Министерство науки и высшего образования Российской Федерации

федеральное государственное автономное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

*	овки/профиль ИШФП	03.06.01/01.04.16		
Школа Отделение				
Этделение				
Науппп ій п	оклад об основных р	ΔΌΝΠΙ ΤΩΤΩΝ ΠΛΠΓΛΤΛ	ан йаннан нах	/IIIIO-
паучный д	-	сзультатах подготс ционной работы	облениой нау	Anu-
	квалификат	ционнои раооты		
		ификационной работы		
Реше	ние квантовомеханическо	й задачи пяти тел для си	истемы η-4N	
УДК <u>530.145.6:51</u>				
Аспирант				
Группа	ФИО		Подпись	Дата
A8-06	Колесников Олег Валерьев	сников Олег Валерьевич		
Руководителя профи	иля подготовки			
Должность	ФИО	Ученая степень,	Подпись	Дата
П., 1.,,,, ИШФОП	Фикс А.И.	звание		
Профессор ИШФВП	Фикс А.И.	д.фм.н.		
Руководитель отдел				
Должность	ФИО	Ученая степень, звание	Подпись	Дата
Директор ИШФВП	Гоголев А.С.	к.фм.н.		
Anguare Film 1211	1 21 21 21 21 21	my mm		
IT				
Научный руководит Должность	ель Фио	Ученая степень,	Подпись	Дата
должность	ΨηΟ	звание	подпись	дата
Профессор ИШФВП	Фикс А И	лф-мн		

В научно-квалификационной работе реализован систематический подход к решению задачи о взаимодействии η -мезона с малонуклонными системами, основанный на формализме Альта-Грассбергера-Сандхаса (АГС), лишенный принципиальных недостатков, характерных для имеющихся приближенных методов. Полученный формализм позволяет найти точное решение как для связанных основных и возбужденных состояний, так и для задачи рассеяния. Одним из существенных достоинств метода является его наглядность и удобство практического использования.

Целью работы является решение квантовомеханической задачи пяти тел на основе формализма АГС и применение полученного решения к исследованию системы, содержащей псевдоскалярный мезон (η -мезон) и четыре нуклона.

Основными задачами научно-квалификационной работы являлись следующие:

- 1. Вывести уравнения для системы пяти частиц с использованием формализма АГС;
- 2. Решить задачу пяти тел для взаимодействия псевдоскалярного мезона с системой четырех нуклонов;
- 3. Исследовать динамические особенности взаимодействия η -мезонов с малонуклонными ядрами d, 3 He и 4 He.
- 4. На основе фитирования параметров модели к имеющимся экспериментальным данным для образования η мезонов на ядрах получить зависимость амплитуды ηN рассеяния от энергии в подпороговой области.

Научная новизна

1. Впервые развит математический аппарат для решения задачи пяти тел в рамках метода Альта-Грассбергера-Сандхаса. Получены выражения для эффективных потенциалов, описывающих взаимодействия в подсистемах, возникающих при разбиении исходной системы пяти частиц по схемам (1+4) и (2+3). Проведена необходимая процедура симметризации и выписаны уравнения для симметризованных амплитуд.

- 2. Впервые решена задача взаимодействия в системе пяти тождественных бозонов и вычислены энергии связи такой системы. Исследована сходимость результатов при изменении количества членов, учитываемых в сепарабельном разложении.
- 3. Впервые дано точное решение задачи о взаимодействии η -мезонов с системой четырех нуклонов. Вычислена длина рассеяния η -мезона на ядре ⁴Не. Получены количественные результаты, объясняющие отсутствие связанных состояний в этой системе.
- 4. Впервые на основе точного решения задачи взаимодействия η -мезонов с ядрами d, 3 Не и 4 Не получена зависимость амплитуды ηN рассеяния $f_{\eta N}$ от энергии в подпороговой области.

