183-186.

⁷⁷Hansen, J. Potential climate impact of Mount Pinatubo eruption / J. Hansen, A. Lacis, R. Ruedy, M. Sato// *Geophys Res Lett.* –1992. – Vol. 19. – P. 215–218.

 $^{^{78}}$ Goodman, J. Evolution of Pinatubo aerosols near 19 km altitude over western North America / J. Goodman, K.G. Snetsinger, G.V. Ferry, S. Verma, R.F. Pueschel // Geophys Res Lett. –1994. – Vol. 21. – P. 1129–1132.

⁷⁹Self, S. The possible effects of large 19th and 20th century volcanic eruptions on Zonal and hemispheric surface temperatures/ S. Self, M.R. Rampino, J.J. Barbera // J Volcanol Geotherm Res. -1981. - Vol. 11. - P. 41-60.

 $^{^{80}\}mathrm{McCormic},$ M.P. Atmospheric effects of the Mount Pinatubo eruption / M.P. McCormic, L.W. Thompson, C.R. Trepte // Nature. –1995. – Vol. 373. – P. 399–404.

⁸¹Charlson, R.J. The Sulfur Cycle / R.J. Charlson, T.L. Anderson, R.E. McDuff // In: Butcher SS, Charlson RJ, Orian GH, Wilfe GV (eds) Global biogeochemical cycles. Academic, San Diego. – P. 285–99.

⁸²Shimonishi, T. The detection of a hot molecular core in the large Magellanic Cloud with ALMA / T. Shimonishi, T. Onaka, A. Kawamura, Y. Aikawa // Astrophys J. -2016. - Vol. 827(72). - P. 1-20.
разования массивных протозвезд, 83 обнаружение изотопологов SO $_2$ в излучении по направлению от туманности Ориона. 84

Как следствие вышесказанного, важными являются лабораторные исследования спектров высокого разрешения SO₂ и его различных изотопологов. В данной работе спектры высокого разрешения различных изотопологов диоксида серы регистрировались в различных диапазонах шкалы длин волн на Фурьеспектрометрах высокого разрешения Bruker IFS 120 и Bruker IFS 125 в Texническом университете Брауншвейга (Германия) и Университете Оулу (Финляндия). В качестве иллюстрации на рисунке 2.10 приведен обзорный спектр трех изотопологов диоксида серы (с массовым числом атома S, равным 32) в районе полос поглощения, соответствующих дважды возбужденным валентным колебаниям. На рисунках 2.11 и 2.12 можно видеть в деталях соответствующие спектры высокого разрешения, первый из которых демонстрирует необычную относительную структуру двух ветвей переходов ${}^PQ_5(J)$ в полосе $2\nu_1$ молекулы ³²S¹⁸O₂: одна из ветвей (соответствующая четным значениям квантового числа J) показывает традиционное для подобных молекул поведение, в то время как другая (соответствующая нечетным значениям квантового числа J) – демонстрирует весьма необычное поведение. Примечательно, что (как показал анализ) вызван этот эффект не резонансными взаимодействиями (что представлялось бы достаточно естественным), но кооперативным влиянием спектроскопических параметров, Δ_J и H_J конкретно для этой полосы. На втором рисунке для той же молекулы ${}^{32}S^{18}O_2$ показана серия переходов ${}^{P}Q_8(J)$, отмеченная темными (для нечетных значений J) и светлыми (для четных значений J) кружками. Примечательно, что в аналогичных сериях для молекулы ³²S¹⁶O₂ число возможных линий вдвое меньше, что является следствием спиновой статистики для молекулы диоксида серы. На верхней панели фигуры 2.13 представлен обзорный спектр поглощения в районе комбинационных полос $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ для этих же изотопологов диоксида серы. В результате исследований, выполненных в данной работе, было впервые (или с характеристиками, превосходящими то, что приводилось ранее в литературе) исследовано 40 полос поглощения, содержащих в общей сложности более 77 000 отдельных колебательно-вращательных

 $^{^{83}}$ Keane, J.V. Ga s–phase SO₂ in absorption towards massive protostars / J.V. Keane, A.M.S. Boonman, A.G.G.M. Tielens, E.F. van Dishoeck. // Astrophys Astronomy. -2001. – Vol. 376. – P. L5–8.

⁸⁴Snyder, L.E. Radio detection of interstellar sulfur dioxide / L.E. Snyder, J.M. Hollis, B.L. Ulich, F.J. Lovas, D.R. Johnson, D. Buhl // Astrophys J. -1975. – Vol. 198. – P. L81–4.

линий (статистическая информация обо всех исследованных полосах приведена в таблице 2.3). На этой основе (как результат решения соответствующих обратных задач) были определены параметры эффективных гамильтонианов с учетом всех необходимых для каждой задачи резонансных эффектов (соответствующая информация может быть найдена в цитируемом списке публикаций по диссертации).

Рисунок 2.10. Обзорный спектр молекулы $S^{18}O_2$ в области 2100-2700 см⁻¹. Экспериментальные условия: оптическая длина пути поглощения 4 и 24 м, комнатная температура, число сканов 1080 и давление образца 10 Па для спектра I, и число сканов 580 и давление образца 280 Па для спектра II. Соответствующие полосы молекул $S^{16}O_2$ и $S^{16}O^{18}O$ также отмечены на фигуре. В центральной и левой частях рисунка можно также видеть полосы поглощения молекул $C^{16}O_2$, $C^{18}O_2$, $C^{16}O^{18}O$, $C^{18}O$ и $C^{16}O$.

Рисунок 2.11. Фрагмент спектра высокого разрешения молекулы $S^{18}O_2$ в районе Q-ветви полосы $2\nu_1$. Экспериментальные условия соответствуют условиям спектра представленного на рисунке 2.10. Приведена интерпретация двух серий переходов ${}^PQ_5(J)(\circ$ для нечетных значений квантового числа J, а • для четных значений J).

Рисунок 2.12. Фрагмент спектра высокого разрешения молекулы $S^{18}O_2$ в районе Q-ветви полосы $2\nu_3$. Экспериментальные условия соответствуют условиям спектра, представленного на рисунке 2.10. Из рисунка видно хорошее соответствие между экспериментальным и "симулированным" спектрами.

Рисунок 2.13. Экспериментальный обзорный спектр (график (a)) молекулы S¹⁸O₂ в области полос поглощения $\nu_1 + \nu_2$ и $\nu_1 + \nu_2$. Можно видеть также соответствующие полосы $\nu_1 + \nu_2$ и $\nu_2 + \nu_3$ молекул ${}^{32}S^{16}O_2$ и ${}^{32}S^{18}O_2$. Экспериментальные условия: давление образца 450 Па, оптическая длина пути поглощения 24 м, комнатная температура, число сканов 980. Графики (c), (d) и (e) - "симулированные" спектры молекул ${}^{32}S^{18}O_2$, ${}^{32}S^{16}O^{18}O$ и ${}^{32}S^{16}O_2$. Графики (b) - суммарный "симулированный" спектр всех трех изотопологов.

Полоса	Центр /см ⁻¹	J^{MAKC}	K_a^{MAKC}	Число переходов	Число энергий
	32	S ¹⁶ O			
		5 02		_	
	2	3	4	5	6
${\nu_2}^{85}$	517.8726	96	25	4232	1295
${\nu_1}^{86}$	1151.7129	89	37	7618	1913
${\nu_3}^{86}$	1362.0603	109	28	3952	1838
$2{\nu_2}^{86}$	1035.1264	54	9	561	312
$2{\nu_3}^{87}$	2713.3821	76	26	3800	1027
$\nu_2 + 2\nu_3 - {\nu_2}^{87}$	2705.1001	49	13	760	386
$2\nu_1 + {\nu_2}^{87}$	2809.0806	43	17	1250	438
$\nu_1 + \nu_2 + {\nu_3}^{88}$	3010.3174	65	21	1085	780
$\nu_1 + \nu_2 + \nu_3 - {\nu_2}^{88}$	2492.4450	77	20	1132	780
$3{ u_2}^{89}$	1551.7294	53	15	1530	728
$3{ u_2}-{ u_2}^{89}$	1033.8567	36	18	746	495
$ u_1 + {\nu_2}^{90} $	1666.3337	78	27	2650	1069
$\nu_2 + {\nu_3}^{90}$	1875.7972	68	24	2050	1000
	32 S	$^{16}\mathbf{O}^{18}\mathbf{O}$			
1	2	3	4	5	6
$\nu_1 + {\nu_2}^{90}$	1628.1869	64	16	1050	644
$ u_2 + {\nu_3}^{90} $	1846.1495	58	19	1570	798
$2{\nu_1}^{91}$	2240.3512	59	20	3970	934
$ u_1 + {\nu_3}^{91} $	2454.0257	68	25	2960	1284

Таблица 2.3: Статистическая информация для полос молекулы диоксида серы и его изотопологов.

⁸⁵Ulenikov, O. N. Extended analysis of the high resolution FTIR spectrum of ${}^{32}S^{16}O_2$ in the region of the ν_2 band: Line positions, strengths, and pressure broadening widths / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, M. Quack, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2018. - Vol. 210. - P. 141-155.

⁸⁶Ulenikov, O. N. Re-analysis of the (100), (001), and (020) rotational structure of SO₂ on the basis of high resolution FTIR spectra / O. N. Ulenikov, G. A. Onopenko, **O. V. Gromova**, E. S. Bekhtereva, V.-M. Horneman //Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 130. – P. 220-232.

⁸⁷Ulenikov, O. N. High resolution analysis of the SO₂ spectrum in the 2600-2900 cm⁻¹ region: $2\nu_3$, $\nu_2+2\nu_3-\nu_2$ and $2\nu_1+\nu_2$ bands / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, I. B. Bolotova, I. A. Konov, V.-M. Horneman, C. Leroy // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2012. - Vol. 113. No. 7. - P. 500-517.

⁸⁸Ulenikov, O. N. High resolution analysis of the (111) vibrational state of SO₂ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. S. Belova, S. Bauerecker, C. Maul, C. Sydow, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2014. – Vol. 144. – P. 1-10.

⁸⁹Ulenikov, O. N. First high resolution analysis of the $3\nu_2$ and $3\nu_2 - \nu_2$ bands of ${}^{32}S{}^{16}O_2 / O.$ N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, K. B. Berezkin, V.-M. Horneman, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. -2017. - Vol. 202. - P. 1-5.

⁹⁰Ulenikov, O. N. High resolution FTIR spectroscopy of sulfur dioxide in the 1550–1950 cm⁻¹ region: First analysis of the $\nu_1 + \nu_2/\nu_2 + \nu_3$ bands of ${}^{32}S^{16}O^{18}O$ and experimental line intensities of ro-vibrational transitions in the $\nu_1 + \nu_2/\nu_2 + \nu_3$ bands of ${}^{32}S^{16}O_2$, ${}^{34}S^{16}O_2$, ${}^{32}S^{18}O_2$ and ${}^{32}S^{16}O^{18}O$ / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, V.-M. Horneman, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2017. – Vol. 203. – P. 377-391.

$2{\nu_3}^{91}$	2674.7833	43	18	3450	982
$\nu_1 + \nu_2 + \nu_3 - {\nu_2}^{92}$	2446.8489	45	14	480	307
$2\nu_2 + \nu_3 - {\nu_2}^{92}$	1841.5434	15	12	74	56
Полоса	Центр $/$ см $^{-1}$	J^{MAKC}	K_a^{MAKC}	Число	Число
				переходов	энергий
	32	$\mathbf{S}^{18}\mathbf{O}_2$			
1	2	3	4	5	6
$ u_1 + {\nu_2}^{93} $	1594.6731	60	20	940	707
$ u_2 + {\nu_3}^{93} $	1811.2610	60	21	1210	740
$2{\nu_1}^{94}$	2195.3143	67	26	2910	939
$2{\nu_3}^{94}$	2407.0713	81	25	2130	830
$ u_1 + {\nu_3}^{94} $	2626.8803	53	16	1390	1011
$\nu_1 + \nu_2 + \nu_3 - {\nu_2}^{95}$	2400.1430	49	14	621	388
$2\nu_1 + \nu_2 - {\nu_2}^{95}$	2189.3162	42	12	332	185
$2\nu_2 + \nu_3 - {\nu_2}^{95}$	1806.9921	14	9	15	13
	34	$\mathbf{S}^{16}\mathbf{O}_2$			
1	2	3	4	5	6
${ u_2}^{96}$	513.5387	84	31	7777	1488
$ u_1 + {\nu_2}^{97} $	1654.8300	65	23	1540	707
$\nu_2 + {\nu_3}^{97}$	1854.6114	67	23	1390	740
$2\nu_2 + \nu_3 - {\nu_2}^{97}$	1849.9662	44	15	510	304
$2{\nu_1}^{98}$	2281.4704	64	25	3280	939
$ u_1 + {\nu_3}^{98} $	2475.8290	79	27	2100	1011
$\nu_1 + \nu_2 + \nu_3 - {\nu_2}^{98}$	2468.5810	65	18	850	558

⁹¹Ulenikov, O. N. High resolution study of the rotational structure of doubly excited vibrational states of ${}^{32}S^{16}O^{18}O$: The first analysis of the $2\nu_1$, $\nu_1 + \nu_3$, and $2\nu_3$ bands / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, S. I. Kuznetsov, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2017. - Vol. 189. - P. 344-350.

⁹²Ulenikov, O. N. First rotational analysis of the (111) and (021) vibrational state of S¹⁶O¹⁸O from the "hot" $\nu_1 + \nu_2 + \nu_3 - \nu_2$ and $2\nu_2 + \nu_3 - \nu_2$ bands / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, A. G. Ziatkova, E. A. Sklyarova, S. I. Kuznetsov, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2017. - Vol. 202. - P. 98-103.

⁹³Ulenikov, O. N. First high resolution analysis of the $\nu_1 + \nu_2$ and $\nu_2 + \nu_3$ bands of S¹⁸O₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, S. I. Kuznetsov, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 179. – P. 187-197.

