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Abstract: The primary task of the design and feasibility study for the use of wind power plants is
to predict changes in wind speeds at the site of power system installation. The stochastic nature of
the wind and spatio-temporal variability explains the high complexity of this problem, associated
with finding the best mathematical modeling which satisfies the best solution for this problem.
In the known discrete models based on Markov chains, the autoregressive-moving average does
not allow variance in the time step, which does not allow their use for simulation of operating
modes of wind turbines and wind energy systems. The article proposes and tests a SDE-based
model for generating synthetic wind speed data using the stochastic differential equation of the
fractional Ornstein-Uhlenbeck process with periodic function of long-run mean. The model allows
generating wind speed trajectories with a given autocorrelation, required statistical distribution and
provides the incorporation of daily and seasonal variations. Compared to the standard Ornstein-
Uhlenbeck process driven by ordinary Brownian motion, the fractional model used in this study
allows one to generate synthetic wind speed trajectories which autocorrelation function decays
according to a power law that more closely matches the hourly autocorrelation of actual data. In
order to demonstrate the capabilities of this model, a number of simulations were carried out using
model parameters estimated from actual observation data of wind speed collected at 518 weather
stations located throughout Russia.

Keywords: wind energy; wind speed model; stochastic differential equations; fractional Brownian
motion; time-series modeling

1. Introduction

Currently, most of the budget of the Russian Federation is provided by revenues from
the sale of oil and gas, which determines the leading role of the oil and gas industry in the
social-economic development of the country. The development of the oil and gas sector
requires updates and the development for new fields of trunk oil and new gas pipelines
which are mainly located in areas remote from the central electric grid. Thus, reliable
and efficient power supply utilizing technological facilities in decentralized regions is an
important and urgent task of the oil and gas industry, which determines high requirements
for the reliability of power supply systems. The well-known standard designs of power
supply systems do not always meet the established reliability requirements, which requires
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the use of new technical solutions. One of such solutions is the use of wind power plants
in power supply systems.

The positive experience of using offshore wind power plants for the power supply
of offshore oil fields is given in [1]. A thorough assessment of the prospects for the use
of wind turbines for the power supply of the gas industry facilities was obtained in [2,3].
The results of the research carried out prove that the use of wind turbines in the power
supply systems of technological facilities in the oil and gas industry provides a decrease in
overall energy consumption and the cost of extracted geo resources, as well as increases
environmental and energy security in areas of decentralized energy supply.

To solve the problems of feasibility and design of wind energy systems, it is necessary
to have reliable forecasting of wind speeds at short and long time intervals is required. The
stochastic nature of the wind and its great variability in time determine the high complexity
of this problem. The solution of this problem requires methods of mathematical modeling.

Wind speed can be described by stochastic processes, the characteristics of which are:

− Probability Density Function (PDF) describing the statistical distribution of wind speeds
that depend on the specific site and used to estimate potential energy production [4].

− Autocorrelation Function (ACF) that shows the strength of the relationship between
two successive values of the same time series [5]. Its accurate modeling is necessary to
improve the reliability of forecasting wind speed fluctuations over short time intervals.

− Systematic daily and seasonal cycles [6] which significantly affect the performance of
wind turbines [7] and whose modeling is necessary to predict electricity generation [8];
analyze the aerodynamic interaction between wind turbines in wind farms [9]; and
coordinate the operation modes of hybrid RES-based power supply systems.

The initial data for modeling power systems based on wind turbines are the time series
of meteorological observations accumulated over a long period of time at meteorological
stations. In the task of modeling and evaluating the performance of wind farms, data are
required at least with an hourly interval between observations, while most meteorological
stations in the territory of the Russian Federation observations taken 8 or 4 times per day
with a time interval between observations equal to three and six hours, respectively. This
problem necessitates the development of models that allow synthesizing a time series with
the required time resolution while maintaining statistical characteristics (autocorrelation,
statistical distribution, and non-stationary cyclic components). This work is devoted to
the study of this type of model based on a stochastic differential equation. The remainder
of this paper is organized in the following manner. Section 2 provides an analysis of the
sources devoted to the research topic. Section 3 elaborates on our methods and algorithms.
Section 4 describes the estimation of model parameters of research. The model validation
and the obtained results are discussed in Section 5. In conclusion, the research findings
are recapitulated.

