
Fermion scattering on topological solitons in the nonlinear Oð3Þ σ-model

A. Yu. Loginov 1,2,*

1Tomsk State University of Control Systems and Radioelectronics, 634050 Tomsk, Russia
2Tomsk Polytechnic University, 634050 Tomsk, Russia

(Received 20 April 2021; accepted 23 July 2021; published 16 August 2021)

The scattering of Dirac fermions in the background fields of topological solitons of the (2þ 1)-
dimensional nonlinear Oð3Þ σ-model is studied using both analytical and numerical methods. General
formulas describing fermion scattering are obtained and the symmetry properties of the partial scattering
amplitudes and elements of the S-matrix are determined. Within the framework of the Born approximation,
the scattering amplitudes, differential cross sections, and total cross sections of fermion-soliton scattering
are obtained in analytical forms, and their symmetry properties and asymptotic behavior are investigated.
The dependences of the first several partial elements of the S-matrix on the momentum of the fermion are
obtained using numerical methods, and some properties of these dependences are ascertained and
discussed.
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I. INTRODUCTION

Topological solitons of (2þ 1)-dimensional field models
[1–3] play an important role in field theory, high-energy
physics, condensed matter physics, cosmology, and hydro-
dynamics. Of these, the vortex solutions of the effective
theory of superconductivity [4] and those of the (2þ 1)-
dimensional Abelian Higgs model [5] are notable. Another
important example is provided by the soliton solutions of
the (2þ 1)-dimensional nonlinear Oð3Þ σ-model [6]. The
invariance of the static energy functional of the nonlinear
Oð3Þ σ-model under scale transformations results in a
corresponding zero mode of the quadratic fluctuation
operator in the functional neighborhood of a given soliton
solution. As a consequence, the σ-model possesses a one-
parameter family of soliton solutions with the same
energy but different sizes, rather than a soliton solution
of fixed size.
Derrick’s theorem [7] offers a number of ways to fix the

size of the soliton. One of these is the addition of a potential
term and a fourth-order term in the field derivatives to the
Lagrangian of the nonlinear Oð3Þ σ-model. The modified
nonlinear Oð3Þ σ-model is known as the baby Skyrme
model, and its topological solitons [8–10] (known as baby
Skyrmions) have a fixed size. The baby Skyrme model and
other modifications to the nonlinear Oð3Þ σ-model have

applications in condensed matter physics [11–14]. This
model also has applications in cosmology; it was shown in
Refs. [15–17] that in the six-dimensional Einstein-Skyrme
model, the baby Skyrmion solutions realize warped com-
pactification of the extra dimensions and gravity localiza-
tion on the four-dimensional brane for the negative bulk
cosmological constant.
The baby Skyrme model is a planar analog of the original

(3þ 1)-dimensional Skyrme model [18], which can be
regarded as an approximate, low-energy effective theory of
QCD that becomes exact as the number of quark colors
becomes large [19,20]. It was shown in Refs. [21,22] that
nucleons and their low-lying excitations, which are three-
quark bound states from the viewpoint of QCD, arise as a
topological soliton of the Skyrme model (known as the
Skyrmion) and its low-lying excitations, respectively,
whereas pions correspond to linearized fluctuations in
the model’s chiral scalar field.
Topological solitons formed from scalar fields can

interact with fermion fields via the Yukawa interaction.
This fermion-soliton interaction may have a significant
impact on both the scalar field of the soliton and the
fermion field. In particular, it was shown in Refs. [23–25]
that the Yukawa interaction between the fermion and scalar
fields of the (3þ 1)-dimensional chiral-invariant linear
σ-model results in the existence of the chiral soliton, a
stable configuration of the interacting scalar and fermion
fields that possesses bound fermion states. It was also
shown in Refs. [26–28] that an external chiral field can
polarize the fermion vacuum; this polarization can be
interpreted as a contribution to the baryon charge of a
chiral soliton [24,25]. Fermion bound states also exist in the
background field of a Skyrmion, and the properties of these
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bound states were investigated in Refs. [29,30]. The main
feature of the fermion-soliton interaction found in
Refs. [23–25,29,30] is that the spectrum of the Dirac
operator shows a spectral flow of the eigenvalues, where
the number of zero-crossing normalized bound modes is
equal to the winding number of the soliton. The planar baby
Skyrmions inherit this feature of the fermion-soliton
interaction. It was shown in Refs. [15–17] that in the
background field of a baby Skyrmion, the Dirac operator
also shows a spectral flow of the eigenvalues, and the
number of zero-crossing normalized bounded modes turns
out to be equal to the winding number of the baby
Skyrmion. This property of the Dirac operator is preserved
when the backreaction of the fermion field coupled with the
baby Skyrmion is taken into account [31].
Except for the Dirac sea fermions, only fermion-bounded

states belonging to the discrete spectrum of the Dirac
operator were considered in the works cited above. One
main aim of the present paper is to consider the fermion
scattering states belonging to the continuous spectrum of
the Dirac operator. The topological solitons of the nonlinear
Oð3Þ σ-model are chosen as background fields for the Dirac
operator, since the nonlinear Oð3Þ σ-model is one of the
few models for which exact analytical soliton solutions are
known. Having obtained the analytical soliton solution as a
background field of the Dirac operator makes it possible to
obtain some analytical results relating to fermion scattering.
In particular, the scattering amplitudes, differential cross
sections, and total cross sections can be obtained in an
analytical form within the framework of the first Born
approximation.
This paper is structured as follows. In Sec. II, we

describe briefly the Lagrangian, symmetries, field equa-
tions, and topological solitons of the nonlinear Oð3Þ
σ-model. In Sec. III, general properties of fermion scatter-
ing are considered, such as the forms of the fermion
scattering wave functions, their asymptotic behavior, and
the symmetry properties of the partial elements of the
S-matrix. In Sec. IV, we give an analytical description of
fermion scattering within the framework of the first Born
approximation. In Sec. V, we present numerical results for
the first several partial elements of the S-matrix. In the final
section, we briefly summarize the results obtained in this
work. Appendix A contains some necessary information
about the plane-wave and cylinder-wave states of free
fermions. A resonance behavior of some partial elements
of the S-matrix is explained in Appendix B.
Throughout this paper, we use the natural units c ¼ 1,

ℏ ¼ 1.