⁹⁴Ulenikov, O. N. First high resolution analysis of the $2\nu_1$, $2\nu_3$, and $\nu_1 + \nu_3$ bands of S¹⁸O₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, E. A. Sklyarova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 185. – P. 12-21.

⁹⁵Ulenikov, O. N. Study of highly excited ro-vibrational states of S¹⁸O₂ from "hot" transitions: The bands $\nu_1 + \nu_2 + \nu_3 - \nu_2$, $2\nu_1 + \nu_2 - \nu_2$, and $2\nu_2 + \nu_3 - \nu_2 / O$. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, Y. B. Morzhikova, C. Maul, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2017. - Vol. 196. - P. 159-164.

⁹⁶Ulenikov, O. N. First line strength analysis of ³⁴SO₂ in the ν_2 region: Isotopic relations for the dipole moment parameters / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, A. G. Ziatkova, M. Quack, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – Vol. 229. – P. 166-178.

⁹⁷Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: Re-analysis of the bands $\nu_1 + \nu_2$, $\nu_2 + \nu_3$, and first analysis of the hot band $2\nu_2 + \nu_3 - \nu_2$ / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. – 2016. – Vol. 319. – P. 17-25.

$\nu_1 + \nu_2 + {\nu_3}^{98}$	2982.1197	45	9	560	558
$2{\nu_3}^{99}$	2679.7998	76	26	2500	830
$2\nu_1 + {\nu_2}^{99}$	2788.6387	45	11	770	302
$2\nu_1 + \nu_2 - {\nu_2}^{99}$	2275.1000	43	13	600	302
$3{ u_1}^{100}$	3410.9754	49	14	800	333

2.2 Модификация модели, алгоритма и создание на этой основе программы анализа абсолютных интенсивностей молекул типа асимметричного волчка различной симметрии с учетом произвольного числа резонирующих колебательных состояний.

Разработанный ранее в коллективе на основе модели из работы ¹⁰¹ комплекс программ для исследования абсолютных интенсивностей и определения параметров эффективных дипольных моментов молекул типа XY₂ симметрии C_{2v} модифицирован для возможности выполнения такого рода исследований как для молекул типа асимметричного волчка произвольной симметрии, так и с учетом наличия в молекулах гибридных полос поглощения. Для этого, в качестве первого шага, была усовершенствована и расширена используемая ранее модель эффективных дипольных операторов¹⁰¹, а именно, дополнительно к результатам работы¹⁰¹, где модель (явный вид операторов эффективных дипольных моментов) была разработана для полос поглощения типа *a* и *b* и с учетом вращательных операторов до второго порядка по степеням *J* и *K*, в данном исследовании на основе свойств симметрии различных молекул типа асимметричного волчка были определены (а) операторы эффективных дипольных моментов, описывающих абсолютные интенсивности колебательно-вращательных

⁹⁸Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: The bands $2\nu_1$, $\nu_1 + \nu_3$, $\nu_1 + \nu_2 + \nu_3 - \nu_2$ and $\nu_1 + \nu_2 + \nu_3 / O$. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2016. – Vol. 169. – P. 49-57.

⁹⁹Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: The bands $2\nu_3$, $2\nu_1 + \nu_2$ and $2\nu_1 + \nu_2 - \nu_2 / O. N. Ulenikov,$ **O. V. Gromova**, E. S. Bekhtereva, Y. V. Krivchikova, E. A. Sklyarova, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. – 2015. – Vol. 318. – P. 26-33.

¹⁰⁰Ulenikov, O. N. First high resolution analysis of the $3\nu_1$ band of ${}^{34}S{}^{16}O_2 / O$. N. Ulenikov, O. V. Gromova,

E. S. Bekhtereva, A. L. Fomchenko, C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. - 2016. - Vol. 319. - P. 50-54.

¹⁰¹Flaud, J.M. Vibration-rotation intensities in H₂O-type molecules application to the $2\nu_2$, ν_1 , and ν_3 bands of H₂¹⁶O / J.M. Flaud, C. Camy-Peyret // *Journal of Molecular Spectroscopy.* -1975 -T.55. - P. 278-310.

линий в полосах типа с и (б) все возможные операторы эффективных дипольных моментов для всех трех возможных типов полос с учетом вращательных операторов до третьих степеней по квантовым числам Ј и К. Последнее обстоятельство позволяет существенно улучшить точность воспроизведения абсолютных интенсивностей колебательно-вращательных линий в современных спектрах высокого разрешения. В таблице 2.4 в качестве иллюстрации приведены полученные результаты для возможных операторов эффективного дипольного момента (с точностью до значений квантовых чисел J^2 и K^2) для полос поглощения *с*-типа.¹⁰² На основе усовершенствованной модели оператора эффективного дипольного момента был разработан алгоритм и создан комплекс программ на языке FORTRAN, позволивший выполнять анализ экспериментальных интенсивностей колебательно-вращательных линий молекул типа асимметричного волчка любой симметрии с точностью сопоставимой с точностями современных Фурье- и лазерных спектрометров. Важной особенностью созданного комплекса программ является то, что он позволяет выполнять анализ не только с учетом произвольного числа взаимодействующих колебательновращательных полос всех возможных молекул типа асимметричного волчка, но и дает возможность принимать во внимание наличие в спектрах полос гибридного типа.

Полученные общие результаты использовались для исследования абсолютных интенсивностей линий в экспериментально зарегистрированных впервые (или с существенно лучшими характеристиками, чем известно в литературе) спектрах высокого разрешения различных молекул типа асимметричного волчка (в качестве иллюстрации, см., рисунки 2.16 - 2.18). Обобщенная информация о выполненных исследованиях приведена в таблице 2.5. Как видно из таблицы, абсолютные интенсивности линий исследовались в 20 полосах поглощения таких молекул как C_2H_4 , $C_2H_2D_2 - cis$, ${}^{32}S^{16}O_2$, ${}^{34}S^{16}O_2$, ${}^{32}S$, ${}^{33}S$, ${}^{32}S$, ${}^{12}S$

Для всех полос этих молекул в результате решения обратных спектроскопических задач определены параметры эффективных дипольных моментов, кото-

¹⁰²Ulenikov, O. N. Extended analysis of the lowest bands of ¹²C₂H₄: Line strengths, widths, and shifts in the ν_7 , ν_{10} , and ν_4 bands / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2019. – Vol. 239. No.106657.

-				
m	^v A _j	n	$\langle JK ^{v}A_{j} J + \Delta JK + n\Delta K \rangle; \Delta K = \pm 1$	
1	$i\varphi_y \equiv ik_{zy}$	1	$\Delta K < JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0, \pm 1$
2	$\{i\varphi_y,J^2\} \equiv \left\{ik_{zy},J^2\right\}_+$	1	$\Delta K[J(J+1) + (J+\Delta J)(J+\Delta J+1)] < JK \varphi_x J+\Delta JK+\Delta K >$	$\Delta J = 0, \pm 1$
3	$\{i\varphi_y,J_z^2\} \equiv \left\{ik_{zy},J_z^2\right\}_+$	1	$\Delta K[K^2 + (K + \Delta K)^2] < JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J=0,\pm 1$
4	$\{\varphi_x, J_z\} \equiv \{k_{zx}, J_z\}_+$	1	$\Delta K(1+2K\Delta K) < JK \varphi_x J+\Delta JK+\Delta K >$	$\Delta J=0,\pm 1$
5	$\{\varphi_z, J_x\} \equiv \{k_{zz}, J_x\}_+$	1	$\Delta K(1+2K\Delta K) < JK \varphi_x JK+\Delta K >$	$\Delta J = 0$
6	$ \begin{cases} \varphi_z, \{iJ_y, J_z\} \} \\ \equiv \{k_{zz}, \{iJ_y, J_z\}_+ \}_+ \end{cases} $	1	$\begin{array}{l} \Delta K(1+2K\Delta K)^2 < JK \varphi_x JK+\Delta K> \\ \Delta K(1+2K\Delta K)(1+2K\Delta K-2m) < JK \varphi_x J+\Delta JK+\Delta K> \end{array}$	$\begin{array}{l} \Delta J = 0 \\ \Delta J = \pm 1 \end{array}$
7	$\frac{1}{2} \left[\{ i\varphi_y, J_{xy}^2 \} - \{ \varphi_x, i(J_x J_y + J_y J_x) \} \right] \\ \equiv \frac{1}{2} \left[\{ ik_{zy}, J_{xy}^2 \}_+ - \{ k_{zx}, \{ J_x, iJ_y \}_+ \}_+ \right]$	1	$\Delta K[J(J+1) - K\Delta K - K^2 - 1] < JK \varphi_x JK + \Delta K > -\Delta K[m(m-1) - (2m-1)K\Delta K + K^2 + 1] < JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0$ $\Delta J = \pm 1$
8	$\frac{1}{2} \left[\{ i\varphi_y, J_{xy}^2 \} + \{ \varphi_x, i(J_x J_y + J_y J_x) \} \right]$ $\equiv \frac{1}{2} \left[\{ ik_{zy}, J_{xy}^2 \}_+ + \{ k_{zx}, \{ J_x, iJ_y \}_+ \}_+ \right]$	3	$[(J - K\Delta K - 1)(J - K\Delta K - 2)(J + K\Delta K + 2)(J + K\Delta K + 3)]^{1/2}$ $< JK \varphi_x JK + \Delta K >$ $[(m - K\Delta K - 1)(m - K\Delta K - 2)(m + K\Delta K + 2)(m + K\Delta K + 3)]^{1/2}$ $< JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0$ $\Delta J = \pm 1$
9	$\{i\varphi_y, J^4\} \equiv \left\{ik_{zy}, J^4\right\}_+$	1	$\Delta K[J^2(J+1)^2 + (J+\Delta J)^2(J+\Delta J+1)^2] < JK \varphi_x J+\Delta JK+\Delta K >$	$\Delta J = 0, \pm 1$
10	$\{i\varphi_y, J^2 J_z^2\} \equiv \left\{k_{zy}, J^2 J_z^2\right\}_+$	1	$\Delta K[(K + \Delta K)^2 (J + \Delta J)(J + \Delta J + 1) + K^2 J(J + \Delta J)]$ $< JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0, \pm 1$
11	$\{i\varphi_y, J_z^4\} \equiv \left\{ik_{zy}, J_z^4\right\}_+$	1	$\Delta K[K^4 + (K + \Delta K)^4] < JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0, \pm 1$
12	$\{\varphi_x, J_z^3\} \equiv \left\{k_{zx}, J_z^3\right\}_+$	1	$\left[(K + \Delta K)^3 + K^3 \right] < JK \varphi_x J + \Delta JK + \Delta K >$	$\Delta J = 0, \pm 1$
13	$\{\varphi_x, J_z J^2\} \equiv \left\{k_{zx}, J_z J^2\right\}_+$	1	$[J(J+1)K + (J+\Delta J)(J+\Delta J+1)(K+\Delta K)] < JK \varphi_x J+\Delta JK + \Delta K >$	$\Delta J = 0, \pm 1$

Таблица 2.4. Операторы эффективного дипольного момента и матричные элементы для полос *с*-типа.

рые позволяют воспроизводить экспериментальные значения абсолютных интенсивностей линий с точностями, близкими к погрешностям эксперимента (то есть, на уровне 1-5 % в зависимости от молекулы и диапазона исследования). Для иллюстрации качества выполненных исследований на рисунках 2.14 и 2.14 приведены экспериментальные обзорные спектры молекул $C_2H_4^{102}$ и $C_2H_2D_2 - cis^{105}$ и небольшие фрагменты экспериментальных спектров высокого разрешения этих молекул. На нижних частях рисунков 2.14 и 2.14 приведены соответствующие «симулированные» спектры, которые были рассчитаны с использованием результатов (параметров эффективных гамильтонианов и эффективных дипольных моментов) данной работы. Читатель может видеть более чем удовлетворительное совпадение результатов теоретического расчета с экспериментальными данными. Также в качестве иллюстрации, в таблицах 2.6 приведены полученные в результате нашего анализа параметры эффективных дипольных моментов для молекул и полос, показанных на рисунках 2.14 и 2.15.

¹⁰⁵Ulenikov, O. N. Quantitative analysis of ro-vibrational spectra of ethylene: Line strengths of the ν_{12} and ν_{3} bands of ${}^{12}C_{2}H_{2}D_{2} - cis / O. N.$ Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, Y. V. Konova, Y. S. Aslapovskaya, C. Sydow, K. Berezkin, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2021. – Vol. 261. Nº.107434.

Рисунок 2.14. Обзорный спектр IVa (график 1a) молекулы ${}^{12}C_2H_4$ в области полосы ν_7 . График 1с иллюстрирует небольшую часть спектра высокого разрешения в районе R-ветви полосы ν_7 . Серия переходов ${}^{R}Q_{10}(J)$ полосы ν_7 легко идентифицируется в спектре. Графики 1b и 1d - соответствующие "симулированные" спектры.

Рисунок 2.15. Фрагмент спектра высокого разрешения молекулы ${}^{12}C_2H_2D_2$ -цис в районе Q-ветви полосы ν_3 . На нижней части рисунка приведен соответствующий "симулированный" спектр.