2. Literature Review

Wind speed models based on AR/MA, Markov chain models and other discrete
models [10–12] do not allow for the variation of simulation time step simulation. This
limitation does not allow the use of these models for the simulation of wind power systems
with a high degree of time sampling, which is a necessary condition for selecting the
optimal configuration of power-generating equipment and analyzing steady-state and
transient processes in RES-based electric power systems.

In article [13] an overview of predictive models is provided and a short description
of a hybrid approach is introduced based on a neural network with long-term short-
term memory; a method of hierarchical evolutionary decomposition using an improved
optimization algorithm for tuning hyper-parameters. In article [14] an approach to increase
the level of accurate forecasting of wind energy is proposed based on the use of met
heuristic evolutionary algorithms (GA, PSO) to adjust the parameters of a neural network
(in this case, GA is used as a meta-optimization algorithm in order to find the optimal PSO
parameters). In [15], a hybrid forecasting technique is proposed, the principle of which is
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to decompose time series data and perform forecasting using a recurrent neural network
and error correction methods. In paper [16] the use of a long-term short-term memory
(LSTM) network for modeling and forecasting energy consumption is considered. In
general, the results presented in the listed works show a significant correlation with actual
data and a significant predictive ability of such models in comparison with traditional
forecasting methods.

Models based on stochastic differential equations (SDE) can also be used to model
wind speed, the construction method of which is described in articles [17–19]. Given that
the stochastic process described by the SDE is continuous, the model based on it allows one
to change the simulation step in time, depending on the purpose of the study. Moreover, the
model based on the SDE does not require a training procedure and significant recalculation
of parameters when changing the temporal resolution.

In [17,18], models based on the SDE of the standard Ornstein-Uhlenbeck process are
proposed and tested, which allow synthesizing wind speed trajectories with an exponential
decay of the autocorrelation function and a given statistical distribution obtained by means
of memoryless transformation. However, as the authors note, the exponential form of the
correlation between the levels of the wind speed time series is a special case and rarely
agrees with the actual autocorrelation characteristic over long time intervals, which can be
more adequately described by a power function. Moreover, the model does not allow for
the possibility of reproducing the non-stationary components of the time series (daily and
seasonal fluctuations), which is necessary when assessing the productivity of wind power
plants. This drawback is eliminated in [19], which describes a stochastic model based on
SDE, which allows for the generation of a time series of wind speed with a daily cyclic
component, but the possibility of modeling the seasonal component is not provided.

The purpose of this work is to develop a wind speed model which can be used for the
simulation of wind energy system operating modes at different time intervals and one that
is able to capture certain wind speed time series characteristics include autocorrelation,
probability distribution, and provide the incorporation of non-stationary daily and seasonal
components. The basis for the construction of such a model was the method of modeling
the wind speed based on the SDE of the standard Ornstein-Uhlenbeck process, described
in [17,18]. Taking into account that the autocorrelation of real processes occurring in nature
rarely correspond to an exponential function, in this work we investigated the possibility
of using a model based on the fractional Ornstein-Uhlenbeck process, which allows for the
generation of synthetic wind speed data with the property of long-range dependence and
autocorrelation, a function that decreases according to a power law.

3. Methods and Algorithms

The algorithm for the generation of synthetic wind speed by SDE consists of three
stages: model calibration, which consists in estimating the parameters of the model using
data of real long-term observations, numerical simulation of SDE, and transforming the
distribution of the obtained auto correlated sequence to given distribution corresponding
to the data of real observations. The flowchart of the simulation algorithm is shown
in Figure 1.

To simulate the stochastic component of the wind speed, the Ornstein-Uhlenbeck
process driven by fractional Brownian motion is used. A stochastic differential equation of
this process can be written in the following form [20]:

dXt = θ · (µ− Xt) · dt + σ · dWH
t , (1)

where θ—mean-reversion rate (θ > 0), µ—long-run mean, σ—diffusion parameter, WH
t —

fractional Brownian motion with Hurst exponent H ∈ (0, 1).
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Figure 1. Wind speed simulation flowchart.

The fractional Brownian motion (fBm) is centered on the Gaussian process with
continuous sample paths and the covariance function is given by [21]:

E
(

WH
t , WH

s

)
=

1
2

(
|s|2H + |t|2H − |t− s|2H

)
(2)

For H = 1/2, the fBm is reduced to a standard Brownian motion where increments
are independent (Wiener process). In this case SDE (1) describes the stationary Gauss-
Markov process with exponentially decreasing autocorrelation. For H > 1/2, the process
has the property of a long-range dependence and autocorrelation function that decays
along a power-law.