II. LAGRANGIAN, FIELD EQUATIONS, AND
TOPOLOGICAL SOLITONS OF THE MODEL

The model we are interested in is the (2þ1)-dimensional
nonlinear Oð3Þ σ-model, which includes a fermion field.
The scalar isovector field ϕ of the model interacts with the

spinor-isospinor fermion field ψ via the Yukawa coupling,
leading to the Lagrangian

L¼1

2
∂μϕ·∂μϕþ λ

2
ðϕ·ϕ−H2Þþ iψ̄γμ∂μψþhϕ·ψ̄τψ ; ð1Þ

where h is the Yukawa coupling constant and λ is
the Lagrange multiplier, which imposes the constraint
ϕ · ϕ ¼ H2 on the scalar isovector field ϕ. In (2þ 1)
dimensions, we shall use the following Dirac matrices:

γ0 ¼ σ3; γ1 ¼ −iσ1; γ2 ¼ −iσ2; ð2Þ

where σi are the Pauli matrices. To distinguish the Pauli
matrices σk acting on the spinor index i of the fermion field
ψ i;a from those acting on the isospinor index a, we denote
the latter as τk.
In natural units, the (2þ 1)-dimensional scalar field ϕ

has dimension of mass1=2. We adopt the squared parameter
H2 as the energy (mass) unit, and use dimensionless
variables

ϕ → Hϕ; ψ → H2ψ ; x → H−2x;

t → H−2t; h → Hh; λ → H4λ: ð3Þ

In these new variables, the Lagrangian (1) takes the form

L¼ 1

2
∂μϕ·∂μϕþ λ

2
ðϕ·ϕ−1Þþ iψ̄γμ∂μψþhϕ·ψ̄τψ : ð4Þ

By varying the action S ¼ R
Ld2xdt in ϕ and ψ̄ , we obtain

the field equations of the model

∂μ∂μϕ − ϕðϕ·∂μ∂μϕÞ − hϕðϕ·ψ̄τψÞ þ hψ̄τψ ¼ 0; ð5Þ

iγμ∂μψ þ hϕ·τψ ¼ 0; ð6Þ

where we use the constraint ϕ·ϕ ¼ 1 to express the
Lagrange multiplier λ in terms of the fields ϕ and ψ .
Model (1) is invariant under global SUð2Þ transforma-

tions of the isovector field ϕ and the isospinor field ψ . Its
classical bosonic vacuum is an arbitrary constant scalar
field ϕðxÞ ¼ ϕvac, which can be taken as ϕvac ¼ ð0; 0;−1Þ.
We see that the vacuum ϕvac breaks the original SUð2Þ
symmetry group of model (1) to its Uð1Þ subgroup.
Any finite energy field configuration ϕðxÞ must tend to
ϕvac at spatial infinity. It follows that the finite energy
field configurations of model (1) are split into topologi-
cal classes that are elements of the homotopic group
π2ðS2Þ ¼ Z, and are consequently characterized by an
integer winding number n.
It is well known [6] that the nonlinear Oð3Þ σ-model

possesses a variety of topological soliton solutions. These
soliton solutions exist in each topological sector of the
model, and are absolute minima of the energy functional.
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In the topological sector with a given nonzero winding
number n, the maximally symmetric soliton solution has
the form

ϕðr; θÞ ¼

0
B@

sin ðfðrÞÞ cos ðnθÞ
sin ðfðrÞÞ sin ðnθÞ

cos ðfðrÞÞ

1
CA; ð7Þ

where r and θ are the polar coordinates, and the profile
function is

fðrÞ ¼ 2 arctan½ðr=r0Þjnj�: ð8Þ

Soliton solution (7) is invariant under the cyclic subgroup
Zn ðθ → θ þ 2πk=n; k ¼ 0;…; n − 1Þ of the spatial rota-
tion group SOð2Þ. It is also invariant under the simulta-
neous action of spatial rotation through an angle δ and
internal rotation about the third isotopic axis u3 ¼ ð0; 0; 1Þ
through an angle −nδ

ϕðr; θÞ ¼ Ru3
ð−nδÞϕðr; θ þ δÞ; ð9Þ

where the rotation matrix is

Ru3
ðφÞ ¼

0
B@

cosðφÞ − sinðφÞ 0

sinðφÞ cosðφÞ 0

0 0 1

1
CA: ð10Þ

Note that soliton solution (7) depends on the positive
parameter r0, which can be interpreted as the spatial size of
the soliton. However, the energy of the soliton solution

E ¼ 2π

Z
∞

0

EðrÞrdr

¼ 2π

Z
∞

0

�
4n2

r2

�
r
r0

�
2jnj�

1þ
�
r
r0

�
2jnj�−2

�
rdr

¼ 4πjnj; ð11Þ

does not depend on r0. This is because the bosonic part of
the action S ¼ R

Ld3x of model (1) is invariant under scale
transformations r → ar.

III. FERMIONS IN THE BACKGROUND FIELD
OF THE SOLITON

We consider fermion scattering on the topological
soliton of the nonlinear Oð3Þ σ-model in the external field
approximation. In this approximation, the backreaction
of a fermion on the soliton’s field is neglected, and the
fermion-soliton scattering is described solely by the Dirac
equation (6). We can rewrite the Dirac equation in the
Hamiltonian form

i
∂ψ i;a

∂t ¼ Hi;a;j;bψ j;b; ð12Þ

where the Hamiltonian

Hi;a;j;b ¼ αkij ⊗ Iabð−i∂kÞ − hβij ⊗ ϕcτcab; ð13Þ

I is the 2 × 2 identity matrix, α1 ¼ γ0γ1 ¼ σ2,
α2 ¼ γ0γ2 ¼ −σ1, and β ¼ γ0 ¼ σ3. In Eqs. (12) and
(13), all spin and isospin indices are explicitly shown,
and the summation convention over repeated indices is
implied.
The invariance of soliton solution (7) under combined

transformation (9) results in the existence of the conserved
generalized angular momentum or grand spin, which we
denote by K3,

½H;K3� ¼ 0; ð14Þ

where

K3i;a;j;b ¼ Iij ⊗ Iabϵklxkð−i∂lÞ þ
1

2
σ3ij ⊗ Iab

þ n
2
Iij ⊗ τ3ab ð15Þ

and the 2 × 2 antisymmetric matrix ϵkl ¼ iσ2kl. It follows
from Eq. (15) that the grand spinK3 is the sum of the orbital
part L3 ¼ I ⊗ Iϵklxkð−i∂lÞ, the spin part s3 ¼ ðσ3=2Þ ⊗ I,
and the isospin part nI3 ¼ nI ⊗ τ3=2. None of the terms
L3, s3, and I3 are conserved separately in the background
field of soliton solution (7). Using Eq. (15), we can obtain
the eigenfunctions ψ ðmÞ of the operator K3. These eigen-
functions satisfy the relation