Полоса	Центр/см ⁻¹	$J^{{\scriptscriptstyle{\mathrm{Makc}}}}$	$K_a^{\scriptscriptstyle \mathrm{Makc}}$	$N_{\rm Tp}{}^{\rm a}$	$N_{\rm yp}$ б	$N_{\rm Ky}{}^{\rm B}$	$N_{\rm KC}{}^{\Gamma}$	$d_{ m rms}/\%$
				C_2H_4				
ν_{10}^{102}	825.9268	32	15	741	463	303	227	4.22
ν_7^{102}	948.7709	46	19	2481	1723	594	344	4.16
ν_{4}^{102}	1025.5898	35	9	147	73	8	6	4.30
ν_{12}^{103}	1442.4424	48	17	1491	998	253	225	2.31
			C_2H	$I_2D_2 - cis$				
ν_3^{105}	1217.8848	26	13	400	193			7.72
ν_{12}^{105}	1288.6209	41	18	1473	1004			3.11
			3	$^2\mathrm{S}^{16}\mathrm{O}_2$				
ν_2^{85}	517.8726	66	18	992	992	146		5.70
$\bar{\nu_1} + {\nu_2}^{90}$	1666.3337	78	27	200	200			6.90
$\nu_2 + \nu_3^{90}$	1875.7972	68	24	200	200			6.90
			3	${}^{4}\mathrm{S}^{16}\mathrm{O}_{2}$				
${\nu_2}^{96}$	513.5387	58	19	1572	1572			4.50
				$\mathrm{H}_{2}^{32}\mathrm{S}$				
ν_2^{61}	1182.5771	9	8	61	61	61		1.40
$4\nu_2^{62}$	4661.6729	17	8	287				3.10
$5\nu_2^{-104}$	5797.2335	12	7	176	154			3.40
				$\mathrm{H}_{2}^{33}\mathrm{S}$				
ν_2^{61}	1182.0242	7	4	24	24			2.80
				$\mathrm{H}_2^{34}\mathrm{S}$				
${\nu_2}^{61}$	1181.5042	9	8	32	32			2.50
				$\mathrm{HD}^{32}\mathrm{S}$				
${\nu_2}^{68}$	1032.7152	19	5	418	375			4.70
ν_3	2621.4556	22	15		475			4.20
				$\mathrm{HD}^{34}\mathrm{S}$				
${\nu_2}^{68}$	1031.5076	8	4	17	17			4.00
				$\mathrm{D}_2^{32}\mathrm{S}$				
ν_2^{64}	4661.6729	16	9	324	280			2.50
$3{\nu_2}^{66}$	2549.0740	18	9	300	376			3.10

Таблица 2.5. Статистическая информация по анализу интенсивностей линий.

^а N_{TP} Число колебательно-вращательных переходов. б_{Nyp} Число колебательно-вращательных верхних уровней энергий. ^в N_{Ky} Число коэффициентов уширения. ^г N_{KC} Число коэффициентов сдвигов давлением.

	П	n
Оператор	Параметр	Значение
1	2	3
ik_{zy}	$^{(v_7=1)}\mu_{y1}$	0.19422(24)
$\left\{ik_{zy},J_{z}^{2}\right\}_{+}$	$^{(v_7=1)}\mu_{y3}/10^{-4}$	0.671(25)
$\{k_{zx}, J_z\}_+$	$^{(v_7=1)}\mu_{y4}/10^{-3}$	-0.3183(68)
$\{k_{zz}, J_x\}_+$	$^{(v_7=1)}\mu_{y5}/10^{-3}$	-0.1450(39)
$\left\{ik_{zy}, J_z^4\right\}_+$	$^{(v_7=1)}\mu_{y11}/10^{-6}$	-0.2101(84)

Таблица 2.6. Параметры эффективного дипольного момента полосы $\nu_7~(c-{\rm type})~^{12}{\rm C_2H_4}.$

Таблица 2.7. Параметры эффективного дипольного момента полос
ы $\nu_{12}~^{12}\mathrm{C}_{2}\mathrm{H}_{4}.$

Оператор	Параметр	Значение
1	2	3
k_{zz}	$(v_{12}=1)\mu_{z1}$	0.053575(27)
$\left\{k_{zz},J^2\right\}$	$^{(v_{12}=1)}\mu_{z2}/10^{-6}$	0.476(59)
$\left\{k_{zz},J_{z}^{2} ight\}$	$^{(v_{12}=1)}\mu_{z3}/10^{-5}$	0.421(42)
$\frac{1}{2}\left[\left\{k_{zx}, iJ_y\right\} - \left\{ik_{zy}, J_x\right\}\right]$	$^{(v_{12}=1)}\mu_{z4}/10^{-3}$	-0.34766(93)
$\frac{1}{2} \left[\{ k_{zx}, J_x J_z + J_z J_x \} - \{ i k_{zy}, i \left(J_x J_z + J_z J_x \right) \} \right]$	$^{(v_{12}=1)}\mu_{z5}/10^{-5}$	0.333(35)
$\frac{1}{2}[\{k_{zx}, iJ_y\} + \{ik_{zy}, J_x\}]$	$^{(v_{12}=1)}\mu_{z6}/10^{-3}$	0.2881(33)

Рисунок 2.16. Переходы [7 1 6 \leftarrow 8 0 8], [9 2 7 \leftarrow 8 1 7] и [10 7 $d \leftarrow$ 9 6 d] полосы ν_7 молекулы ${}^{12}C_2H_4$ в спектрах, зарегистрированные при различных давлениях. На нижней части рисунка показаны соответствующие измеренные полуширины и сдвиги центров линий в зависимости от давления при температуре 294.75 К.

Рисунок 2.17. Экспериментальный профиль линии [7 0 7 \leftarrow 8 0 8] полосы $\nu_2 + \nu_3$ молекулы ${}^{32}S^{16}O_2$. Экспериментальные условия: давление 110 Па, оптическая длина пути поглощения 163 m, температура 296±0.5 K. Контур Фойгта использовался для описания экспериментального профиля линии. Зависимость разницы между экспериментальными и расчитанными значениями сигнала от длины волны приведены на нижней части рисунка.

Рисунок 2.18. Экспериментальный профиль линий ${}^{R}P_{2}(6)$, ${}^{R}P_{1}(1)$ и ${}^{P}Q_{2}(2)$ полосы ν_{2} молекулы $H_{2}{}^{32}$ S. Результат описания профиля линий контуром Армана-Тран показан синим графиком. Для сравнения, красные точки иллюстрируют результат описания профиля этих же линий контуром Фойгта. Зависимость разницы между экспериментальными и расчитанными значениями сигнала от длины волны приведены на нижней части рисунка.

2.3 Разработка и практическое применение (исследование абсолютных интенсивностей, коэффициентов уширения и сдвига спектральных линий давлением) уникального метода определения концентраций (парциальных давлений) изотопологов многоатомных молекул в их смеси.

Большой интерес, возникший в последние годы к высокоточной информации о количественных характеристиках спектральных линий изотопологов, в частности, в астрофизике вызван тем, что, как по своим спектрам, так и по химическому составу, такие объекты являются отличными пробами, отражающими физические условия и историю источников, в которых они зародились. В частности, одна из основных задач астрофизики заключается в том, чтобы объяснить природу и содержание (abundance) тех или иных молекулярных объектов в тех или иных областях Вселенной и включает в себя, по меньшей мере, три вида "активности": (1) спектроскопическая идентификация отдельных молекулярных объектов; (2) разработка/создание (в идеале, всеобъемлющих) физико-химических моделей для объяснения синтеза наблюдаемых молекулярных объектов; (3) усилия по измерению или прогнозированию важной информации, такой, например, как коэффициенты скорости химических реакций, которые включены в модели (см., например, работу Смита¹⁰⁶). Резюме-обзор о «молекулярной вселенной» достаточно недавно был представлен Тиленсом¹⁰⁷: "спектроскопические наблюдения показывают неожиданно и удивительно богатый набор молекулярных частиц и свидетельствуют о сложной физике и химии, происходящих в суровых условиях межзвездной среды галактик. Молекулы действительно являются важной составляющей межзвездного газа".

К настоящему времени астрономическими наблюдениями обнаружено более 200 различных молекулярных объектов в космосе, то есть в межзвездной среде, в около-звездных оболочках или в кометах и планетарных атмосферах¹⁰⁸.

 $^{^{106}\}mbox{I.W.M.}$ Smith, Laboratory Astrochemistry: Gas–Phase Processes. // Annual Review of Astronomy and Astrophysics. –2011. – Vol. 49. – P. 29–66.

¹⁰⁷A.G.G.M. Tielens, The molecular universe. // Reviews of Modern Physics. -2013. - Vol. 85. - P. 1021-1081 ¹⁰⁸B.A. McGuire, 2018 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. // The Astrophysical Journal Supplement Series. -2018. - Vol. 239(2). - P. 17(48pp.).

Значительная их часть содержит элементный углерод и водород (в том числе, в виде различных изотопологов), поэтому они являются важными веществами при поиске биосигнатур (таких как пептидные связи) во Вселенной¹⁰⁹. Как по своим спектрам, так и по химическому составу, такие молекулы являются отличными пробами, отражающими физические условия и историю источников, в которых они зародились¹⁰⁹. Поскольку они были обнаружены в молодых звездных объектах, такие молекулы также должны стать общими компонентами для новых планетных систем¹⁰⁹. Главная нерешенная проблема в этом контексте заключается в том, что существует огромное число неопознанных линий¹¹⁰, особенно при спектральных съемках различных частей межзвездного вещества (interstellar metter) и "звездных горячих ядер" ("presteller hot cores"). Было высказано предположение¹¹¹, что большинство этих неопознанных линий принадлежат возбужденным колебательным состояниям или изотопологам уже известных межзвездных молекул, а не некоторым неизвестным пока молекулам. Непрерывное совершенствование различных телескопов и космических обсерваторий открывает новые возможности для изучения этой проблемы (здесь можно отметить космическую обсерваторию Гершель (Herschel Space Observatory), которая работала в дальней инфракрасной области и функционировала вплоть до 2014 года), а также космическую обсерваторию Джеймс Вебб (James Webb Space Telescope), которая запущена в конце 2021 года и будет работать в средней и ближней инфракрасной области).

Необходимо заметить, что для астрономических наблюдений исследуемый "образец" не может быть соответствующим образом "подготовлен", в отличие от лабораторных исследований. Поэтому исследуемый объект обязательно плохо определен и состоит из неизвестной смеси неизвестного количества веществ, контролируемых в неизвестных, возможно, экстремальных условиях в отношении температуры и плотности частиц. Другими словами, исследуемый образец «грязный», то есть не очищен от других примесей и влияющих на спектр этого вещества факторов. Поэтому для правильной интерпретации астрономиче-

¹⁰⁹Herbst, E. Complex Organic Interstellar Molecules / E. Herbst, E.F. Dishoeck // Annual Review of Astronomy and Astrophysics. -2009. - Vol. 47. - P. 427-480.

¹¹⁰Cernicharo, J. Unveiling the Dust Nucleation Zone of IRC+10216 with ALMA / J. Cernicharo, F. Daniel, A. Castro-Carrizo, M. Agundez, N. Marcelino, C. Joblin, J.R. Goicoechea, M. Guelin // Astrophys J Lett. -2013. - Vol. 778. - P. L25(6pp.)

¹¹¹Fortman, S.M. An analysis of a preliminary ALMA Orion KL spectrum via the use of complete experimental spectra from the laboratory / S.M. Fortman, J.P. McMillan, C.F. Neese, S.K. Randall, A.J. Remijan, T.L. Wilson, F.C. De Lucia // Journal of Molecular Spectroscopy. -2012. - Vol. 280. - P. 11–20.

ских наблюдений необходимы всесторонние и подробные данные о «чистых» веществах, которые могут быть реализованы только в хорошо известных и контролируемых условиях окружающей среды (лабораторных условиях). Двумя наиболее печально известными примерами неверной интерпретации астрономических наблюдений из-за отсутствия теоретических и чистых лабораторных данных являются ложные постулаты "новых" элементов Небулия и Корония из спектральных наблюдений солнечной короны, полученных во время солнечных затмений во второй половине 19 века. Потребовалось несколько десятилетий, чтобы правильно идентифицировать спектральные линии и сделать корректные выводы. Таким образом, лабораторные и теоретические исследования, сопровождающие астрономические наблюдения, чрезвычайно важны. В частности, поиск новых молекулярных объектов во Вселенной с необходимостью требует проведения полной и всесторонней спектральной идентификации (включая информацию о возбужденных колебательных состояниях и различных изотопологах) уже известных молекул (эта ситуация в литературе иногда упоминается как «отделение зерен от плевел»). Присутствие неизвестных линий может скрыть желаемую информацию, а удаление этих линий из «грязного» спектра после их идентификации оставляет в спектре небольшое количество данных, которые легче интерпретировать. Кроме того, идентификация до сих пор неизвестных линий, относящихся к сильно возбужденным колебательным состояниям, может дать ценную информацию о физических условиях для астрономического объекта. В этом случае сами эти линии являются носителями желаемой релевантной информации. Спектроскопические исследования изотопологов для многочисленных межзвездных молекул также представляют интерес, поскольку они дают доступ к информации об изотопном содержании в этих средах, а также позволяют понять химический путь образования различных молекул. Основываясь на этой предпосылке, теоретические и лабораторные исследования различных молекул методами молекулярной спектроскопии были и остаются в центре внимания многих, как отечественных, так и международных научных групп. На данный момент теория молекулярной спектроскопии является достаточно хорошо разработанной, однако не свободной от так называемых «пустых» зон. В частности, существует до сих пор нерешенная проблема определения парциальных давлений изотопологов в смеси газов. В то же время, решение этой проблемы является насущно необходимым для корректного

определения интенсивностей (так же, как и коэффициентов уширения и сдвига линий давлением) спектров высокого разрешения. Абсолютные интенсивности колебательно-вращательных линий, в свою очередь, коррелируют с информацией об условиях окружающей среды, что является весьма ценных знанием при решении выше упомянутых астрофизических проблем. Как отмечено выше, в мировой практике в настоящее время метод определения концентрации (парциального давления) различных изотопических модификаций молекулы в их смеси в исследуемом веществе вообще отсутствует, несмотря на то, что еще в 80-90 годах прошлого столетия отмечалась¹¹² насущная необходимость в подобных оценках, без которых корректные экспериментальные исследования оказываются невозможными (цитата из вышеприведенной работы: "In deriving the line intensities, we faced the problem of measuring absolute line intensities of a constituent which is impossible to obtain pure in the cell. Indeed, as already pointed out, the sample is a mixture of six isotopic species..."; и такого рода высказывания можно встретить в литературе неоднократно вплоть по настоящего времени).