The original form of SDE (1) describes wind speed as a stationary process with given
autocorrelation where decay characteristics depends on the Hurst exponent parameter and
mean-reverting rate parameter. To simulate the wind speed variations during the day, the
periodic time dependent function (3) used as a long-run mean term in Equation (1):

y(t) = α · cos

2π
(

t− tpeak

)
24

 (3)

where α—daily wind speed amplitude parameter (0 ≤ α ≤ 1), t—simulation time, and
tpeak—hour of daytime peak wind speed (0 ≤ tpeak ≤ 24).

Taking into account this component, the initial Equation (1) is transformed into the
following form [22]:

dXt =

(
dy(t)

dt
+ θ · [y(t)− Xt]

)
· dt + σ · dWH

t (4)

The numerical simulation of the stochastic process described by Equation (3) is per-
formed using the Euler-Maruyama scheme, suitable for discretization of the fractional
Ornstein-Uhlenbeck process with long memory (H ≥ 1/2) [23]:

X̂n+1 = X̂n +
[
dy(tn) + θ̂ ·

(
y(tn)− X̂n

)]
· ∆t + σ̂ ·

(
WH

n+1 −WH
n

)
, (5)

where ∆t—delta time, t—simulated time, WH
n —fractional Gaussian noise with H > 1/2.
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In the simulation process, the circulant embedding method [24] is used to generate
fractional Gaussian noise.

Since the realizations of the stochastic process have a normal distribution with zero
mean and unity variance, it is necessary to transform them into a distribution form corre-
sponding to the real observation data. In this study, the two-parameter Weibull distribution
is chosen to approximate statistical distribution of actual wind speed data.

Memoryless transformation method [17] is used to obtain a sequence with a given
distribution:

V = F−1[Φ(X)] (6)

where Φ(·)—cumulative distribution function of Normal distribution, F−1—inverse cumu-
lative distribution function of given distribution.

In order to simulate seasonal variations each value of the simulated trajectory X(t) is
sequentially transformed into a Weibull distribution variable V(t) with parameters (c,k)
defined for each month (i):

V(t) = ci(t) · [− ln(1−Φ[X(t)])]1/ki(t), (7)

where V(t)—simulated wind speed sequence with given distribution; ci, ki—scale and
shape parameters of Weibull distribution estimated separately for each month of observed
data (i = 1, 2 . . . 12).

4. Model Parameters Estimation

In the process of model calibration, an assessment of the following parameters is
required: the Hurst exponent, diffusion and mean reversion rate parameters, daily mean
amplitude, and hour of maximum of the wind speed, as well as the probability distribution
model parameters. At the first stage, the parameters of the distribution model are estimated,
for which the sample of initial data is divided by month into 12 groups and estimates of the
Weibull distribution parameters are determined for each group. Before evaluating the rest
of the model parameters, a series of sample data should be normalized so that the sample
mean and variance are equivalent to the mean and variance of the stochastic process. In
addition, the seasonal monthly component should be removed from the time series data.

4.1. Hurst Exponent Estimator

The aggregated variance method was used to estimate the Hurst parameter [25]. The
original time series data is divided into blocks (k) of size (m) and for each block the average
values are calculated as:

X(m)(k) =
1
m
·

km

∑
i=(k−1)m+1

X(i) k= 1, 2 . . . N/m (8)

where N—sample size, m—size of aggregated time-series block, k—the sequence number
of the aggregated block.

Since the variance of fractional Gaussian noise is VarX(m) = σ0mβ as m→ ∞ , where
β = 2H − 2 < 0, then its estimate is the sample variance VarX(m), which should be
calculated for multiple values (m) as follows:

VarX(m) =
1

N/m

N/m

∑
k=1

(
X(m)(k)

)2
−
(

1
N/m

N/m

∑
k=1

X(m)(k)

)2

(9)

The size of blocks (m) are chosen so that the points log(m) on the plot log
(

VarX(m)
)

versus log(m) are equidistant from each other, i.e., mi+1/mi = C, where C is a constant
depending on the sample size and the desired number of points. Then the dependence can
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be approximated by a straight line, the slope of which is equal to (β) and the estimate of
the Hurst exponent is defined as Ĥ = β+2

2 .

4.2. Diffusion Parameter Estimator

The diffusion parameter (σ) of SDE can be estimated by quadratic variations of
observed time-series data using the following formula [26]:

σ̂2 =

N−1
∑

i=1

(
X(i+1) − Xi

)2

(N − 1) · ∆t2Ĥ
(10)

where Xi, X(i+1)—time series values at the i-time step and next time step, ∆t—time step of
observations, Ĥ—estimated Hurst exponent of time series data, N—sample size.