K3ψ
ðmÞ
ia ¼ mψ ðmÞ

ia ; ð16Þ

and can be written in the compact matrix form

ψ ðmÞ
ia ¼

�
c11ðrÞeil11θ c12ðrÞeil12θ
c21ðrÞeil21θ c22ðrÞeil22θ

�
; ð17Þ

where the orbital quantum numbers

l11 ¼ ð2m − n − 1Þ=2; ð18aÞ

l12 ¼ ð2mþ n − 1Þ=2; ð18bÞ

l21 ¼ ð2m − nþ 1Þ=2; ð18cÞ

l22 ¼ ð2mþ nþ 1Þ=2; ð18dÞ

and ciaðrÞ are some radial wave functions. The eigenfunc-

tions ψ ðmÞ
ia ðr; θÞ should be single-valued functions of the

polar angle θ. This fact and Eq. (18) tell us that the
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eigenvalues m are integers for odd winding numbers n, and
half integers for even winding numbers n.
Note that, in general, the full system of field equations (5)

and (6) cannot be described in terms of the ansatz given by
Eqs. (7) and (17). It can be shown that this ansatz is
compatible with Eqs. (5) and (6) only under the condition
Im½c11c�12 − c21c�22� ¼ 0. Obviously, the real (modulo a
common constant phase factor) radial wave functions
ciaðrÞ will satisfy this condition. In particular, the radial
wave functions of bound fermionic states, if any, can always
be chosen to be real. This is because these wave functions
satisfy a system of linear differential equations with real r-
dependent coefficients and real boundary conditions
ciaðrÞ → 0 as r → ∞. In contrast, the radial wave functions
of the fermionic scattering states satisfy some complex
asymptotic boundary condition (i.e., superposition of inci-
dent and outgoing waves), and therefore do not need to
satisfy the reality condition Im½c11c�12 − c21c�22� ¼ 0. When
the backreaction terms are neglected in Eq. (5) (as in the
external field approximation), the ansatz given by Eqs. (7)
and (17) becomes valid without restriction.
We now discuss the symmetry properties of the

Dirac equation (12) under discrete transformations.
Unlike the Dirac equation (A1) that describes the states
of free fermions, Eq. (12) is not invariant under the C-
transformation (A4). Instead, the Dirac equation (12) trans-
forms into one that describes fermions in the background
field of the topological soliton with the opposite winding
number n. The Dirac equation (12) is also not invariant
under the modified C-transformation

ψðt;xÞ → ψC0 ðt;xÞ ¼ iγ1⊗τ2ψ
�ðt;xÞ; ð19Þ

which acts on the both spin and isospin indices of
the fermion field. It can easily be shown that the
C0-transformation (19) changes the sign of the Yukawa
coupling constant h in Eq. (13). The reason for the
noninvariance of Eq. (12) under the C0-transformation
(19) is that the fundamental representation of the SUð2Þ
group is pseudoreal. The noninvariance of Eq. (12) under
any version of the C-transformation leads to substantial
differences between fermion and antifermion scattering in
the background field of the soliton.
Under the inversion x → −x, the isospin component ϕ3

of soliton solution (7) does not change, whereas both the

ϕ1 and ϕ2 components are unchanged for even n and the
sign changes for odd n. It follows that the Dirac equa-
tion (12) is invariant under the P-transformation

ψðt;xÞ → ψPðt;xÞ ¼ γ0 ⊗ τn3ψðt;−xÞ; ð20Þ
where n is the winding number of the soliton and we use the
fact that τn3 is I for even n and τ3 for odd n. Note that the
eigenfunctions ψ ðmÞ of the grand spin K3 are also eigen-
functions of the P-transformation

ψ ðmÞP ¼ ð−1Þm�nþ1
2 ψ ðmÞ; ð21Þ

where the upper (lower) sign is used for odd (even) winding
numbers n. Hence, unlike the (3þ 1)-dimensional case,
parity conservation does not lead to new restrictions on
fermion scattering. This is because, unlike the (3þ 1)-
dimensional case, the inversion is equivalent to a rotation
through an angle π in (2þ 1) dimensions. Let us denote
by the symbol Π2 the operation of coordinate reflection
about the Ox1 axis; ðx1; x2Þ → ðx1;−x2Þ. It can then easily
be shown that the Dirac equation (12) is invariant under the
combined Π2T-transformation

ψðt;xÞ → ψΠ2Tðt;xÞ ¼ ψ�ð−t; x1;−x2Þ: ð22Þ
Finally, the Dirac equation (12) is invariant under the
combined transformation

ψðt;xÞ → γ2 ⊗ τ2ψðt; x1;−x2Þ; ð23Þ

which changes the signs of the orbital, spin, and isospin parts
of grand spin (15). Note that the invariance of the Dirac
equation (12) under transformations (22) and (23) results
from the specific property τ·ϕðx1;−x2Þ ¼ τ�·ϕðx1; x2Þ of
soliton field configuration (7).
We now turn to the radial dependence of the eigenfunc-

tions of the grand spin. By substituting Eqs. (7), (8), and
(17) into the Dirac equation (12), we obtain the system of
linear differential equations for the radial wave functions
ciaðrÞ

dcia
dr

¼ Λia;jbcjb; ð24Þ

where the matrix

Λia;jb ¼

0
BBBBBBBB@

l11
r 0 εþ h − 2h

1þðr=r0Þ2jnj − 2hðr=r0Þjnj
1þðr=r0Þ2jnj

0 l12
r − 2hðr=r0Þjnj

1þðr=r0Þ2jnj ε − hþ 2h
1þðr=r0Þ2jnj

−εþ h − 2h
1þðr=r0Þ2jnj − 2hðr=r0Þjnj

1þðr=r0Þ2jnj − l21
r 0

− 2hðr=r0Þjnj
1þðr=r0Þ2jnj −ε − hþ 2h

1þðr=r0Þ2jnj 0 − l22
r

1
CCCCCCCCA

ð25Þ

and ε is the energy of the fermionic state.
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Equations (24) and (25) define the system of four linear
differential equations of first order. In the general case, the
solution to this system depends on four independent
parameters. However, fermionic states should be described
by regular solutions to system (24). It can be shown that the
regularity condition imposed at the origin reduces the
number of the independent parameters from four to two.
In the neighborhood of the origin, a regular solution to
system (24) has the form

c11ðrÞ ¼ rjl11jða0 þOðr2ÞÞ; ð26aÞ

c12ðrÞ ¼ rjl12jðb0 þOðr2ÞÞ; ð26bÞ

c21ðrÞ ¼ rjl21jðc0 þOðr2ÞÞ; ð26cÞ

c22ðrÞ ¼ rjl22jðd0 þOðr2ÞÞ; ð26dÞ

where only two of the four parameters a0, b0, c0, and d0 are
independent. Note that each of the radial wave functions
ciaðrÞ has a definite parity under the substitution r → −r.
This is because in Eq. (24), the differential operator d=dr
and each of the nonzero elements of the matrix Λia;jb also
have a definite parity under this substitution.
We present the linear relations between the parameters

a0, b0, c0, and d0 for the cases of the first odd (n ¼ 1) and
the first even (n ¼ 2) soliton winding numbers. By choos-
ing b0 and c0 as the independent parameters, we obtain for
a0 and d0