Как уже отмечалось выше, в настоящее время, несмотря на то что экспериментальные исследования количественных характеристик молекулярных спектров (интенсивностей, полуширин и сдвигов линий давлением) для основных изотопических разновидностей молекул выполняются весьма интенсивно в целом ряде мировых центров по молекулярной спектроскопии высокого разрешения, аналогичные исследования изотопически замещенных модификаций являются единичными и их число на порядки уступает числу исследований материнских модификаций. При этом причина заключается не в отсутствии интереса к подобным исследованиям (результаты, как отмечалось выше, широко востребованы в различных областях науки и техники), а в том, что до недавнего времени существовала важная, но нерешенная проблема, суть которой заключается в следующем: для корректного определения количественных характеристик (абсолютных интенсивностей, полуширин и сдвигов линий давлением) спектральных линий молекулы (в том числе и любого изотополога) в лабораторных условиях необходим строгий контроль не только температуры и давления исследуемого образца, но и, что весьма важно, парциальных давлений/концентраций отдельных компонент исследуемого образца. К сожалению,

 $^{^{112}}$ Flaud, J.-M. The ν_1 and ν_3 bands of $^{16}O^{18}O^{16}O$: Line positions and intensities / J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.H. Smith // Journal of Molecular Spectroscopy.-1986. – Vol. 118. – P. 334 -344.

в практике мировой спектроскопии отсутствовал метод корректного определения парциальных давлений отдельных изотопологов в смеси в реальном эксперименте, когда кинетические уравнения и методы термодинамики оказываются неприменимыми (последнее является следствием того, что даже использование высокочистых образцов изотопологов, приготовление которых в большинстве случаев является непомерно трудоемкой задачей как по временным, так и финансовым затратам, не решает проблему из-за быстрого постоянного обмена атомами различных изотопологов как между собой, так и с элементами измерительных устройств, в частности, со стенками и окнами ячеек, в который помещаются исследуемые образцы). Разработанный в рамках данной работы метод высокоточного определения концентраций (парциальных давлений) отдельных изотопологов в их смеси основывается на развитой ранее в работе¹¹³ теории изотопозамещения в многоатомных молекулах и позволяет с высокой точностью предсказывать значения параметров эффективных дипольных моментов всех изотопологов конкретной молекулы на основе соответствующих "экспериментальных" (следует особо подчеркнуть, что "экспериментальных") значений параметров основной материнской модификации, которые в большинстве случаев известны (или со значительно меньшими временными и финансовыми затратами могут быть определены из экспериментальных данных). Получаемая на этом этапе высокоточная (до долей процента, что несопоставимо лучше других возможностей оценки указанных параметров) информация, будучи использована в специально разрабатываемом алгоритме обработки экспериментально регистрируемых спектров, позволяет получить высокоточную информацию о реальных концентрациях/парциальных давлениях отдельных изотопологов в смеси в реальном режиме времени. Основой разработанного метода является соотношение

$$P_{(\text{part})} = \frac{(\text{prob}) S_{\nu}^{N}}{(\text{calc}) S_{\nu}^{N}} \cdot P_{(\text{sampl})}$$
(2.8)

которое может быть получено, если воспользоваться известным законом Ламберта-Бугера (SP Davis, MC Abrams, JW Brault Fourier transform spectrometry., San Diego: Academic Press; 2001.) Здесь $P_{(\text{part})}$ – это искомое парциальное давление изотополога в смеси; $P_{(\text{sampl})}$ – полное давление исследуемого образца;

¹¹³Bykov, A.D. On isotope effect in polyatomic molecules: Some comments on the method / A.D. Bykov, Yu.S. Makushkin, O.N. Ulenikov // Journal of Molecular Spectroscopy. -1981. - Vol. 85. - P. 462-479.

 ${}^{\rm (prob)}S^N_{\nu}-$ экспериментально измеренное значение абсолютной интенсивности линии изотополога в исследуемом образце; и

$$S_{\nu}^{N} = \frac{8\pi^{3}\nu}{4\pi\epsilon_{0}3hc} \left[1 - \exp\left(-\frac{hc\nu}{kT}\right)\right] \frac{g_{A}}{Z(T)} \exp\left(-\frac{E_{A}}{kT}\right) R_{A}^{B}$$
(2.9)

- теоретически рассчитанное значение этой интенсивности. При этом, основным моментом при расчете по формуле (2.9) является информация о так называемых матричных элементах R^B_A эффективного дипольного момента рассматриваемых изотопологов. Определение последних, на основе информации об экспериментальных значениях параметров эффективного дипольного момента «материнской» модификации и является ключевым моментов развитого метода. Следует заметить, что в качестве возможной альтернативы основы разработанного в рамках данной работы метода можно было бы назвать работы по определению тем или иным способом многомерной гипер-поверхности дипольного момента той или иной молекулы. К сожалению качество выполняемых в настоящее время в данном направлении работ приводит к погрешностям, которые на порядки могут превосходить погрешности развитого в данной работе подхода (в качестве иллюстрации, как отмечалось, например, самими авторами Azzam Ala'a A.A. and et.al,¹¹⁴ полученная поверхность дипольного момента дает ошибку до сотен процентов при определении интенсивностей линий даже основной модификации молекулы сероводорода, не говоря уже об изотопозамещенных модификациях). Это является следствием, в первую очередь, того, что в разработанном нами методе точность результатов определяется исключительно точностью экспериментальных данных о «материнской» модификации, тогда как результат, полученный с использованием потенциальных гиперповерхностей сильно зависит от корректности этих поверхностей. Дополнительным аргументом в пользу разработанного нами подхода является тот факт, что полученные в его рамках результаты представляют собой весьма простые соотношения (см. ниже результаты для фундаментальных полос изотопологов молекул типа асимметричного волчка), которые без труда могут использоваться любым экспериментатором. В то же время, как правило, использовать для расчетов данные о потенциальной поверхности дипольного момента никто, кроме самих авторов, не может. Возвращаясь к собственно развитому в диссертаци-

¹¹⁴Azzam Ala'a, A.A. The dipole moment surface for hydrogen sulfide H_2S / A.A. Azzam Ala'a, L. Lodi, S.N. Yurchenko, J. Tennyson // J Quant Spectrosc Radiat Transfer. -2015. - Vol. 161. - P. 41-49.

онной работе подходу, отметим, что основной результат, являющийся основой этого подхода получен ¹¹⁵ в следующем простом виде

$${}^{\nu_{\xi}}\tilde{\mu}_{\gamma 1} = \sum_{\delta} b_{\delta}^{\xi\gamma \ gr} \mu_{\delta 1} + \sum_{\lambda} \sum_{\alpha} c_{\lambda\alpha}^{\xi\gamma \ \nu_{\lambda}} \mu_{\alpha 1}, \qquad (2.10)$$

где входящие в (2.10) величины $b_{\delta}^{\xi\gamma}$ и $c_{\lambda\alpha}^{\xi\gamma}$ легко определяются на основе теории изотопозамещения, а $g^r \mu_{\delta 1}$ и $\nu_{\lambda} \mu_{\alpha 1}$ — это ЭКСПЕРИМЕНТАЛЬНЫЕ (то есть, как правило, известные с высокой точностью) параметры эффективного дипольного момента основного и однократно возбужденных колебательных состояний "материнской" модификации. В работе ¹¹⁶ все параметры формулы (2.10) приведены в численном виде для любых изотопологов восьми молекул типа асимметричного волчка: рассматриваемые в данной работе молекулы H₂S, SO₂, C₂H₄, а также H₂O, H₂Se, O₃, H₂CO, и H₂CS. В таблице 2.8 в качестве иллюстрации приведены соответствующие результаты для изотопологов молекулы H₂S.

	$\mathbf{H}\mathbf{D}^{32}\mathbf{S}$ (Cs)							
1	2	3	4	5				
	$b_x^{\xi\gamma}$	$c_{1x}^{\xi\gamma}$	$c_{2x}^{\xi\gamma}$	$c_{3z}^{\xi\gamma}$				
$^{-\nu 1}\tilde{\mu}_{x1}$	0.00031	0.47662	-0.00794	-0.36587				
$^{\nu 1}\tilde{\mu}_{z1}$	0.00040	-0.37503	0.00625	-0.46497				
$\nu^2 \tilde{\mu}_{x1}$	-0.01162	0.00347	0.73323	-0.00159				
$\nu^2 \tilde{\mu}_{z1}$	-0.01477	-0.00273	-0.57694	-0.00202				
$\nu^3 \tilde{\mu}_{x1}$	-0.00010	0.55054	-0.00237	0.44126				
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00013	-0.43320	0.00186	0.56079				
	$HD^{33}S (Cs)$							
$^{\nu 1}\tilde{\mu}_{x1}$	0.00028	0.47566	-0.00717	-0.36662				
$^{\nu 1}\tilde{\mu}_{z1}$	0.00036	-0.37572	0.00566	-0.46414				
$\nu^2 \tilde{\mu}_{x1}$	-0.01166	0.00309	0.73193	-0.00147				
$\nu^2 \tilde{\mu}_{z1}$	-0.01476	-0.00244	-0.57815	-0.00187				
$\nu^3 \tilde{\mu}_{x1}$	-0.00008	0.54967	-0.00198	0.44216				
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00011	-0.43418	0.00156	0.55977				

Таблица 2.8: Коэффициенты $b^{\xi\gamma}_\delta$
и $c^{\xi\gamma}_{\lambda\alpha}$ в формуле (2.10) для изотопологов
H_2S

¹¹⁵Ulenikov, O. N. On the method of precise abundance determination of isotopologues in a gas mixture / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, S. Bauerecker // Physical Chemistry Chemical Physics. – 2019. – Vol. 21. № 16. – P. 8464-8469.

 $^{^{116}}$ Ulenikov, O. N. On the method of precise abundance determination of isotopologues in a gas mixture: Effective dipole moment parameters for the fundamental bands of different isotopologues of H₂O, H₂S, H₂Se, SO₂, O₃, H₂CO, H₂CS, and C₂H₄ / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, A. S. Belova, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 242. Nº.106791.

	$HD^{34}S$ (Cs)							
$^{\nu 1}\tilde{\mu}_{x1}$	0.00026	0.47475	-0.00644	-0.36733				
$\nu^1 \tilde{\mu}_{z1}$	0.00032	-0.37637	0.00510	-0.46335				
$\nu^2 \tilde{\mu}_{x1}$	-0.01170	0.00273	0.73070	-0.00137				
$\nu^2 \tilde{\mu}_{z1}$	-0.01475	-0.00216	-0.57928	-0.00173				
$\nu^3 \tilde{\mu}_{x1}$	-0.00007	0.54885	-0.00162	0.44300				
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00009	-0.43511	0.00128	0.55880				
$\mathbf{D}_{2}^{32}\mathbf{S}(\mathbf{C}_{2v})$								
$^{\nu 1}\tilde{\mu}_{x1}$		0.84683	-0.02027					
$\nu^2 \tilde{\mu}_{x1}$		0.00905	0.84720					
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00102			0.84762				
$\mathbf{D}_{2}^{\ 33}\mathbf{S}(\mathbf{C}_{2v})$								
$^{\nu 1}\tilde{\mu}_{x1}$		0.84648	-0.01907					
$\nu^2 \tilde{\mu}_{x1}$		0.00851	0.84685					
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00096			0.84722				
		$\mathbf{D}_2 {}^{34}\mathbf{S}$ (C	(z_{2v})					
$^{\nu 1}\tilde{\mu}_{x1}$		0.84616	-0.01793					
$\nu^2 \tilde{\mu}_{x1}$		0.00801	0.84652					
$^{\nu 3}\tilde{\mu}_{z1}$	-0.00090			0.84685				
${{{ m H}_{2}}^{33}}{ m S}$ (C _{2v})								
$^{\nu 1}\tilde{\mu}_{x1}$		0.99979	0.00075					
$\nu^2 \tilde{\mu}_{x1}$		-0.00033	0.99976					
$^{\nu 3}\tilde{\mu}_{z1}$	0.00004			0.99976				
		${{{ m H}_{2}}^{34}}{ m S}$ (C	(z_{2v})					
$^{\nu 1}\tilde{\mu}_{x1}$		0.99959	0.00145					
$\nu^2 \tilde{\mu}_{x1}$		-0.00065	0.99954					
$\nu^3 \tilde{\mu}_{z1}$	0.00007			0.99954				

С использованием разработанного метода нами (в подавляющем большинстве - впервые) были выполнены обширные исследования интенсивностей, полуширин и сдвигов линий давлением для различных изотопологов молекул H₂S, SO₂ и отдельных полос таких изотопологов этилена как C₂H₄ и C₂H₂D₂ – *cis*. Статистическая информация о выполненных исследованиях содержится в таблице 2.5.

2.4 Разработка и практическое применение метода исследования спектров высокого разрешения для молекул типа асимметричного волчка в несинглетных электронных состояниях.