Основные защищаемые положения научно-квалификационной работы

- 1. Вывод уравнений АГС для задачи пяти тел показывает, что наряду с потенциалами, имеющими структурные аналоги в четырехчастичной задаче, в случае пяти частиц появляются потенциалы, имеющие принципиально иную структуру. В связи с этим, уравнения АГС для системы пяти тел не могут быть получены путем простой экстраполяции эффективных потенциалов задачи четырех тел на систему с N=5.
- 2. Анализ зависимости результатов от числа сепарабельных членов в разложении ядер интегральных уравнений, как и в случае пяти бозонов, демонстрирует сходимость, вполне достаточную для практических целей. В целом, удержание в разложении первых 4-6 членов обеспечивает точность лучше 1 %.
- 3. Расчеты рассеяния η -мезона на ядрах d, ³Не и ⁴Не показывают, что в каждом из трех случаев имеется сравнительно широкая, но тем не менее ограниченная область энергий, при которых значения элементарной амплитуды рассеяния $f_{\eta N}$ оказывают существенное влияние на величину амплитуды η -ядерного рассеяния $f_{\eta A}$.

- 4. Притяжение в системе η^4 Не является более слабым по сравнению с системой η^3 Не вследствие сильной зависимости амплитуды $f_{\eta N}$ от энергии в подпороговой области. Этот результат объясняет, почему эффект взаимодействия в конечном состоянии в реакции $dd \to \eta^4$ Не оказывается слабее, чем в процессах, в которых образуется система η^3 Не, например $dp \to \eta^3$ Не.
- 5. Вещественные части длин рассеяния η -мезона на ядрах d, 3 Не и 4 Не положительны. Таким образом, η -мезон не образует связанного состояния с ядрами с массовым числом $A \leq 4$.

Апробация работы

По теме научно-квалификационной работы опубликованы 4 статьи в зарубежных журналах. Результаты научно-квалификационной работы докладывались на научных семинарах исследовательской школы физики высокоэнергетических процессов, кафедры теоретической физики и квантовой теории поля Томского государственного университета.

Содержание работы

Во введении обосновывается актуальность исследований, приводится обзор научной литературы по изучаемой проблеме, формулируется научная новизна и практическая значимость результатов представленной работы.

В главе 1 развит математический аппарат для решения задачи пяти тел в рамках метода Альта-Грассбергера-Сандхаса. Получены выражения для эффективных потенциалов, описывающих взаимодействия в подсистемах, возникающих при разбиении исходной системы пяти частиц по схемам (1+4) и (2+3). Проведена необходимая процедура симметризации и выписаны уравнения для симметризованных амплитуд.

В **главе 2** полученный формализм применяется к задаче о взаимодействии в системе пяти тождественных бозонов и вычисляются энергии связи такой системы. Исследована сходимость результатов при изменении количества членов, учитываемых в сепарабельном разложении. Показано, что общая эффективность применения сепарабельного разложения ядер интегральных уравнений непосредственно связана с полюсной природой затравочных двухчастичных взаимодействий в системах ηN и NN.

Глава 3 посвящена исследованию взаимодействия η -мезона с ядром ⁴Не на основе решения уравнений АГС. Вычислена длина рассеяния η -мезона на ядре ⁴Не. Получены количественные результаты, объясняющие отсутствие связанных состояний в этой системе. В этой же главе на основе точного решения задачи взаимодействия -мезонов с ядрами d, ³Не и ⁴Не получена зависимость амплитуды ηN рассеяния от энергии в подпороговой области.

В **заключении** приведены основные результаты научно-квалификационной работы. Приложения содержат формальный материал, который использовался при проведении вычислений.

Полученные в работе уравнения для системы $\eta-4N$ могут непосредственно использоваться для исследования взаимодействия других псевдоскалярных мезонов с ядром ⁴He. Кроме этого, развитый формализм, в силу своей универсальности и эффективности, открывают широкие возможности для решения аналогичных задач взаимодействия в других системах адронов. Сюда следует отнести пятинуклонные системы (в первую очередь ⁵He и ⁵Li), гиперядра, а также системы, содержащие ядро ⁴He и K-мезон, η' -мезон и другие мезоны.