a0 ¼ −c0
2m
εþ h

þ c0
2
ðε − hÞδm0;

d0 ¼ −b0
ε − h

2ðmþ 1Þ þ c0
2jhj

r0ðεþ hÞ
m

mþ 1
; ð27Þ

in the case where n ¼ 1 and m ≥ 0, and

a0 ¼ −c0
2ðm − 1=2Þ

εþ h
þ c0

2
ðε − hÞδm1

2
;

d0 ¼ −b0
ε − h
3þ 2m

þ c0
2jhj

r20ðεþ hÞ
2m − 1

2mþ 3
; ð28Þ

in the case where n ¼ 2 and m ≥ 1=2. The expressions
obtained from Eqs. (27) and (28) by the substitution

a0 → d0; d0 → a0; c0 → −b0;

b0 → −c0; m → −m: ð29Þ

are valid for negative m. Finally, the expressions obtained
from Eqs. (27) and (28) by the substitution

a0 → b0; b0 → a0; c0 → d0;

d0 → c0; h → −h; ð30Þ

can be used in the cases n ¼ −1 and n ¼ −2, respectively.
It follows from Appendix A that the third component I3

of the isospin is conserved in the case of free fermions. The
fermion scattering on the soliton can therefore be regarded
as a transition from the free “in” state, with spatial
momentum p ¼ ðp; 0Þ and isospin I3, to the free “out”
state, with spatial momentum p0 ¼ ðp cosðθÞ; p sinðθÞÞ and
isospin I03. A transition without (with) a change in the
isospin can be considered to be elastic (inelastic).
According to the theory of scattering [32,33], the scattering
state that corresponds to the “in” isospin I3 and the “out”
isospin I03 is described asymptotically by the wave function

ΨI0
3
;I3 ∼ ψε;p;I3δI03;I3 þ

1ffiffiffiffiffi
2ε

p uε;p0;I0
3
fI0

3
;I3ðp; θÞ

eiprffiffiffiffiffiffiffi
−ir

p ; ð31Þ

where δI0
3
;I3 is the Kronecker delta, ψε;p;I3 is wave function

(7) of the “in” state with momentum p ¼ ðp; 0Þ and isospin
I3, uε;p0;I0

3
is the spinor-isospinor amplitude of wave

function (A7) of the “out” state with momentum p0 ¼
ðp cosðθÞ; p sinðθÞÞ and isospin I03, fI0

3
;I3ðp; θÞ is the

scattering amplitude, and the factor −i under the square
root sign is introduced for convenience. Using Eqs. (A12),
(A16), (A17), and standard methods from the theory of
scattering [32,33], we obtain an expansion of the scattering
amplitude fI0

3
;I3ðp; θÞ in terms of the partial scattering

amplitudes fðmÞ
I0
3
;I3
ðpÞ

fI0
3
;I3ðp; θÞ ¼ e−iI

0
3
ðnþ1ÞθX

m

fðmÞ
I0
3
;I3
ðpÞeimθ: ð32Þ

In turn, the partial scattering amplitudes fðmÞ
I0
3
;I3
ðpÞ are

expressed in terms of the partial elements of the S-matrix

fðmÞ
1=2;1=2ðpÞ ¼

1

i
ffiffiffiffiffiffiffiffiffi
2πp

p ðSðmÞ
1=2;1=2ðpÞ − 1Þ; ð33aÞ

fðmÞ
−1=2;1=2ðpÞ ¼

1

i
ffiffiffiffiffiffiffiffiffi
2πp

p SðmÞ
−1=2;1=2ðpÞ; ð33bÞ

fðmÞ
1=2;−1=2ðpÞ ¼

1

i
ffiffiffiffiffiffiffiffiffi
2πp

p SðmÞ
1=2;−1=2ðpÞ; ð33cÞ

fðmÞ
−1=2;−1=2ðpÞ ¼

1

i
ffiffiffiffiffiffiffiffiffi
2πp

p ðSðmÞ
−1=2;−1=2ðpÞ − 1Þ: ð33dÞ

The importance of the partial elements of the S-matrix is
that the asymptotic behavior of the radial wave functions
ciaðrÞ can be expressed in terms of these as r → ∞,
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ciaðrÞ ∼
ð−1Þ1=4ffiffiffiffiffiffiffiffiffiffiffi
2πpr

p

0
B@−i

ffiffiffiffiffiffi
εþh
2ε

q
½i−nð−1Þme−ipr þ SðmÞ

1=2;1=2ðpÞeipr� −
ffiffiffiffiffiffi
ε−h
2ε

q
SðmÞ
−1=2;1=2ðpÞeiprffiffiffiffiffiffi

ε−h
2ε

q
½i−nð−1Þmþ1e−ipr þ SðmÞ

1=2;1=2ðpÞeipr� −i
ffiffiffiffiffiffi
εþh
2ε

q
SðmÞ
−1=2;1=2ðpÞeipr

1
CA ð34Þ

for the “in” isospin I3 ¼ 1=2, and

ciaðrÞ ∼
ð−1Þ1=4ffiffiffiffiffiffiffiffiffiffiffi
2πpr

p

0
B@−i

ffiffiffiffiffiffi
εþh
2ε

q
SðmÞ
1=2;−1=2ðpÞeipr −

ffiffiffiffiffiffi
ε−h
2ε

q
½inð−1Þme−ipr þ SðmÞ

−1=2;−1=2ðpÞeipr�ffiffiffiffiffiffi
ε−h
2ε

q
SðmÞ
1=2;−1=2ðpÞeipr −i

ffiffiffiffiffiffi
εþh
2ε

q
½inð−1Þmþ1e−ipr þ SðmÞ

−1=2;−1=2ðpÞeipr�

1
CA ð35Þ

for the “in” isospin I3 ¼ −1=2.

Using standard methods from the theory of scattering
[32,33], we obtain an expression for the differential
scattering cross section of the process I3 → I03 in terms
of the scattering amplitude fI0