Данный раздел работы направлен на решение одной из фундаментальных проблем физики микромира, связанной с получением новой физической информации как качественного, так и количественного характера о структуре и внутренних свойствах важного для приложений, но, вместе с тем, сложного для исследования класса нелинейных многоатомных молекул типа асимметричного волчка в вырожденных электронных состояниях (свободных радикалов) на примере молекулы OClO. Научная значимость и актуальность выполняемых исследований обусловлена, с одной стороны, острой потребностью в высокоточной количественной информации о параметрах спектральных линий свободных радикалов типа асимметричного волчка в несинглетных электронных состояниях со стороны многочисленных как чисто академических, так и прикладных задач науки и техники, так и, с другой стороны, отсутствием в настоящее время в мировой практике гарантированно корректных методов анализа высокоточной экспериментальной информации о спектрах высокого разрешения такого типа молекул. С прикладной точки зрения выбор в качестве объекта исследования именно диоксида хлора объясняется важностью информации о свойствах спектров этого молекулярного объекта для исследования такой важной проблемы современности, с которой столкнулось человечество в последние годы, как проблема сохранения (предотвращение разрушения) озонового слоя Земли. Говоря об академическом аспекте проблемы, следует заметить, что молекулярная спектроскопия высокого разрешения, будучи к настоящему времени высокоразвитым разделом современной физики, позволяет получать высокоточную информацию о структуре и свойствах различного типа молекул, как качественно, так и количественно превосходящую аналогичную информацию, которую можно получать другими методами. Такие возможности являются следствием как возможностей современного эксперимента в регистрации высокоточных спектров высокого разрешения микроволнового, инфракрасного и видимого диапазонов шкалы длин волн, так и, в значительной степени, чрезвычайно высокого уровня

современной теории колебательно-вращательных взаимодействий в многоатомных молекулах различного типа. Однако, среди различных многоатомных молекул имеется, по крайней мере один тип молекул, для которых вплоть до настоящего времени имеются существенные пробелы в теоретическом обосновании и, как следствие, в методах обработки и получения высокоточной физической информации из современных экспериментальных спектров высокого разрешения. К такого типа молекулам относятся свободные радикалы нелинейных молекул в несинглетных (дублетных/триплетных) электронных состояниях, в которых наличие несвязанных электронов приводит к эффектам спин-вращательных и спин-колебательных взаимодействий. Следует заметить, что вплоть до настоящего времени теория спин-вращательных взаимодействий в молекулах типа асимметричного волчка базируется не на строгой квантово-механической (математической) основе, а носит скорее феноменологический характер, являясь по сути дела обычной компиляцией, с одной стороны, общих принципов спинвращательных взаимодействий в двухатомных молекулах (связи по Гунду)¹¹⁷ и, с другой стороны, результатов, полученных на основе анализа свойств традиционного гамильтониана Уотсона¹¹⁸ для нелинейных молекул. Вместе с тем, выполненный в рамках данной работы строгий квантово-механический анализ спин-колебательно-вращательных взаимодействий в такого типа молекулах и применение его результатов к исследованию фундаментальных полос поглощения ν_1^{119} и ν_3^{120} свободного радикала ClO₂ показал, что полученные на этой основе результаты по точности и предсказательной способности превосходят известные до сих пор лучшие аналогичные результаты^{121,122} в десятки раз. Ос-

¹¹⁷ Ландау, Л. Д. Квантовая механика. Нерелятивистская теория / Л.Д. Ландау, Е.М. Лифшиц // –Москва: Наука, 1969. –767 с.

 $^{^{118}}$ J. Watson, Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules. // Chem Phys. -1967. – Vol. 46. – P. 1935–1949.

¹¹⁹Ulenikov, O. N. High resolution ro-vibrational analysis of molecules in doublet electronic states: the ν_1 fundamental of chlorine dioxide (¹⁶O³⁵Cl¹⁶O) in the X^2B_1 electronic ground state / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, M. Quack, K. B. Berezkin, C. Sydow, S. Bauerecker // Physical Chemistry Chemical Physics. – 2021. – Vol. 23. №8. – P. 4580–4596.

 $^{^{120}}$ Merkulova, M.A. Analysis of the High-Resolution Spectrum of Molecules in Doublet Electronic States: Fundamental ν_3 Band of Chlorine Dioxide ($^{16}\mathrm{O}^{35}\mathrm{Cl}^{16}\mathrm{O}$) in the Ground Electronic State X^2B_1 / M.A. Merkulova, A.N. Kakaulin, **O.V. Gromova**, E.S. Bekhtereva // Optics and Spectroscopy. –2021. – Vol. 129(8). – P. 979–984.

 $^{^{121}}$ Ortigoso, J. High-resolution infrared spectrum of the ν_1 band of OClO / J. Ortigoso, R. Escribano, J.B. Burkholder, C.J. Howard, W.J. Lafferty // Journal of Molecular Spectroscopy.-1991. – Vol. 148. – P. 346-370.

 $^{^{122}}$ Ortigoso, J. The ν_2 and ν_3 bands and ground state constants of OClO / J. Ortigoso, R. Escribano, J.B. Burkholder, W.J. Lafferty // Journal of Molecular Spectroscopy. -1992. - Vol. 155. - P. 25-73.

новой для исследования в данной работе служил эффективный гамильтониан

$$\begin{aligned}
H_{\text{eff}}^{v} &= H_{\text{rot}}^{v} + H_{\text{sp-rot}}^{v} + H_{\text{sp}}^{v} \\
&\equiv \frac{1}{2} \sum_{p,q,r,n} \sum_{\alpha\beta\gamma\delta} \mu_{\alpha\beta\gamma\delta}^{v} \left(N_{\alpha}^{p} N_{\beta}^{q} N_{\gamma}^{r} N_{\delta}^{n} + N_{\delta}^{n} N_{\gamma}^{r} N_{\beta}^{q} N_{\alpha}^{p} \right) \\
&+ \frac{1}{2} \sum_{p,q,r} \sum_{\alpha\beta\gamma\delta} \nu_{\alpha\beta\gamma\delta}^{v} \left(N_{\alpha}^{p} N_{\beta}^{q} N_{\gamma}^{r} S_{\delta} + S_{\delta} N_{\gamma}^{r} N_{\beta}^{q} N_{\alpha}^{p} \right) \\
&+ \frac{1}{2} \sum_{p,q,r,n} \sum_{\alpha\beta\gamma\delta} \kappa_{\alpha\beta\gamma\delta}^{v} \left(S_{\alpha}^{p} S_{\beta}^{q} S_{\gamma}^{r} S_{\delta}^{n} + S_{\delta}^{n} S_{\gamma}^{r} S_{\beta}^{q} S_{\alpha}^{p} \right),
\end{aligned}$$
(2.11)

(обозначения здесь соответствуют принятым в такого рода проблемах) который может быть получен из общего спин-электронно-колебательно-вращательного гамильтониана молекулы¹²³ на основе использования операторной теории возмущений (например в проекционной формулировке: А. Е. Cheglokov, O. N. Ulenikov, A. S. Zhilyakov, V. N. Cherepanov, Yu. S. Makushkin and A. B. Malikova, J. Phys. B: At. Mol. Opt. Phys. 1989, 22, 997-1015. ¹²⁴), теории углового момента¹²⁵) с учетом коммутационных соотношений

$$[N_{\alpha}, N_{\beta}] = -i \sum_{\gamma} \varepsilon_{\alpha\beta\gamma} N_{\gamma}, \qquad (2.12)$$

$$[N_{\alpha}, S_{\beta}] = -i \sum_{\gamma} \varepsilon_{\alpha\beta\gamma} S_{\gamma}, \qquad (2.13)$$

$$[S_{\alpha}, S_{\beta}] = -i \sum_{\gamma} \varepsilon_{\alpha\beta\gamma} S_{\gamma}.$$
(2.14)

Последнее (третье) слагаемое в выражении (2.11) зависит только от спиновых операторов и может давать только добавку к чисто колебательной энергии (по этой причине оно в работе не исследовалось). Первое слагаемое в (2.11)

¹²³J.H.V. Vleck, The Coupling of Angular Momentum Vectors in Molecules. // Rev Mod Phys. -1951. - Vol. 23. - P. 213-227.

 $^{^{124}}$ Cheglokov, A. E. On the determination of spectroscopic constants as functions of intramolecular parameters / A. E. Cheglokov, O. N. Ulenikov, A. S. Zhilyakov, V. N. Cherepanov, Yu. S. Makushkin, A. B. Malikova //J. Phys. B: At. Mol. Opt. Phys. –1989. – Vol. 22. – P. 997-1015.

 $^{^{125}}$ Варшалович Д. А., Москалев А. Н., Херсонский В. К. Квантовая теория углового момента. // «Наука», Л., 1975, 439 с

– это традиционный эффективный вращательный гамильтониан Уотсона ¹²⁶ в А-редукции и I^r представлении. Наиболее важным является второй вклад в правой части выражения (2.11), который описывает различные эффекты спинвращательных взаимодействий в молекулах типа асимметричного волчка и может быть представлен в виде

$$H_{\rm sp-rot}^{v} = {}^{(2)}H_{\rm sp-rot}^{v} + {}^{(4)}H_{\rm sp-rot}^{v} + {}^{(6)}H_{\rm sp-rot}^{v} + \dots, \qquad (2.15)$$

где

$$^{(2)}H^{v}_{\text{sp-rot}} = a_0(N \cdot S) + aN_z S_z + b(N_x S_x - N_y S_y), \qquad (2.16)$$

$${}^{(6)}H^{v}_{\rm sp-rot} = H^{s}_{N}N^{4}(N \cdot S) + \frac{1}{2}H^{s}_{NNK}[N^{4}, N_{z}S_{z}]_{+} + H^{s}_{KNN}N^{2}_{z}N^{2}(N \cdot S) + \frac{1}{2}H^{s}_{NKK}[N^{2}N^{2}_{z}, N_{z}S_{z}]_{+} + H^{s}_{KKN}N^{4}_{z}(N \cdot S) + H^{s}_{K}N^{4}_{z}N_{z}S_{z} + \frac{1}{2}h^{s}_{KN}[(N^{2}_{+} + N^{2}_{-}), N^{2}_{z}(N \cdot S)]_{+} + \frac{1}{2}h^{s}_{NK}\left[(N^{2}_{+} + N^{2}_{-})N^{2}, N_{z}S_{z}\right]_{+} + h^{s}_{NN}(N^{2}_{+} + N^{2}_{-})N^{2}(N \cdot S).$$

$$(2.18)$$

Следует заметить, что, так же, как и чисто вращательный гамильтониан первое слагаемое в выражении (2.11), спин-вращательный оператор (2.15)-(2.18) получен с учетом редукции как чисто вращательных, так и спин-вращательных операторов (более подробно как обсуждение гамильтониана, так и расчет его матричных элементов на базисных спин-вращательных функциях, необходимых для определения собственных значений и собственных функций, см. в работе¹¹⁹). Разработанная модель была положена в основу алгоритма и созданного на этой основе пакета программ ROVDES (RO-Vibrations in Double Electronic

¹²⁶Watson J. K. G. Determination of Centrifugal Distortion Coefficients of Asymmetric-Top Molecules// J. Chem. Phys. - **1967**. - Vol. 46. - P. 1935–1949

Рисунок 2.19. Экспериментальный спектр IV, зарегистрированный в диапазоне 700 – 4800 см⁻¹. На нижней части рисунка представлена более детально область 850 – 1030 см⁻¹ (Спектр II). С условия эксперимента можно ознакомиться в таблице 2.9.

States) на языке FORTRAN, который использовался затем для анализа экспериментально зарегистрированных спектров высокого разрешения свободного радикала ClO_2 в районе полос поглощения ν_1 и ν_3 .

Спектры высокого разрешения ClO_2 в диапазоне 800–2600 см⁻¹ были зарегистрированы на Фурье-спектрометре HR125 в техническом университете Брауншвейга, Германия (условия эксперимента приведены в таблице 2.9).

В верхней части рисунков 2.19 - 2.21, в качестве иллюстрации, приведены

Таблица 2.9. Экспериментальные условия зарегистрированных спектров молекулы ClO_2 в диапазоне 700–4800 см⁻¹.

N⁰	Диапазон /см ⁻¹	Разрешение /см ⁻¹	Число сканов	Детектор	Свето- делитель	Опт. длина- пути/м	Апертура /мм	$t / {}^o\mathrm{C}$	Р /Па
I II III IV	700 - 1650 700 - 1650 700 - 4800 700 - 4800	$\begin{array}{c} 0.0015 \\ 0.0015 \\ 0.005 \\ 0.005 \end{array}$	400 360 1000 780	MCT313 MCT313 MCT313 MCT313	KBr KBr KBr KBr	0.23 3.2 3.2 3.2 3.2	$1.15 \\ 1.15 \\ 1.3 \\ 1.7$	$\begin{array}{c} 22.0 \pm 0.3 \\ 21.8 \pm 0.3 \\ 22.2 \pm 0.3 \\ 20.3 \pm 0.3 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Рисунок 2.20. Иллюстрация спин-вращательных расщеплений в ${}^{R}Q_{3}(J)$ -подветви Q-ветви полосы $\nu_{1} {}^{35}$ ClO₂. Знаки "-" и "+" обозначают $J = N - \frac{1}{2}$ и $J = N + \frac{1}{2}$ компонент дублетов. Различная зависимость центров расщепления от квантового числа N наблюдается для четных и нечетных значений N. На верхней части рисунка представлен экспериментальный спектр II, а на нижней – смоделированный с параметрами, полученными в диссертационной работе. С условиями эксперимента можно ознакомиться в таблице 2.9.

как обзорный спектр низкого разрешения во всем диапазоне, так и спектры высокого разрешения в отдельных небольших участках. В результате анализа, выполненного с использованием разработанного подхода и созданного на его основе пакета компьютерных программ ROVDES было проинтерпретировано более 13000 спин-колебательно-вращательных переходов в двух выше-указанных полосах поглощения, на основе принципа Ридберга-Ритца определена спинвращательная структура основного колебательного состояния и колебательных состояний (100) и (001). Полученные в результате решения обратной спектроскопической задачи параметры эффективного гамильтониана (2.15) позволяют воспроизводить экспериментальные положения линий с точностью $\sim 2 \times 10^{-4}$ см⁻¹, что в 20-25 раз лучше известных в литературе результатов для полос ν_1 и ν_3 . Статистическая информация о результатах выполненного исследования приведена в таблице 2.10. Для иллюстрации качества результатов в нижней

Рисунок 2.21. Иллюстрация спин-вращательных расщеплений в ${}^{P}Q_{5}(J)$ -подветви Q-ветви полосы ν_{1} ³⁵ClO₂ (более детальная информация представления в подписи к рисунку 2.20).

части рисунков 2.20 - 2.21 приведены «синтетические» спектры полосы ν_1 , построенные с использованием полученных параметров гамильтониана.