4.3. Mean-Reversion Rate Estimator

Since the wind speed can be considered as a locally stationary process with a long-
term dependence (H > 1/2 and θ > 0), the mean-reversion rate parameter of the fractional
Ornstein-Uhlenbeck process can be evaluated using the ergodic type estimator [27]:

θ̂ =

[
1

σ̂2ĤΓ
(
2Ĥ
)

N
·

N

∑
i=1

X2
i

]− 1
2Ĥ

(11)

where Xi—time-series data, Γ—gamma-function, σ̂—estimated diffusion parameter, by
Equation (10), Ĥ—Hurst exponent estimate, N—sample size.

4.4. Estimation Parameters of Periodic Function of Daily Pattern

The evaluation of the parameters of the amplitude and time of the maximum daily
average wind speed is carried out by fitting the curve of periodic Equation (3) to the points
of the actual daily profile, the values of which for each observation period are calculated
according to the following formula:

DP(τ) =
1

N/nτ
·
(N/nτ)−1

∑
i=0

X(i·nτ)+τ , τ = 1, 2 . . . n, (12)

where N—sample size, nτ—total number of observations, τ—index of observation time
point.

5. Model Validation and Results

Validation of the model consists of assessing the ability of the model to generate
a synthetic time series of wind speed, the statistical characteristics of which, including
autocorrelation, probability distribution, daily and seasonal variability are consistent
with the corresponding characteristics of the actual wind speed data. For the analysis,
this study used a large set of time series of wind speed data collected at 518 weather
stations throughout Russia provided by All-Russian Institute of Hydrometeorological
Information [28]. The time series contains data from eight-term observations recorded at
standard synoptic times with a time interval equal to three hours. The geographic locations
of all weather stations are shown in Figure 2.
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For the separate data of all meteorological stations, the model parameters were esti-
mated and a simulation was performed. The distribution of which is shown in the Figure 3.
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Most of the original time series used have a time range from 1966 to 2019 (~91.5%), the
minimum interval is 1966–1994. Due to the many missing values, changes in the location
of weather stations and unreliable data recorded in the early years, only data from the last
20 years of observations were used in the study.

To demonstrate the capabilities of this model and analyze the results, the simulated
wind speed data of two meteorological stations are presented, where wind power facilities
are currently commissioned (Murmansk) or there is a potential for their integration into
the power supply systems of oil and gas facilities (Novy Port). Information on weather
stations and data sampling is given in Table 1.
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Table 1. Weather stations data.

#
WMO

ID
Weather
Station

Lat.,
dd

Lon.,
dd

Altitude,
m

Time Range Wind Speed
Statistic, m/s

Start End ∆t, h Min Max Mean std

1 22113 Murmansk 68.97 33.05 57 1 January
1999

1 January
2019

3
0 21 4.58 2.56

2 23242 Novy Port 67.70 72.95 12 0 28 5.50 3.13

The obtained estimates of the model parameters for the sample data of the selected
meteorological stations (Table 1) are calculated by the method described in Section 4 of this
article are shown in Figure 4.

Energies 2021, 14, x FOR PEER REVIEW 8 of 15 
 

 

Table 1. Weather stations data. 

# 
WMO 

ID 
Weather 
Station 

Lat., 
dd 

Lon., 
dd 

Altitude, 
m 

Time Range 
Wind Speed 
Statistic, m/s 

Start End Δt, h Min Max Mean std 
1 22113 Murmansk 68.97 33.05 57 1 January 

1999 
1 January 

2019 
3 

0 21 4.58 2.56 
2 23242 Novy Port 67.70 72.95 12 0 28 5.50 3.13 

The obtained estimates of the model parameters for the sample data of the selected 
meteorological stations (Table 1) are calculated by the method described in Section 4 of 
this article are shown in Figure 4. 

 
Figure 4. Estimates of SDE-model parameters for each month. 

The estimates of the parameters of the Weibull distribution are shown in Figure 5. 

 
Figure 5. Month-wise Weibull distribution parameter estimates. 

The wind speed data was simulated on a time interval equal to 20 years, with a sam-
pling step equal to the initial interval between observations (Δt = 3 h) and with an hourly 
interval (Δt = 1 h). For the simulated time series of wind speed, the hourly autocorrelation, 
autocorrelation of daily average values during the year, and daily profiles and histograms 
of probability distribution were compared with same characteristics of actual data.  