3
;I3

dσI0
3
;I3=dθ ¼ jfI0

3
;I3ðp; θÞj2: ð36Þ

Similarly, the partial cross sections of the scattering process
I3 → I03 are expressed in terms of the partial scattering

amplitudes fðmÞ
I0
3
;I3

σðmÞ
I0
3
;I3

¼ 2πjfðmÞ
I0
3
;I3
ðpÞj2: ð37Þ

Note that in (2þ 1) dimensions, the cross sections

dσI0
3
;I3=dθ and σðmÞ

I0
3
;I3

have the dimension of length [32]

in the initial dimensional units.
The partial matrix elements SðmÞ

I0
3
;I3

must satisfy a unitarity
condition; this follows from the unitarity of the S-matrix,
SS† ¼ S†S ¼ I, which is a consequence of the conservation
of probability. At the same time, the Dirac equation results
in conservation of the fermion current jμ ¼ ψ̄γμψ , the time
component of which is the probability density. Hence, to

obtain the unitarity condition for SðmÞ
I0
3
;I3

we shall use the

conservation of the fermion current: ∂μjμ ¼ 0.
From Eq. (17), we obtain the contravariant components

of the partial fermion current jμðmÞ ¼ ψ̄ ðmÞγμψ ðmÞ in polar
coordinates,

j0ðmÞ ¼ jc11j2 þ jc12j2 þ jc21j2 þ jc22j2; ð38aÞ

jrðmÞ ¼ 2Im½c22c�12 − c11c�21�; ð38bÞ

jθðmÞ ¼ −2r−1Re½c11c�21 þ c22c�12�: ð38cÞ

The conservation of jμðmÞ results in the constancy of the
radial component of the fermion current, i.e., ∂rjrðmÞ ¼ 0.
The regularity of the eigenfunctions ψ ðmÞ at the origin leads
us to the conclusion that the radial component jrðmÞ

vanishes. From Eqs. (34), (35), and (38b), we obtain the
asymptotic form of the radial component of the partial

fermion current in terms of the partial matrix elements SðmÞ
I0
3
;I3

jrðmÞ ∼
v

2πpr
ðjSðmÞ

1=2;I3
j2 þ jSðmÞ

−1=2;I3
j2 − 1Þ; ð39Þ

where I3 ¼ �1=2 is the isospin of the corresponding “in”
fermion state, and v ¼ ð1 − h2ε−2Þ1=2 is the asymptotic
fermion velocity. The vanishing of the radial component
jrðmÞ results in the diagonal part of the unitarity condition

for the partial matrix elements SðmÞ
I0
3
;I3

X
I00
3

½SðmÞ
I00
3
;I3
��SðmÞ

I00
3
;I0
3
¼ δI3;I03 : ð40Þ

We now turn to the symmetry properties of the partial
matrix elements SðmÞ

I0
3
;I3
. The basic symmetry property of

SðmÞ
I0
3
;I3

is

Sð−mÞ
−I0

3
;−I3

¼ SðmÞ
I0
3
;I3
: ð41Þ

This property follows from the invariance of the Dirac
equation (12) under combined transformation (23), which
in turn is a consequence of the specific form of soliton field
configuration (7). The sequential action of the Π2 and T
transformations leaves the eigenvalue m of grand spin (15)
unchanged but permutes the isospin labels I3 and I03.
The invariance of the Dirac equation (12) under Π2T-
transformation (22) then results in the symmetry relation

SðmÞ
I0
3
;I3

¼ SðmÞ
I3;I03

: ð42Þ

When I3 ¼ I03, relation (42) is trivial, but for unequal (i.e.,
opposite) I3 and I03 it can be rewritten as

SðmÞ
I0
3
;I3

¼ SðmÞ
−I0

3
;−I3

if I3 þ I03 ¼ 0 ð43Þ
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and thus imposes nontrivial restrictions on SðmÞ
I0
3
;I3
. Finally,

from Eqs. (41) and (43), we obtain a further symmetry

relation for SðmÞ
I0
3
;I3

SðmÞ
I0
3
;I3

¼ Sð−mÞ
I0
3
;I3

if I3 þ I03 ¼ 0: ð44Þ

The partial elements SðmÞ
I0
3
;I3

of the S-matrix depend on the
three variables; the fermion momentum p, the Yukawa
coupling constant h, and the size of the soliton r0. Using
Eq. (24), the explicit form (25) of the Λ matrix, and the
asymptotic form (31) of the scattering state, it can be shown

that in reality, SðmÞ
I0
3
;I3

depends only on two combinations of

p, h, and r0

SðmÞ
I0
3
;I3

¼ ξðmÞ
I0
3
;I3
ðh−1p; hr0Þ; ð45Þ

where ξðmÞ
I0
3
;I3

are some functions of the two variables. In

particular, the dependence of SðmÞ
I0
3
;I3

on the size of the soliton

r0 occurs only through the combination hr0.

IV. THE BORN APPROXIMATION FOR THE
SCATTERING AMPLITUDES

The rather complicated structure of the matrix in Eq. (25)
makes it impossible to split the system of differential
equations (24) into smaller subsystems. Hence, the solution
to the system of four linear differential equations in Eq. (24)
is reduced to the solution to a linear differential equation of
fourth order. Due to its rather complex form, this equation
cannot be solved analytically. Consequently, scattering
amplitudes (32) also cannot be obtained in an analytical
form. In view of this, it is important to investigate the
fermion scattering in the Born approximation, which gives
us a chance to obtain an approximate analytical expression
for the scattering amplitudes fI0

3
;I3 .

Eq. (4) tells us that the fermion-soliton interaction is
described by the Yukawa term

V int ¼ −hψ̄δϕ·τψ ; ð46Þ

where δϕ ¼ ϕ − ϕv is the difference between soliton field
(7) and the vacuum field ϕv ¼ ð0; 0;−1Þ. The known
condition of applicability of the Born approximation
[32] has the form jV intj ≪ pa=ðmψa2Þ, where p is the
momentum of the fermion, mψ is its mass, and a is the size
of the area in which the fermion-soliton interaction is
markedly different from zero. In our case, this condition
can be written as

h2r0 ≪ p; ð47Þ

where we have taken into account that in dimensionless
variables (3) adopted here, the fermion mass mψ ¼ h. Note
that fulfilling condition (47) guarantees only that the
amplitude of the scattered outgoing wave is much smaller
than the amplitude of the incident plane wave. At the same
time, for the Born approximation to be valid, the second-
order Born amplitude should be much smaller than the first-
order one. We shall see later that for elastic (I03 ¼ I3)
fermion scattering, this last condition may not be satisfied
even if condition (47) is met.
Using standard methods from field theory [34], we

obtain an expression for the first-order Born amplitude
of the scattering process I3 → I03

fI0
3
;I3 ¼ −ð8πpÞ−1=2hūε;p0;I0

3
I ⊗ ½δϕðqÞ·τ�uε;p;I3 ; ð48Þ

where

δϕðqÞ ¼
Z

δϕðxÞe−iqxd2x ð49Þ

and q ¼ p0 − p is the momentum transfer. The Born
amplitudes can be obtained in an analytical form. For
winding numbers satisfying the condition jnj ≥ 2, the
amplitudes are expressed in terms of the Meijer G func-
tions. In the important case when the solitons have the
winding numbers n ¼ 1 and n ¼ −1, the Born amplitudes
are expressed in terms of modified Bessel functions of the
second kind