Полоса	Центр/см $^{-1}$	<i>N</i> ^{макс}	K_a^{MAKC}	Число переходов	Число энергий
1	2	3	4	5	6
$\frac{{\nu_1}^{119}}{{\nu_3}^{120}}$	$945.59245\1110.10671$	76 68	26 21	$7239 \\ 4170$	$\begin{array}{c} 1703 \\ 1646 \end{array}$

Таблица 2.10. Статистическая информация для полос ν_1 и ν_3 молекулы ${}^{35}ClO_2$.

2.5 Модификация метода эффективных операторов, алгоритма и пакета компьютерных программ с целью использования их для исследования спектров высокого разрешения молекул типа асимметричного волчка при наличии колебаний инверсионного типа.

Легкие многоатомные молекулы при наличии в них колебаний инверсионного типа составляют отдельный класс молекул, анализ спектров высокого разрешения которых требует специальных подходов, математических моделей и программного обеспечения. К наиболее известным и важным для использования в многочисленных проблемах как чисто академического, так и прикладного характера является молекула аммиака и ее дейтеро-производных. Несмотря на то, что материнская модификация NH₃ относится к классу молекул типа симметричного волчка, ее дейтерированная и дважды дейтерированная модификации являются молекулами типа асимметричного волчка и поэтому представляют интерес для целей данной работы. Если говорить о молекуле аммиака, то известно, что газообразный аммиак играет ключевую роль в атмосферных химических процессах, а также в биогеохимических процессах, происходящих в чувствительных экосистемах (лесах, почвах, ручьях и прибрежных водах). Аммиак быстро реагирует с образовавшейся в атмосфере серной и азотной кислотами и, следовательно, вносит вклад в содержание мелких частиц в окружающей среде. Аммиак является четвертым по содержанию компонентом после водорода, гелия и метана на внешних планетах, таких как Юпитер и Сатурн.^{127,128,} ¹²⁹ Астрофизический мониторинг аммиака и его изотопологов позволяет охарактеризовать различные эволюционные стадии до и после образования звез-

 $^{^{127}{\}rm S.K.}$ Atreya, Atmospheres and ionospheres of the outer planets and their satellites. // Springer–Verlag, Berlin/Heidelberg, 1986.

¹²⁸Bézard, B. Detection of arsine in Saturn / B. Bézard, P. Drossart, E. Lellouch, G. Tarrago, J-P. Maillard // Astrophys J. –1989. – Vol. 346. – P. 509–13.

 $^{^{129}}$ Marten, C. Four micron high-resolution spectra of Jupiter in the North Equatorial Belt: $\rm H_3^+$ emissions and the $^{12}\rm C/^{13}\rm C$ ratio / C. Marten, C. De Bergh, T. Owen, D. Gautier, J-P. Maillard, P. Drossart, B.L. Lutz, G.S. Orton // Planet Space Sci. -1994 -T.42. - P. 391-99.

ды 130,131,132,133 . Изотопное отношение азота ($^{15}N/^{14}N$) в сочетании с изотопным отношением водорода (D/H) являются эффективными маркерами для понимания того, как ледяные мантии были обогащены дейтерием и азотом¹³⁴ (наблюдение различных изотопных соотношений в телах Солнечной системы используется для понимания обогащения дейтерием и азотом в ледяных мантиях и понять, как они образовались в прото-солнечной туманности). Астрофизическими наблюдениями доказано, что азотсодержащие вещества могут служить резервуаром дейтерия¹³⁴. Дейтерированный аммиак особенно интересен, так как он может использоваться в качестве инструмента зондирования наиболее холодных и плотных областей пред-звездных ядер, которые являются основой для будущего формирования молодых звезд. Таким образом, исследование с высоким разрешением спектров аммиака и его изотопологов представляет большой интерес для астрофизических применений. С чисто академической точки зрения инверсия атома N (инверсионное колебание) относится к классическим проблемам внутримолекулярной динамики и, в частности, динамики туннелирования. В связи с вышесказанным, целью данного раздела диссертационной работы была адаптация ранее развитого метода эффективных операторов в молекулах типа асимметричного волчка, подходов и компьютерных программ для возможности анализа спектров высокого разрешения такого типа молекул при наличии в них инверсионных колебаний и иллюстрация возможностей полученных результатов на примере совокупности сильно взаимодействующих инверсионно-колебательно-вращательных полос ν_5 , ν_6 и $2\nu_2$ несимметричных изотопологов ${}^{15}NH_2D$ и 15 NHD₂ молекулы NH₃, которые ранее в спектроскопической литературе не рассматривались.

Как уже отмечалось, основой для исследования послужили развитые ранее подходы и компьютерные программы, созданные для «нормальных» молекул

 $^{^{130}}$ Taban, I.M. Stringent upper limits to the solid $\rm NH_3$ abundance towards W 33A from near–IR spectroscopy with the very large telescope / I.M. Taban, W.A. Schutte, K.M. Pontoppidan, E.F. van Dishoeck // Astronomy Astrophys. -2003–T.399. – P. 169–75.

 $^{^{131}{\}rm Hargreaves},$ R.J. Hot ${\rm NH}_3$ spectra for astrophysical applications / R.J. Hargreaves, G. Li, P.F. Bernath // Astrophys J. –2011 –T.735. – P. 111–21.

¹³²Busquet, G. The NH₂D/NH₃ ratio toward pre-protostellar cores round the UCHII region in IRAS 20293+3952 / G. Busquet, A. Palau, R. Estalella, J. M. Girart, A. Sánchez-Monge, S. Viti, P.T.P. Ho, Q. Zhang // Astronomy Astrophys. -2010 -T.517. - P. L1-L4.

¹³³Tine, S. Deuterium fractionation in dense ammonia cores / S. Tine, E. Roueff, E. Falgarone, M. Gerin, G. Pineau des Forets // Astronomy Astrophys. -2000 -T.356. - P. 1039-49.

 $^{^{134}}$ Gerin, M. Detection of $^{15}\rm NH_2D$ in dense cores: A new tool for measuring the $^{14}\rm N/^{15}N$ ratio in the cold ISM / M. Gerin, N. Marcelino, N. Biver, E. Roueff, L.H. Coudert, M. Elkeurti, D.C. Lis, D. Bockelye–Morvan // Astronomy Astrophys. -2009–T.498. – P. L9–L12.

Рисунок 2.22. а) Схема вращательно-инверсионных переходов в молекуле $^{15}\rm NH_2D$. Типы возможных вращательных переходов отмечены как внутри симметричного и асимметричного инверсионных состояний, так и между симметричным и асимметричным состояниями. б) Схема возможных переходов в полосе ν_5 молекулы $^{15}\rm NH_2D$. Отмечены типы возможных вращательно-инверсионно-колебательных переходов.

типа асимметричного волчка с учетом наличия в них резонансных взаимодействий различного типа, в которых были учтены особенности, присущие молекулам ¹⁵NH₂D и ¹⁵NHD₂. В качестве основных таковых особенностей следует отметить наличие довольно низкого потенциального барьера (рисунок 2.22), что приводит к (1) проявлению эффекта туннелирования и, как следствие, к инверсионному удвоению колебательно-вращательных энергий (которое резко возрастает при переходе к возбужденным инверсионным состояниям); (2) чрезвычайно сложной картине инверсионно-колебательно-вращательных полос, большая часть которых являются гибридными; (3) запутанной картине резонансных взаимодействий различного типа (рисунок 2.23), которые необходимо учесть в модели и соответствующих компьютерных программах. Все необходимые особенности и нюансы при выполнении работы были учтены (за неимением места детали здесь не приводятся, однако читатель может их найти в публикациях к научному докладу. ^{135,136} Модифицированная таким образом модель

¹³⁵Ulenikov, O. N. Rotational analysis of the inversion–vibration spectrum of ¹⁵NH₂D: A set of interacting states $\nu_5 / \nu_6 / 2\nu_2 / O$. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, A. L. Fomchenko, F. Kwabia Tchana // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2017. – Vol. 202. – P. 210–219.

¹³⁶Ulenikov, O. N. High resolution study of the lowest inversion–vibration bands of ¹⁵NHD₂: Interacting bands $\nu_5 / \nu_6 / 2\nu_2 / O.$ N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. L. Fomchenko, F. Kwabia Tchana // Journal

и созданный на этой основе комплекс программ на языке FORTRAN использовался для исследования впервые зарегистрированного спектра молекул ¹⁵NH₂D и ¹⁵NHD₂ в диапазоне 1000-1800 см⁻¹, где расположены сильно резонирующие инверсионно-колебательные полосы ν_5 , ν_6 и $2\nu_2$ этих молекул. Экспериментальный спектр был зарегистрирован на Фурье-спектрометре Bruker IFS 125HR лаборатории LISA (университет Париж-Кретель, Франция) с использованием в качестве источника излучения синхротрона SOLEIL.

Рисунок 2.23. Схема резонансных взаимодействий между инверсионно-колебательными состояниями $^{15}\rm NH_2D$ в диапазоне 1300–1750 см $^{-1}$.

На рисунке 2.24 в качестве иллюстрации приведен зарегистрированный спектр низкого разрешения (верхняя часть рисунка) в районе инверсионно-колебательной полосы ν_5 молекулы ¹⁵NH₂D и небольшой фрагмент спектра высокого раз-

of Quantitative Spectroscopy and Radiative Transfer. -2020. – Vol. 250. No.107062.

Рисунок 2.24. Фрагмент спектра молекулы ${}^{15}\rm{NH_2D}$ в районе 1580–1610 см⁻¹ (верхняя часть), зарегистрированного при комнатной температуре с содержанием в образце 10% ${}^{15}\rm{NH_3}$ и 90% ${}^{15}\rm{ND_3}$ при общем давлении 52,1 Па с длиной пути 5,649 м и разрешением 0,004 см⁻¹. В нижней части представлен участок спектра высокого разрешения в области 1589–1590 см⁻¹. Большинство линий относятся к ${}^{15}\rm{NH_2D}$. Линии принадлежащие полосам ν_5^s , ν_5^a и $2\nu_2^s$, отмечены светлыми и темными окружностями и светлыми треугольниками, соответственно.

решения этой полосы с выполненной интерпретацией переходов. В результате анализа было выяснено, что известная из литературы информация о вращательной структуре обоих исследуемых изотопологов (полученная из анализа микроволновых спектров^{137,138}) является некорректной и только ограниченно может использоваться для анализа спектров (верхняя часть рисунка 2.25).

Поэтому в качестве первого шага данного исследования на основе зарегистрированных нами экспериментальных данных и метода комбинационных разностей была существенно уточнена (в ряде случаев более чем в 50 раз) вращательная структура основных колебательных состояний обеих молекул (нижняя

 $^{^{137}}$ Elkeurti, M. The inversion splitting of $^{15}\rm NH_2D$ and $^{15}\rm ND_2H$ as obtained from their microwave and FIR spectra / M. Elkeurti, L.H. Coudert, J. Orphal, G. Wlodarczak, C.E. Fellows, S. Toumi // J Mol Spectrosc. -2008. - Vol. 251. - P. 90-101.

¹³⁸Predoi-Cross, A. Far-infrared spectra and ground state spectroscopic parameters of ¹⁵NH₂D / A. Predoi-Cross, H. Rosario, G. Di Lonardo, L. Fusina, F. Fusina // *J Mol Spectrosc.* -2014. - Vol. 301. - P. 13-4.

Рисунок 2.25. Графики зависимости разностей $\Delta_{J'K_aK_c}^{JK_aK_c} = {}^{(\Im K C \Pi.)} \delta_{J'K_aK_c}^{JK_aK_c} - {}^{(\operatorname{pacy.})} \delta_{J'K_aK_c}^{JK_aK_c}$ (здесь $\delta_{J'K_aK_c}^{JK_aK_c} = E_{JK_aK_c} - E_{J'K_aK_c'}$) между экспериментальными и расчетными значениями некоторых наборов комбинационных разностей основного состояния от значения квантового числа J. Кривые разного цвета (кривые I, II, III, IV и V) соответствуют разным значениям квантового числа K_a . Кривые «оиг» соответствуют результатам, полученным на основе наших параметров основного состояния из таблиц 3 и 4 работы. Для более подробной информации те же результаты воспроизведены в нижней части рисунка.

часть рисунка 2.25). В результате исследования впервые проинтерпретировано более 8500 переходов в экспериментально зарегистрированных спектрах, которые позволили впервые определить 1314 инверсионно-колебательно-вращательных энергий десяти сильно резонирующих возбужденных инверсионно-колебательных состояний ($v_5 = 1, s$), ($v_5 = 1, a$), ($v_6 = 1, s$), ($v_6 = 1, a$) и ($v_2 = 2, s$) (по пять инверсионно-колебательных состояний для каждого из ¹⁵NH₂D и ¹⁵NHD₂ изотопологов).

Будучи использованы в качестве исходной экспериментальной информации в обратной спектроскопической задаче по определению спектроскопических параметров развитой в данной работе модели гамильтониана, они позволили определить 270 параметров (центров полос, вращательных, центробежных параметров, различных параметров, ответственных за инверсионные расщепления,
$^{15}\mathbf{NH}_{2}\mathbf{D}^{135}$									
Состояние	$E_{[000]}/{ m cm}^{-1}$	J^{MaKC}	K_a^{MaKC}	Число уровней	Число переходов				
1	2	3	4	5	6				
$(v_6 = 1, s)$	1386.2664	14	8	132	688				
$(v_6 = 1, a)$	1386.8264	14	8	131	607				
$(v_2 = 2, s)$	1504.8716	12	8	123	975				
$(v_5 = 1, a)$	1587.7508	14	8	131	1004				
$(v_5 = 1, s)$	1602.4157	12	8	130	1103				

Таблица 2.11. Статистическая информация для полос ν_6 , ν_5 и $2\nu_2$ вращательно-инверсионно-колебательных состояний of ${}^{15}\text{NH}_2\text{D}$ и ${}^{15}\text{NHD}_2$.