Mean-reversion (θ)
Diffusion (σ)
Amplitude (α)

Murmansk

Jan Feb M
ar Apr

May Jun Jul Aug Sep Oct
Nov Dec

0

0.1

0.2

0.3

0.4
Novy ortP

Jan Feb M
ar Apr

May Jun Jul Aug Sep Oct
Nov Dec

0

0.1

0.2

0.3

Jan Feb Mar Apr May Jun Jul Aug Sep Oct No
v Dec

4

4.5

5

5.5

6

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15Murmansk

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov De
c

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2Novy Port

W
ei

bu
ll 

sc
al

e 
pa

ra
m

et
er

 (c
, m

/s)
   

W
ei

bu
ll 

sh
ap

e 
pa

ra
m

et
er

 (k
)  

 
W

ei
bu

ll 
sc

al
e 

pa
ra

m
et

er
 (c

, m
/s)

   

W
ei

bu
ll 

sh
ap

e 
pa

ra
m

et
er

 (k
)  

 

Figure 4. Estimates of SDE-model parameters for each month.

The estimates of the parameters of the Weibull distribution are shown in Figure 5.
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Figure 5. Month-wise Weibull distribution parameter estimates.

The wind speed data was simulated on a time interval equal to 20 years, with a
sampling step equal to the initial interval between observations (∆t = 3 h) and with



Energies 2021, 14, 5561 9 of 15

an hourly interval (∆t = 1 h). For the simulated time series of wind speed, the hourly
autocorrelation, autocorrelation of daily average values during the year, and daily profiles
and histograms of probability distribution were compared with same characteristics of
actual data.

The determination coefficient [29] used as comparison criteria is:

R2 = 1− ∑ (yi − fi)
2

∑ (yi − yi)
2 (13)

where yi—actual wind speed data characteristic, fi—simulated wind speed characteristic.
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are

used to compare the models [30,31]:

AIC = −2 ln(L̂) + 2k (14)

BIC = −2 ln(L̂) + ln(n)k (15)

where L̂—maximum value of likelihood function of model; k—number of estimated model
parameters; n—sample size.

To obtain statistically significant estimates in the testing process, in each case,
30 independent trajectories of the stochastic process were generated.

Actual and synthesized hourly and daily average time series data are shown in Figure 6.
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Figure 6. Actual and simulated wind speed time-series: (a)—three-hour averaged, (b)—daily averaged profile.

Figure 7 shows autocorrelograms of actual and simulated time series calculated within
a 120 h range. It can be seen that when modeling the wind speed by SDE process without
long-term dependence (H = 1/2), the ACF of the simulated wind speed is consistent only
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on first time lag, and then decreases to almost zero. At the same time, the model of the
fractional process with long-term memory (H > 1/2) has a power-law decaying ACF which
is more consistent to ACF of empirical observation data, which is confirmed by a high
coefficient of R2 > 90%.
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Figure 7. Autocorrelation of observed and simulated wind speed data.

Figure 8 shows the daily profile of averaged wind speeds for each observation period
during the time of day, which are approximated by the periodic analytical function y(t) (3).
It can be seen that the daily profiles calculated for simulated data exactly follows the shape
of the curve of the analytic function and closely match the actual data which is measured
by coefficient of determination (R2 > 0.9).
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Figure 8. Daily wind speed profiles.

The autocorrelograms shown in Figure 9 demonstrate the correlation between the
day average wind speeds across the year. The obtained characteristics show a clearly
pronounced seasonal component, changing along a periodic trajectory. The simulation
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results demonstrate the ability of the model to reproduce this pattern with an acceptable
degree of accuracy (R2 > 90%).
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Figure 9. Daily average wind speed autocorrelation.

The histograms of the real distribution of wind speed approximated by the Weibull
distribution are shown in Figure 10 and are compared with the distribution of the simulated
data. It can be seen that the probability distribution of the simulated data, as well as the
analytical Weibull PDF, are quite accurately fit to the histograms of the actual distribution.
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Figure 10. Probability distribution of real and simulated wind speed.

A comparison of statistical point estimates of a real data sample and synthesized time
series of wind speed using the standard and fractional models are shown in Table 2.
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Table 2. Descriptive statistics of real and simulated wind speed data.