f1=2;1=2 ¼
ffiffiffiffiffiffi
2π

p
hr20p

−1=2ðεþ h

− e−iðϑ2−ϑ1Þðε − hÞÞK0ðqr0Þ; ð50aÞ

f−1=2;1=2 ¼ ð−1Þϰ
ffiffiffiffiffiffi
2π

p
hr20p

−1=2

× eiϰðϑ1þϑ2ÞqK1ðqr0Þ; ð50bÞ

f1=2;−1=2 ¼ ð−1Þϰ
ffiffiffiffiffiffi
2π

p
hr20p

−1=2

× e−iϰðϑ1þϑ2ÞqK1ðqr0Þ; ð50cÞ

f−1=2;−1=2 ¼
ffiffiffiffiffiffi
2π

p
hr20p

−1=2ðεþ h

− eiðϑ2−ϑ1Þðε − hÞÞK0ðqr0Þ; ð50dÞ

where ϑ1 (ϑ2) is the polar angle that defines the direction of
motion of the “in” (“out”) fermion, q ¼ 2p sin ðjϑ2 − ϑ1j=2Þ
is the absolute value of the momentum transfer, and ϰ is
equal to 1 for n ¼ 1 and 0 for n ¼ −1. For antifermion
scattering, the Born amplitudes take a similar form
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f1=2;1=2 ¼ −
ffiffiffiffiffiffi
2π

p
hr20p

−1=2ðεþ h

− eiðϑ2−ϑ1Þðε − hÞÞK0ðqr0Þ; ð51aÞ

f−1=2;1=2 ¼ ð−1Þ1þϰ
ffiffiffiffiffiffi
2π

p
hr20p

−1=2

× e−ið1−ϰÞðϑ1þϑ2ÞqK1ðqr0Þ; ð51bÞ

f1=2;−1=2 ¼ ð−1Þ1þϰ
ffiffiffiffiffiffi
2π

p
hr20p

−1=2

× eið1−ϰÞðϑ1þϑ2ÞqK1ðqr0Þ; ð51cÞ

f−1=2;−1=2 ¼ −
ffiffiffiffiffiffi
2π

p
hr20p

−1=2ðεþ h

− e−iðϑ2−ϑ1Þðε − hÞÞK0ðqr0Þ: ð51dÞ

Note that the partial elements of the S-matrix SðmÞ
I0
3
;I3

¼
i

ffiffiffiffiffiffiffiffiffi
2πp

p
fðmÞ
I0
3
;I3

þ δI0
3
;I3 that correspond to the Born amplitudes

(50) and (51) can be written in form (45).
From Eqs. (50) and (51) it follows that the amplitudes are

Hermitian with respect to the permutation of the isospins
and momenta of the fermionic states

fI0
3
;I3ðϑ0; ϑÞ ¼ f�I3;I03ðϑ; ϑ

0Þ; ð52Þ

as required for the Born approximation [32,33]. Next, the
invariance of Eq. (12) under Π2T-transformation (22) leads
to a symmetry relation for the Born amplitudes

fI0
3
;I3ðϑ0; ϑÞ ¼ fI3;I03ðπ − ϑ; π − ϑ0Þ: ð53Þ

Another symmetry relation

fI0
3
;I3ðϑ0; ϑÞ ¼ f−I0

3
;−I3ð−ϑ0;−ϑÞ ð54Þ

follows from the invariance of Eq. (12) under combined
transformation (23). Note that in Eqs. (53) and (54), the
minus signs before the angular variables are due to the fact
that the Π2-transformation changes the signs of the y
components of the momenta of the fermions. Finally,
Eqs. (50) and (51) tell us that scattering of the fermion
in the background field of the soliton with winding number
n ¼ �1 is equivalent to the scattering of the antifermion in
the background field of the soliton with the opposite
winding number. We use the superscript ½n;þ� (½n;−�) to
indicate the scattering of the fermion (antifermion) in the
background field of the soliton with a given winding
number n. It then follows from Eqs. (50) and (51) that
the Born amplitudes satisfy the relations

f½�1;þ�
I0
3
;I3

ðϑ2; ϑ1Þ ¼ ð−1ÞI03þI3f½∓1;−�
−I0

3
;−I3

ðϑ2; ϑ1Þ; ð55aÞ

f½�1;þ�
I0
3
;I3

ðϑ2;ϑ1Þ ¼ f½�1;þ�
I0
3
;I3

ðϑ2 þ π; ϑ1 þ πÞ; ð55bÞ

f½�1;−�
I0
3
;I3

ðϑ2; ϑ1Þ ¼ f½�1;−�
I0
3
;I3

ðϑ2 þ π; ϑ1 þ πÞ: ð55cÞ

Equation (55a) is a consequence of the fact that the winding
number n in the Dirac equation (12) changes the sign under
the C-transformation (A4). Equations (55b) and (55c)
follow from the invariance of the Dirac equation (12) under
the P-transformation (20).
We can now ascertain the behavior of the Born ampli-

tudes (IV) for large and small values of the momentum
transfer q. Using the known asymptotic forms of the
modified Bessel functions K0ðqr0Þ and K1ðqr0Þ, we obtain
asymptotic forms of the Born amplitudes (50) at large
values of q

f�1=2;�1=2 ∼ 2−1=2πhr3=20 e−qr0ð1 − e∓iðϑ2−ϑ1ÞÞ
× sin ðjϑ2 − ϑ1j=2Þ−1=2; ð56aÞ

f∓1=2;�1=2 ∼ ð−1Þϰ
ffiffiffi
2

p
πhr3=20 e−qr0e�iϰðϑ2þϑ1Þ

× sin ðjϑ2 − ϑ1j=2Þ1=2; ð56bÞ

where the angles ϑ1 and ϑ2 are fixed and ϑ1 ≠ ϑ2. We see
that the Born amplitudes decrease exponentially with an
increase in both the momentum transfer q and the effective
size of the soliton r0.
Next we consider the case of low momentum transfer q

and high fixed fermion momentum p. This situation
involves small scattering angles Δϑ≡ jϑ2 − ϑ1j ¼
2 arcsin ½q=ð2pÞ� ≈ q=p. In this case, the Born amplitudes
take the form

f�1=2;�1=2 ∼ −2
ffiffiffiffiffiffi
2π

p
h2r20p

−1=2ðln ðqr0=2Þ þ γÞ; ð57aÞ

f∓1=2;�1=2 ∼ ð−1Þϰ
ffiffiffiffiffiffi
2π

p
hr0p−3=2ðp� iϰqÞ; ð57bÞ

where γ is the Euler-Mascheroni constant. It follows from
Eq. (57a) that in the elastic channel (with no change in
isospin), the Born amplitudes diverge logarithmically as
q → 0. Conversely, the inelastic Born amplitudes tend to
constant values in this limit. More importantly, the elastic
Born amplitudes ∝ h2, whereas the inelastic ones ∝ h, as
expected for the usual first Born approximation in which
amplitudes are proportional to a coupling constant. The
reason for this behavior of the elastic Born amplitudes lies
in the spin-isospin structure of plane-wave fermionic states
(A7) entering the Born amplitudes (48), and in the
mechanism of generation of the fermion mass in model (1).
In model (1), fermions gain mass due to spontaneous