$^{15}\mathbf{NHD}_2{}^{136}$

Состояние	$E_{[000]}/{ m cm}^{-1}$	J^{MAKC}	K_a^{MaKC}	Число уровней	Число переходов
1	2	3	4	5	6
$(v_6 = 1, s)$	1458.8540	13	7	118	707
$(v_6 = 1, a)$	1459.0556	12	9	117	632
$(v_2 = 2, s)$	1438.3152	12	9	131	682
$(v_5 = 1, a)$	1231.9748	14	9	145	1045
$(v_5 = 1, s)$	1229.5200	14	10	156	1102

и параметры многочисленных различных резонансных взаимодействий), которые позволяют воспроизводить значения 1314 инверсионно-колебательно-вращательных уровней энергий с точностью ~5×10⁻⁴ см⁻¹, что соответствует погрешностям нашего эксперимента в положениях линий поглощения. Статистическая информация о выполненных в данном разделе исследованиях приведена в таблице 2.11. Для иллюстрации чрезвычайно сложной картины резонансных взаимодействий, присущих исследуемым инверсионно-колебательным полосам на рисунке 2.26 представлена небольшая часть диаграммы инверсионно-колебательно-вращательных энергий для исследуемых молекул, которая демонстрирует чрезвычайно запутанную картину их энергетической структуры.

Рисунок 2.26. Фрагмент диаграммы инверсионно-колебательно-вращательных энергий состояний ($v_6 = 1, s$), ($v_6 = 1, a$), ($v_5 = 1, a$), ($v_5 = 1, s$), ($v_2 = 2, s$) и ($v_2 = 2, a$) для молекулы ¹⁵NH₂D.

3 ЗАКЛЮЧЕНИЕ И ВЫВОДЫ

Таким образом, приведенный научный доклад можно классифицировать как существенный вклад в спектроскопию высокого разрешения молекул типа асимметричного волчка, позволивший как существенно расширить область применения методов и результатов данного направления научных исследований на ранее неизученные диапазоны инфракрасной области спектра, так и существенно усовершенствовать качество исследований для тех объектов и диапазонов, которые ранее уже исследовались.

Ключевые результаты проведенных исследований можно сформулировать в следующем виде:

- Модифицирован и усовершенствован метод решения обратной спектроскопической задачи и на этой основе создан комплекс компьютерных программ на языке программирования FORTRAN для молекул типа асимметричного волчка с учетом большого числа взаимодействующих состояний ROVENATOM, позволяющего специальным образом варьировать параметры эффективного гамильтониана молекулы в условиях сильной корреляции параметров различных колебательных состояний.
- 2. Разработаны математическая основа и алгоритм, на этой основе создан комплекс программ для анализа абсолютных интенсивностей молекул типа асимметричного волчка различной симметрии с учетом произвольного числа резонирующих колебательных состояний.
- 3. Разработан и практически применен (исследование абсолютных интенсивностей, коэффициентов уширения и сдвига спектральных линий давлением) уникальный метод определения концентраций (парциальных давлений) изотопологов многоатомных молекул в их смеси.
- 4. Разработан и практически применен на примере свободного радикала ClO₂

метод исследования спектров высокого разрешения для молекул типа асимметричного волчка в несинглетных электронных состояниях.

- 5. Модифицирован метод эффективных операторов, модифицированы алгоритм и пакет компьютерных программ для исследования спектров высокого разрешения молекул типа асимметричного волчка при наличии в них колебаний инверсионного типа.
- 6. Выполнены впервые или с существенно лучшими по сравнению с известными в литературе характеристиками экспериментальные и теоретические исследования спектров высокого разрешения для более чем 130 колебательно-вращательных полос поглощения различных изотопологов этилена (¹²C₂H₄, ¹²C¹³CH₄, ¹³C₂H₄, C₂H₃D, C₂H₂D₂ *trans*, C₂H₂D₂ *cis*, CH₂ =CD₂, C₂HD₃, C₂D₄), диоксида серы (³²S¹⁶O₂, ³³S¹⁶O₂, ³⁴S¹⁶O₂, ³⁴S¹⁶O¹⁸O, ³²S¹⁸O₂), сероводорода (H₂³²S, H₂³³S, H₂³⁴S, H₂³⁶S, HD³²S, HD³³S, HD³⁴S, D₂³²S, D₂³³S, D₂³⁴S), аммиака (¹⁵NH₂D, ¹⁵NHD₂) и диоксида хлора (³⁵Cl¹⁶O₂), содержащих в общей сложности более четверти миллиона линий поглощения.

Публикации по теме диссертации

- Ulenikov, O. N. High resolution analysis of the SO₂ spectrum in the 2600-2900 cm⁻¹ region: 2ν₃, ν₂+2ν₃-ν₂ and 2ν₁+ν₂ bands / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, I. B. Bolotova, I. A. Konov, V.-M. Horneman, C. Leroy // Journal of Quantitative Spectroscopy and Radiative Transfer. 2012. Vol. 113. № 7. P. 500-517. https://doi.org/10.1016/j.jqsrt.2012.01.006 (2012) Импакт-фактор: 2.503. Квартиль: Q1
- Ulenikov, O. N. High resolution spectroscopic study of C₂H₄: Re-analysis of the ground state and ν₄, ν₇, ν₁₀, and ν₁₂ vibrational bands / O. N. Ulenikov, O. V. Gromova, Yu. S. Aslapovskaya, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2013. – Vol. 118. – P. 14-25. https://doi.org/10.1016/j.jqsrt.2012.11.032 (2013) Импакт-фактор: 2.455. Квартиль: Q1
- Ulenikov, O. N. Re-analysis of the (100), (001), and (020) rotational structure of SO₂ on the basis of high resolution FTIR spectra / O. N. Ulenikov, G. A. Onopenko, O. V. Gromova, E. S. Bekhtereva, V.-M. Horneman //Journal of Quantitative Spectroscopy and Radiative Transfer. 2013. Vol. 130. P. 220-232. https://doi.org/10.1016/j.jqsrt.2013.04.011

(2013) Импакт-фактор: 2.455. Квартиль: Q1

4. Ulenikov, O. N. High resolution analysis of the (111) vibrational state of SO₂ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. S. Belova, S. Bauerecker, C. Maul, C. Sydow, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2014. - Vol. 144. - P. 1-10. https://doi.org/10.1016/j.jqsrt.2014.03.027 (2014) Импакт-фактор: 2.782. Квартиль: Q1

- Ulenikov, O. N. High resolution FTIR study of the ν₇+ν₁₀-ν₁₀ and ν₁₀+ν₁₂-ν₁₀ "hot" bands of C₂H₄ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, G. A. Onopenko, Yu. S. Aslapovskaya, K.-H. Gericke, S. Bauerecker, V.-M. Horneman // Journal of Quantitative Spectroscopy and Radiative Transfer. 2014. Vol. 149. P. 318-333. https://doi.org/10.1016/j.jqsrt.2014.08.013 (2014) Импакт-фактор: 2.782. Квартиль: Q1
- 6. Ulenikov, O. N. High resolution ro-vibrational analysis of interacting bands ν₄, ν₇, ν₁₀, and ν₁₂ of ¹³C₂H₄ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, C. Maul, S. Bauerecker, M. G. Gabona, T. L. Tan // Journal of Quantitative Spectroscopy and Radiative Transfer. 2014. Vol. 151. P. 224-238. https://doi.org/10.1016/j.jqsrt.2014.09.024 (2014) Импакт-фактор: 2.782. Квартиль: Q1
- Ulenikov, O. N. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν₈ + ν₁₀ band of the ¹²C₂H₄ molecule / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, S. Bauerecker, V.-M. Horneman // Journal of Molecular Spectroscopy. - 2015. - Vol. 313. - P. 4-13.

https://doi.org/10.1016/j.jms.2015.04.008 (2015) Импакт-фактор: 1.743. Квартиль: Q2

- Ulenikov, O. N. Study of the high resolution FTIR spectrum of CH₂ = CD₂ in the region of 1300-1450 cm⁻¹: The ν₁₂(A₁) and 2ν₁₀(A₁) bands / O. N. Ulenikov,
 O. V. Gromova, E. S. Bekhtereva, K. B. Berezkin, E. A. Sklyarova, C. Maul, K.-H. Gericke, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2015. - Vol. 161. - P. 180-196. https://doi.org/10.1016/j.jqsrt.2015.04.008 (2015) Импакт-фактор: 3.109. Квартиль: Q1
- Ulenikov, O. N. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν₈ + ν₁₀ band of ¹³C₂H₄ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2015. - Vol. 164. - P. 117-128.

https://doi.org/10.1016/j.jqsrt.2015.06.006 (2015) Импакт-фактор: 3.109. Квартиль: Q1

- Ulenikov, O. N. Ro-vibrational analysis of the hot bands of ¹³C₂H₄: ν₇+ν₁₀-ν₁₀ and ν₁₀+ν₁₂-ν₁₀ / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, N. V. Kashirina, G. A. Onopenko, C. Maul, S. Bauerecker // Journal of Molecular Spectroscopy. - 2015. - Vol. 317. - P. 32-40. https://doi.org/10.1016/j.jms.2015.08.010 (2015) Импакт-фактор: 1.743. Квартиль: Q2
- Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: The bands 2ν₃, 2ν₁+ν₂ and 2ν₁ + ν₂ - ν₂ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Y. V. Krivchikova, E. A. Sklyarova, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. - 2015. - Vol. 318. - P. 26-33. https://doi.org/10.1016/j.jms.2015.09.009 (2015) Импакт-фактор: 1.743. Квартиль: Q2
- Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: The bands 2ν₁, ν₁+ν₃, ν₁ + ν₂ + ν₃ ν₂ and ν₁ + ν₂ + ν₃ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 169. P. 49-57.

https://doi.org/10.1016/j.jqsrt.2015.09.015 (2016) Импакт-фактор: 2.505. Квартиль: Q1

13. Ulenikov, O. N. High resolution FTIR study of ³⁴S¹⁶O₂: Re-analysis of the bands ν₁ + ν₂, ν₂ + ν₃, and first analysis of the hot band 2ν₂ + ν₃ - ν₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, T. Buttersack, C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. - 2016. - Vol. 319. - P. 17-25. https://doi.org/10.1016/j.jms.2015.11.003

(2016) Импакт-фактор: 1.592. Квартиль: Q2

14. Ulenikov, O. N. First high resolution analysis of the 3ν₁ band of ³⁴S¹⁶O₂
/ O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, A. L. Fomchenko,
C. Sydow, S. Bauerecker // Journal of Molecular Spectroscopy. - 2016. - Vol. 319.
- P. 50-54.

https://doi.org/10.1016/j.jms.2015.11.002 (2016) Импакт-фактор: 1.592. Квартиль: Q2

- 15. Ulenikov, O. N. Re-analysis of the high resolution FTIR spectrum of C₂H₂D₂cis in the region of 1280-1400 cm⁻¹ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, I. A. Konov, Y. V. Chertavskikh, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2016. - Vol. 170. - P. 69-82. https://doi.org/10.1016/j.jqsrt.2015.10.011 (2016) Импакт-фактор: 2.505. Квартиль: Q1
- 16. Ulenikov, O. N. First high resolution analysis of the \u03c6₁+\u03c6₂ and \u03c6₂+\u03c6₃ bands of S¹⁸O₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, S. I. Kuznetsov, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 179. P. 187-197. https://doi.org/10.1016/j.jqsrt.2016.03.038 (2016) Импакт-фактор: 2.505. Квартиль: Q1
- 17. Ulenikov, O. N. Study of resonance interactions in polyatomic molecules on the basis of highly accurate experimental data: Set of strongly interacting Bands ν₁₀(B₁), ν₇(B₂), ν₄(A₂), ν₈(B₂), ν₃(A₁) and ν₆(B₁) of CH₂=CD₂ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, K. B. Berezkin, N. V. Kashirina, T. L. Tan, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 180. P. 14-28. https://doi.org/10.1016/j.jqsrt.2016.04.001 (2016) Импакт-фактор: 2.505. Квартиль: Q1
- 18. Ulenikov, O. N. High resolution analysis of C₂D₄ in the region of 600-1150 cm⁻¹ / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, F. Zhang, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 182. P. 55-70. https://doi.org/10.1016/j.jqsrt.2016.04.026 (2016) Импакт-фактор: 2.505. Квартиль: Q1
- Ulenikov, O. N. First high resolution study of the interacting ν₈+ν₁₀, ν₆+ν₁₀,
 ν₆ + ν₇ bands and re-analysis of the ν₇ + ν₈ band of trans d₂-ethylene /
 O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Yu. S. Aslapovskaya,

A. G. Ziatkova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2016. — Vol. 184. — Р. 76-88. https://doi.org/10.1016/j.jqsrt.2016.06.040 (2016) Импакт-фактор: 2.505. Квартиль: Q1

- 20. Ulenikov, O. N. First high resolution analysis of the 2ν₁, 2ν₃, and ν₁ + ν₃ bands of S¹⁸O₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, E. A. Sklyarova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2016. Vol. 185. P. 12-21. https://doi.org/10.1016/j.jqsrt.2016.08.008 (2016) Импакт-фактор: 2.505. Квартиль: Q1
- 21. Ulenikov, O. N. Ethylene-1-¹³C (¹³C¹²CH₄): First analysis of the ν₂, ν₃ and 2ν₁₀ bands and re–analysis of the ν₁₂ band and of the ground vibrational state / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Yu. S. Aslapovskaya, T. L. Tan, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 187. P. 403-413. https://doi.org/10.1016/j.jqsrt.2016.10.009 (2017) Импакт-фактор: 2.876. Квартиль: Q2
- 22. Ulenikov, O. N. First study of the ro-vibrational structure of the g-symmetry vibrational states of C₂D₄ from the analysis of hot bands: The ν₇ + ν₁₀ ν₁₀ and ν₁₀+ν₁₂-ν₁₀ bands / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. L. Fomchenko, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 187. P. 178-189. https://doi.org/10.1016/j.jqsrt.2016.09.014 (2017) Импакт-фактор: 2.876. Квартиль: Q2
- 23. Ulenikov, O. N. High resolution study of the rotational structure of doubly excited vibrational states of ³²S¹⁶O¹⁸O: The first analysis of the 2ν₁, ν₁ + ν₃, and 2ν₃ bands / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, V. A. Zamotaeva, S. I. Kuznetsov, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 189. P. 344-350.