Weather
Station Observed Data Standard Model

(H = 1/2)
Fractional Model

(H > 1/2)

Min Max Mean Std Min Max Mean Std Min Max Mean Std

∆t = 3
1 0 21 4.58 2.56 0.01 20.25 4.58 2.55 0.01 20.67 4.58 2.55
2 0 28 5.50 3.13 0.01 25.53 5.50 3.13 0.01 26.11 5.50 3.13

∆t = 1
1 0 21 4.58 2.56 0.01 21.06 4.58 2.55 0 20.75 4.58 2.55
2 0 28 5.50 3.13 0.01 26.81 5.50 3.13 0 26.36 5.50 3.13

Figure 11 shows the relationship between Hurst exponent estimates calculated for the
time series of actual observations and synthetic wind speed data generated for each dataset
included in the analysis. The data obtained demonstrate the main difference between the
standard and fractional model, which is the ability to simulate the long-term correlation
dependence inherent in a time series.
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Figure 11. Hurst exponent of simulated and actual wind speed data.

The results of evaluating the accuracy of simulation carried out according to the
above-described methodology for each of the 518 time series of data used in the study are
summarized in Table 3.
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Table 3. Model comparison results.

Criterion
Standard Model

(H = 1/2)
Fractional Model

(H > 1/2)

Min Max Mean Std Min Max Mean Std

∆t = 3

R2 (ACF) 0 0.9780 0.4675 0.2679 0.3928 0.9931 0.9327 0.0632
R2 (DP) 0.0167 0.9947 0.9027 0.1263 0.0506 0.9962 0.9201 0.0994

R2 (Daily ACF) 0.5894 0.9997 0.9784 0.0437 0.7121 0.9996 0.9848 0.0310
R2 (PDF) 0.6445 0.9954 0.9432 0.0444 0.6372 0.1171 0.9432 0.0446

AIC(1 × 10−3) 36.727 520.165 238.049 83.621 23.451 519.740 236.995 84.217
BIC(1 × 10−3) 38.27 521.708 239.588 83.624 25.016 521.304 238.555 84.220

R2 (H) 0.0210 0.9215

∆t = 1

R2 (ACF) 0 0.9899 0.3137 0.2732 0 0.9967 0.9110 0.1000
R2 (DP) 0.0641 0.9899 0.8858 0.1193 0.0641 0.9933 0.9187 0.0959

R2 (Daily ACF) 0.6782 0.9997 0.9827 0.0374 0.7506 0.9995 0.9843 0.0290
R2 (PDF) 0.6371 0.9956 0.9436 0.0446 0.6804 0.9957 0.9436 0.0438

AIC(1 × 10−3) 36.730 1549.40 696.113 255.202 14.964 1550.40 689.560 257.190
BIC(1 × 10−3) 38.432 1551.10 697.810 255.205 16.689 1552.10 691.281 257.193

R2 (H) 0.0151 0.9056

6. Conclusions

The article presents a wind speed SDE-model based on a fractional Ornstein-Uhlenbeck
process with a periodic long-run mean to capture the diurnal cycle and incorporate sea-
sonal variations, and thus perform more accurate modeling operating modes of wind
energy based power systems. The SDE-based model describes a time-continuous stochastic
process and allows synthesizing wind speed data at different time intervals and varying
the sampling step, which makes it possible to use this model to simulate both steady-state
and transient operating modes of power systems based on wind power plants.

The main difference of fractional model from the standard Ornstein-Uhlenbeck process
is the ability to simulate wind speed data with long-range dependence property and
autocorrelation that decreases according to power law, which is closely matched to hourly
autocorrelation of actual observational data. This is confirmed by the result of comparing
the hourly autocorrelation of the synthesized data with the actual ACF. The deviation from
which was less than 10% (R2 > 0.9) on average out of 518 cases.
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Nomenclature

SDE Stochastic differential equation
PDF Probability density function
ACF Autocorrelation function
RES Renewable energy source
AR Autoregressive model
MA Moving-average model
ARMA Autoregressive moving-average model
GA Genetic algorithm
PSO Particle swarm optimization
fBm Fractional Brownian motion
DP Daily profile
AIC Akaike information criterion
BIC Bayesian information criterion
θ Mean-reversion rate
µ Long-run mean
σ Diffusion
WH

t Fractional Brownian motion (c пaрaметрoм Херстa H 6= 1/2)
α daily wind speed amplitude parameter
tpeak hour of daytime peak wind speed
∆t delta time
Φ cumulative distribution function of Normal distribution
F−1 inverse cumulative distribution function
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