breaking of the SUð2Þ global symmetry. In our dimension-
less notation (3), the fermion mass mψ is equal to the
Yukawa coupling constant h. Next, relativistic invariance
results in the factors ðε�mψÞ1=2 ¼ ðε� hÞ1=2 in fermion
wave functions (A7). In turn, these factors and the spin-
isospin structure of Eq. (48) result in the characteristic
factors ½εþ h − e∓iðϑ2−ϑ1Þðε − hÞ� in elastic Born ampli-
tudes (50a), (50d), (51a), and (51d), whereas such factors
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are absent from inelastic Born amplitudes (50b), (50c),
(51b), and (51c). For small scattering angles Δϑ ¼ ϑ2 − ϑ1
and large fermion momenta p, these factors take the
form 2h� ipΔϑ. We can see that for scattering angles
Δϑ < 2hp−1, the term 2h becomes predominant. Hence,
the terms that ∝ h2 also become predominant in elastic
Born amplitudes (50a), (50d), (51a), and (51d) that were
obtained within the framework of the first Born approxi-
mation. It follows that elastic Born amplitudes (50a), (50d),
(51a), and (51d) become inapplicable when the scattering
angle Δϑ≲ 2hp−1. This is because the contribution of the
second Born approximation to the scattering amplitudes is
∝h2, and is therefore of the same order of magnitude as the
contribution of the h2 terms of the first Born approxima-
tion. Note that for large fermion momenta p, the domain of
Δϑ in which the scattering amplitudes are markedly
different from zero is of the order of ðpr0Þ−1. It follows
that under the condition 2hr0 ∼ 1, the area Δϑ≲ 2hp−1 in
which the first Born approximation is incorrect may cover a
substantial part of the area Δϑ≲ ðpr0Þ−1 in which the
scattering amplitudes are markedly different from zero, and
may even overlap it completely. It was found that in the case
of solitonswith higherwinding numbersn, the characteristic
factor ½εþ h − e∓iðϑ2−ϑ1Þðε − hÞ� also arises in the elastic
first-order Born amplitudes, meaning that these are inap-
plicable when the scattering angle Δϑ≲ 2hp−1.
Equations (32), (50), and (51) make it possible to obtain

analytical expressions for the partial amplitudes fðmÞ
I0
3
;I3
ðpÞ in

terms of the Meijer G functions. As p → ∞, these
expressions tend to the asymptotic forms

fðmÞ
�1=2;�1=2 ∼

ffiffiffiffiffiffi
2π

p
hr0p−1=2

× ½hp−1 þ 2−2p−2r−20 ð1− 2ðϰ ∓mÞÞ�; ð58aÞ

fðmÞ
�1=2;∓1=2 ∼ ð−1Þϰ

ffiffiffiffiffiffiffiffi
π=2

p
hp−1=2

× ½p−1 þ 2−3ð1 − 4m2Þp−3r−20 �; ð58bÞ

for fermion scattering, and

fðmÞ
�1=2;�1=2∼−

ffiffiffiffiffiffi
2π

p
hr0p−1=2

× ½hp−1þ2−2p−2r−20 ð1−2ðϰ�mÞÞ�; ð59aÞ

fðmÞ
�1=2;∓1=2 ∼ ð−1Þ1þϰ

ffiffiffiffiffiffiffiffi
π=2

p
hp−1=2

× ½p−1 þ 2−3ð1 − 4m2Þp−3r−20 �; ð59bÞ

for antifermion scattering. It follows from Eq. (33) that the

partial amplitudes fðmÞ
I0
3
;I3

must satisfy the same symmetry

relations as the partial matrix elements SðmÞ
I0
3
;I3
, and we can

see that the Born partial amplitudes (58) and (59) satisfy
symmetry relations (41), (42), (43), and (44).
Equations (58) and (59) tell us that the leading terms of

the asymptotic forms of fðmÞ
I0
3
;I3

do not depend on m.

Furthermore, the leading terms of the elastic (I3 ¼ I03)
partial amplitudes are ∝ h2, whereas those of the inelastic
(I3 ≠ I03) ones are ∝ h. Finally, we recall that the Born
partial amplitudes and corresponding partial elements of
the S-matrix do not satisfy the unitarity condition [32,33].
We can also determine the asymptotic behavior of the

partial amplitudes fðmÞ
I0
3
;I3
ðpÞ as jmj → ∞. Using known

methods [35] for the calculation of the Fourier coefficients
in the limit of large m, we obtain the corresponding
asymptotic forms of the Born partial amplitudes

fðmÞ
�1=2;�1=2 ∼

ffiffiffiffiffiffiffiffi
π=2

p
hr20p

−1=2½ðεþ hÞjm ∓ ϰj−1
− ðε − hÞjm ∓ ϰ � 1j−1�; ð60aÞ

fðmÞ
�1=2;∓1=2 ∼ ð−1Þϰ

ffiffiffiffiffiffiffiffi
π=2

p
hr30p

3=2jmj−3 ð60bÞ

for fermion scattering, and

fðmÞ
�1=2;�1=2 ∼ −

ffiffiffiffiffiffiffiffi
π=2

p
hr20p

−1=2½ðεþ hÞjm� ϰ ∓ 1j−1
− ðε − hÞjm� ϰj−1�; ð61aÞ

fðmÞ
�1=2;∓1=2 ∼ ð−1Þ1þϰ

ffiffiffiffiffiffiffiffi
π=2

p
hr30p

3=2jmj−3; ð61bÞ

for antifermion scattering.
From the analytical expressions for the Born amplitudes

(50) and Eq. (36), we obtain differential scattering cross sec-
tions for the processes I3 → I03 in the Born approximation

dσ�1=2;�1=2=dϑ ¼ 8πp−1h2r40K0ð2pr0 sin ðϑ=2ÞÞ2
× ðh2 þ p2 sin ðϑ=2Þ2Þ; ð62aÞ

dσ∓1=2;�1=2=dϑ ¼ 8πph2r40K1ð2pr0 sin ðϑ=2ÞÞ2
× sin ðϑ=2Þ2: ð62bÞ

Since the corresponding Born amplitudes in Eqs. (50) and
(51) differ only by a phase factor, the Born differential
cross sections for antifermion scattering are the same as
those for fermion scattering. Note that in accordance
with Eq. (57), the elastic differential cross sections
diverge logarithmically according to the leading term
8πh4r40p

−1ðγ þ ln ðpr0ϑ=2ÞÞ2, whereas the inelastic ones
tend to a constant value of 2πh2r20p