https://doi.org/10.1016/j.jqsrt.2016.12.019

(2017) Импакт-фактор: 2.876. Квартиль: Q2

- 24. Ulenikov, O. N. Study of highly excited ro-vibrational states of S¹⁸O₂ from "hot" transitions: The bands \(\nu_1 + \nu_2 + \nu_3 \nu_2, 2\nu_1 + \nu_2 \nu_2, and 2\nu_2 + \nu_3 \nu_2 \)
 / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Y. B. Morzhikova, C. Maul, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 196. P. 159-164. https://doi.org/10.1016/j.jqsrt.2017.04.004
 (2017) Импакт-фактор: 2.876. Квартиль: Q2
- 25. Ulenikov, O. N. First high resolution analysis of the 3ν₂ and 3ν₂ ν₂ bands of ³²S¹⁶O₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, K. B. Berezkin, V.-M. Horneman, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 202. P. 1-5. https://doi.org/10.1016/j.jqsrt.2017.07.012 (2017) Импакт-фактор: 2.876. Квартиль: Q2
- 26. Ulenikov, O. N. First rotational analysis of the (111) and (021) vibrational state of S¹⁶O¹⁸O from the "hot" v₁ + v₂ + v₃ v₂ and 2v₂ + v₃ v₂ bands / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, A. G. Ziatkova, E. A. Sklyarova, S. I. Kuznetsov, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 202. P. 98-103. https://doi.org/10.1016/j.jqsrt.2017.07.029 (2017) Импакт-фактор: 2.876. Квартиль: Q2
- 27. Ulenikov, O. N. Rotational analysis of the inversion-vibration spectrum of ¹⁵NH₂D: A set of interacting states v₅ / v₆ /2v₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. L. Fomchenko, F. Kwabia Tchana // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 202. P. 210-219. https://dx.doi.org/10.1016/j.jqsrt.2017.08.005

(2017) Импакт-фактор: 2.876. Квартиль: Q1

28. Ulenikov, O. N. High resolution FTIR spectroscopy of sulfur dioxide in the 1550–1950 cm⁻¹ region: First analysis of the $\nu_1 + \nu_2/\nu_2 + \nu_3$ bands of ${}^{32}S^{16}O^{18}O$ and experimental line intensities of ro-vibrational transitions in the $\nu_1 + \nu_2/\nu_2 + \nu_3$ bands of ${}^{32}S^{16}O_2$, ${}^{34}S^{16}O_2$, ${}^{32}S^{18}O_2$ and ${}^{32}S^{16}O^{18}O / O$. N. Ulenikov,

E. S. Bekhtereva, **O. V. Gromova**, V.-M. Horneman, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2017. — Vol. 203. — P. 377-391. https://doi.org/10.1016/j.jqsrt.2017.02.005 (2017) Импакт-фактор: 2.876. Квартиль: Q2

- 29. Ulenikov, O. N. Extended analysis of the high resolution FTIR spectrum of ³²S¹⁶O₂ in the region of the ν₂ band: Line positions, strengths, and pressure broadening widths / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, M. Quack, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. Vol. 210. P. 141-155. https://doi.org/10.1016/j.jqsrt.2018.02.010 (2018) Импакт-фактор: 3.336. Квартиль: Q1
- 30. Ulenikov, O. N. Extended analysis of the high resolution FTIR spectra of H₂^MS (M=32, 33, 34, 36) in the region of the bending fundamental band: The ν₂ and 2ν₂ ν₂ bands: Line positions, strengths, and pressure broadening widths / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, P. A. Glushkov, A. P. Scherbakov, V.-M. Horneman, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2018. Vol. 216. P. 76-98.

https://doi.org/10.1016/j.jqsrt.2018.05.009 (2018) Импакт-фактор: 3.336. Квартиль: Q1

31. Ulenikov, O. N. First high resolution ro-vibrational analysis of C₂HD₃ in the region of the *v*₁₂ band / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, N. V. Kashirina, C. Sydow, M. Schiller, T. Blinzer, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2018. - Vol. 218. - P. 86-99.

https://doi.org/10.1016/j.jqsrt.2018.07.002 (2018) Импакт-фактор: 3.336. Квартиль: Q1

32. Ulenikov, O. N. Extended high-resolution analysis of the ν₁₀ band of C₂D₄ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. L. Fomchenko, M. A. Merkulova, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2018. - Vol. 219. - P. 262-273.

https://doi.org/10.1016/j.jqsrt.2018.08.001 (2018) Импакт-фактор: 3.336. Квартиль: Q1

- 33. Ulenikov, O. N. On the method of precise abundance determination of isotopologues in a gas mixture / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, S. Bauerecker // Physical Chemistry Chemical Physics. 2019. Vol. 21. № 16. P. 8464-8469. https://doi.org/10.1039/c9cp00750d
 (2019) Импакт-фактор: 3.598. Квартиль: Q1
- 34. Sydow, C. Extended analysis of the FTIR high-resolution spectrum of D₂³²S in the region of the ν₂ band / C. Sydow, O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, P. A. Glushkov, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 224. P. 460-473.

https://doi.org/10.1016/j.jqsrt.2018.12.007

(2019) Импакт-фактор: 3.599. Квартиль: Q1

- 35. Sydow, C., Extended analysis of FTIR high resolution spectra of HD³²S and HD³⁴S in the region of the v₂ band: Positions and strengths of individual lines / C. Sydow, O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, Z. Xintong, P. A. Glushkov, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 225. P. 286-300. https://doi.org/10.1016/j.jqsrt.2018.12.040 (2019) Импакт-фактор: 3.599. Квартиль: Q1
- 36. Ulenikov, O. N. First line strength analysis of ³⁴SO₂ in the *ν*₂ region: Isotopic relations for the dipole moment parameters / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. G. Ziatkova, M. Quack, G. C. Mellau, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 229. P. 166-178. https://doi.org/10.1016/j.jqsrt.2018.11.031 (2019) Импакт-фактор: 3.599. Квартиль: Q1
- 37. Ulenikov, O. N. Extended analysis of the ν_3 band of HD³²S: Line positions, energies, and line strengths / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova,

N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2019. — Vol. 230. — Р. 131-141. https://doi.org/10.1016/j.jqsrt.2019.04.005 (2019) Импакт-фактор: 3.599. Квартиль: Q1

- 38. Ulenikov, O. N. First detection of the rare hydrogen sulfide isotopologue: The pure rotational and v₂ bands of HD³³S / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 232. P. 108-115. https://doi.org/10.1016/j.jqsrt.2019.05.004 (2019) Импакт-фактор: 3.599. Квартиль: Q1
- 39. Ulenikov, O. N. Extended analysis of the v₁₂ band of ¹²C₂H₄ for astrophysical applications: Line strengths, widths, and shifts / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. N. Kakaulin, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 233. P. 57-66. https://doi.org/10.1016/j.jqsrt.2019.05.017 (2019) Импакт-фактор: 3.599. Квартиль: Q1
- 40. Ulenikov, O. N. First high-resolution analysis of the $\nu_2 + \nu_6$ band of the $C_2H_2D_2 cis$ isotopologue of ethylene / O. N. Ulenikov, **O. V. Gromova**, E. S. Bekhtereva, Y. V. Konova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2019. Vol. 233. P. 99-109.

https://doi.org/10.1016/j.jqsrt.2019.05.019

(2019) Импакт-фактор: 3.599. Квартиль: Q1

41. Ulenikov, O. N. Extended analysis of the lowest bands of ¹²C₂H₄: Line strengths, widths, and shifts in the ν₇, ν₁₀, and ν₄ bands / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2019. - Vol. 239. №.106657.

https://doi.org/10.1016/j.jqsrt.2019.106657

(2019) Импакт-фактор: 3.599. Квартиль: Q1

42. Ulenikov, O. N. Extended FTIR high resolution analysis of hydrogen sulfide in

the region of the second hexad: Line positions and ro-vibrational energies of $H_2^M S$ (M=32, 33, 34) / O. N. Ulenikov, E. S. Bekhtereva, **O. V. Gromova**, F. Zhang, C. Maul, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. – 2020. – Vol. 240. №.106710 https://doi.org/10.1016/j.jqsrt.2019.106710 (2020) Импакт-фактор: 2.782. Квартиль: Q1

- 43. Ulenikov, O. N. On the method of precise abundance determination of isotopologues in a gas mixture: Effective dipole moment parameters for the fundamental bands of different isotopologues of H₂O, H₂S, H₂Se, SO₂, O₃, H₂CO, H₂CS, and C₂H₄ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. Vol. 242. №.106791. https://doi.org/10.1016/j.jqsrt.2019.106791
 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 44. Ulenikov, O. N. Experimental line strengths of the 5ν₂ band of H₂³²S in comparison with the results of "variational" calculation and HITRAN database / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, N. I. Raspopova, A. S. Belova, C. Maul, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. Vol. 243. №.106812 https://doi.org/10.1016/j.jqsrt.2019.106812
 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 45. Ulenikov, O. N. Extended high resolution analysis of the second triad of D₂³²S, D₂³³S and D₂³⁴S / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020.- Vol. 245. №.106879. https://doi.org/10.1016/j.jqsrt.2020.106879
 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 46. Ulenikov, O. N. Ro-vibrational analysis of the ¹²C₂H₂D₂-*cis* molecule spectra in the region of 1150–1450 cm⁻¹: The ν₁₂, ν₃, 2ν₁₀ and ν₈ + ν₁₀ bands / O. N. Ulenikov, O. V. Gromova, E. S. Bekhtereva, Y. V. Konova, A. N. Kakaulin, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. Vol. 250. №.107021.

https://doi.org/10.1016/j.jqsrt.2020.107021 (2020) Импакт-фактор: 2.782. Квартиль: Q1

- 47. Ulenikov, O. N. High resolution study of the lowest inversion-vibration bands of ¹⁵NHD₂: Interacting bands ν₅ / ν₆ /2ν₂ / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. L. Fomchenko, F. Kwabia Tchana // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. Vol. 250. №.107062. https://doi.org/10.1016/j.jqsrt.2020.107062
 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 48. Ulenikov, O. N. Comprehensive ro-vibrational analysis of di-deuterated hydrogen sulfide in the region of the ν₂, 2ν₂ and 2ν₂ ν₂ bands: D₂³²S, D₂³⁴S and D₂³³S isotopologues / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, T. Ersin, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. Vol. 252. №.107106. https://doi.org/10.1016/j.jqsrt.2020.107106
 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 49. Ulenikov, O. N. Ro-vibrational analysis of the first hexad of hydrogen sulfide: Line position and strength analysis of the 4ν₂ band of H₂³²S and H₂³⁴S for HITRAN applications / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, F. Zhang, N. I. Raspopova, C. Sydow, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2020. - Vol. 255. №.107236. https://doi.org/10.1016/j.jqsrt.2020.107236 (2020) Импакт-фактор: 2.782. Квартиль: Q1
- 50. Ulenikov, O. N. High resolution ro-vibrational analysis of molecules in doublet electronic states: the ν₁ fundamental of chlorine dioxide (¹⁶O³⁵Cl¹⁶O) in the X²B₁ electronic ground state / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, M. Quack, K. B. Berezkin, C. Sydow, S. Bauerecker // Physical Chemistry Chemical Physics. 2021. Vol. 23. №8. P. 4580-4596. https://doi.org/10.1039/d0cp05515h
 (2021) Импакт-фактор: 3.676. Квартиль: Q1
- 51. Ulenikov, O. N. Quantitative analysis of ro-vibrational spectra of ethylene: Line strengths of the ν₁₂ and ν₃ bands of ¹²C₂H₂D₂ - cis / O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, Y. V. Konova, Y. S. Aslapovskaya, C.

Sydow, K. Berezkin, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. — 2021. — Vol. 261. №.107434. https://doi.org/10.1016/j.jqsrt.2020.107434 (2021) Импакт-фактор: 2.468. Квартиль: Q1

52. Ulenikov, O. N. Line strength analysis of the second overtone 3ν₂ band of D₂³²S
/ O. N. Ulenikov, E. S. Bekhtereva, O. V. Gromova, A. S. Belova, Y. B. Morzhikova, C. Sydow, C. Maul, S. Bauerecker // Journal of Quantitative Spectroscopy and Radiative Transfer. - 2021. - Vol. 270. №.107686. https://doi.org/10.1016/j.jqsrt.2021.107686
(2021) Импакт-фактор: 2.468. Квартиль: Q1

Автор выражает благодарность научному консультанту проф., д.ф.-м.н Уленекову О.Н. за поддержку и участие в подготовке материалов. Автор выражает самую глубокую благодарность коллегам (профессору ИШФВП д.ф.м.н Бехтеревой Е.С., доцентам и преподавателям ТПУ к.ф.-м.н. Распоповой Н.И., к.ф.-м.н. Фомченко А.Л., к.ф.-м.н. Аслаповской Ю.С., к.ф.-м.н. Конову И.А., к.ф.-м.н. Коновой Ю.А., к.ф.-м.н. Зятьковой А.Г. и к.ф.-м.н. А.С. Жилякову) аспирантам и студентам группы молекулярной спектроскопии ТПУ (Кузнецову А. В., Беловой А.С., Меркуловой М.А., Глушкову П.А., Какаулину А.Н.) за плодотворное сотрудничество в процессе выполнения работы. Автор благодарен также зарубежным коллегам совместно с которыми были выполнены многочисленные экспериментальные исследования спектров высокого разрешения различных молекул: профессорам С. Бауэккеру и К. Зидо (Технический университет Брауншвейга, Германия), М. Кваку (ЕТН Цюрих, Швейцария), К. Леруа и В. Будону (университет Франш-Конте, Дижон, Франция), Ф. Квабиа-Чана (университет Париж-Кретель, Франция), В.-М. Хорнеману (университет Оулу, Финляндия), А. Тану (технологический университет Наньянг, Сингапур).