−1 as ϑ → 0 for large
but fixed p. The total cross sections of the processes
I3 → I03 can also be obtained in analytical form
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σ�1=2;�1=2 ¼ 8π2p−1h2r40

×

�
p2G3;1

2;4

�
4p2r20

���� − 1
2
; 1
2

0; 0; 0;−1

�

þ h2G3;1
2;4

�
4p2r20

����
1
2
; 1
2

0; 0; 0; 0

�	
; ð63aÞ

σ∓1=2;�1=2 ¼ 8π2ph2r40G
3;1
2;4

�
4p2r20

���� − 1
2
; 1
2

−1; 0; 1;−1

�
; ð63bÞ

where Gm;n
p;q are the Meijer G functions, defined according

to Ref. [36]. Finally, using known asymptotic expansions
for the MeijerG functions, we obtain the asymptotics of the
total cross sections (63) for large values of the fermion
momenta p

σ�1=2;�1=2 ¼
1

8
π3h2r0

× ðð1þ 32h2r20Þp−2 þOðp−4ÞÞ; ð64aÞ

σ∓1=2;�1=2 ¼
3

8
π3h2r0ðp−2 þOðp−4ÞÞ : ð64bÞ

Note that Eqs. (62a), (63a), and (64a), which are related to
the elastic channel, include terms with an additional factor
h2 in comparison with the usual first Born approximation.
It follows from Eqs. (63) and (64) that in the Born

approximation, the total cross section of the fermion
scattering, which is equal to the sum of the elastic (63a)
and inelastic (63b) parts, is finite. Next, it follows from
Eq. (50) that for small scattering angles, the imaginary parts
of the elastic Born amplitudes f�1=2;�1=2 have the form
Im½f�1=2;�1=2�∼∓ ffiffiffiffiffiffi

2π
p

hr20p
−1=2ðε−hÞðγþ ln ½pr0ϑ=2�Þϑ,

and consequently vanish at zero scattering angle. At the
same time, in our case, the optical theorem of the scattering
theory can be written as

Im½fI3;I3ðp;ϑ¼0Þ�¼1

2

ffiffiffiffiffiffi
p
2π

r
ðσ1=2;I3ðpÞþσ−1=2;I3ðpÞÞ: ð65Þ

We see that the optical theorem is not valid in the Born
approximation. This is because the optical theorem is a
consequence of the unitarity of the S-matrix, which is
violated in the Born approximation.

V. NUMERICAL RESULTS

The radial wave functions of fermionic scattering states
are solutions to system (24) that satisfy regularity condition
(26). As r → ∞, the radial wave functions ciaðrÞ tend to
their asymptotic forms (34) and (35), which are expressed
in terms of the partial elements of the S-matrix (33). The
components of Eq. (34) that correspond to the “out” isospin
I03 ¼ −1=2 and those of Eq. (35) that corresponds to the

“out” isospin I03 ¼ 1=2 contain only outgoing waves, and
this should be clear from the physical background.
Our goal is to find the partial matrix elements SðmÞ

I0
3
;I3
ðpÞ

for a range of fermion momenta p, as this will give the most
complete description of the fermion scattering. To do this,
we numerically solve the system in Eq. (24) under
regularity condition (26) for a set of p within some finite
range. The origin r ¼ 0 in the neighborhood of which
regular expansion (26) is valid is the regular singular point
of the system in Eq. (24). Hence, the initial value problem
(IVP) for system (24) cannot be posed at r ¼ 0. To work
around this problem, we shift the point at which the IVP is
posed to a short distance from the origin. The initial values
of the radial wave functions ciaðrÞ at the shifted initial point
r0 are calculated using regular power expansion (26).
A regular solution to the system in Eq. (24) depends on

the two complex parameters b0 and c0. The linearity of the
system makes it possible to set one of these parameters (for
instance b0) to one. In this way, we stay with the two real
parameters Re½c0� and Im½c0�. Consider fermion scattering
that corresponds to the “in” fermionic state with isospin
I3 ¼ 1=2. To obtain the radial wave functions ciaðrÞ that
correspond to this scattering state, we must satisfy the
condition that the radial wave functions ci2ðrÞ contain only
the outgoing wave as it is in Eq. (34). It follows from
Eq. (34) that for large r, the real and imaginary parts of
the outgoing radial wave functions ci2ðrÞ should satisfy
the asymptotic condition, Im½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2 þ π=2Þ� ¼
Re½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2Þ�, where δ2 is some phase shift. To
satisfy this condition, we can use the two parameters Re½c0�
and Im½c0�. By varying Re½c0� and keeping Im½c0� fixed,
we can achieve coincidence between the zeros of
Im½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2 þ π=2Þ� and Re½ ffiffiffiffiffiffi
pr

p
ci2ðprþ δ2Þ�.

Next, by varying Im½c0� and keeping Re½c0� fixed, we
can achieve equality of Im½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2 þ π=2Þ� and
Re½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2Þ�. The positions of the zeros of
Im½ ffiffiffiffiffiffi

pr
p

ci2ðprþ δ2 þ π=2Þ� and Re½ ffiffiffiffiffiffi
pr

p
ci2ðprþ δ2Þ� do

not change under this variation, because linear system (24)
contains only real coefficient functions and thus the
imaginary parts of ciaðrÞ are ∝ Im½c0�, since iIm½c0� is
the only imaginary parameter of the problem. In turn, linear
scaling cannot change the location of the zeros of
Im½ciaðrÞ�. When the asymptotic condition is satisfied,
we can assume that the radial wave functions ciaðrÞ
correspond to the “in” fermionic state with isospin
I3 ¼ 1=2. Note that the asymptotic condition for the
“in” fermionic state with isospin I3 ¼ −1=2 has a similar
form; Im½ ffiffiffiffiffiffi

pr
p

ci1ðprþ δ1þ π=2Þ� ¼Re½ ffiffiffiffiffiffi
pr

p
ci1ðprþ δ1Þ�.

The value of r at which the asymptotic condition is satisfied
should be chosen based on the accuracy of asymptotic form
(34) and on the low influence of the background field of the
soliton.
To solve the IVP numerically, we use the IVP

solver provided by the MAPLE package [37]. This solver
finds a numerical solution to the IVP using the Fehlberg
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fourth-fifth order Runge-Kutta method with degree four
interpolant. Having obtained the solution to the IVP, we can
determine the coefficients of the outgoing (∝ expðiprÞ) and
ingoing (∝ expð−iprÞ) parts of the radial wave functions
ciaðrÞ. To do this, we use the orthonormality property of the

exponential functions
R 2πp−1

0 eκ1ipreκ2iprdr¼2πp−1δ0;κ1þκ2 ,
where κ1;2 ¼ �1. Taking into account the phase and
normalization factors in Eq. (34), we obtain the values

of the partial matrix elements SðmÞ
I0
3
;I3

for a given p. To control

the correctness of the numerical solution to the IVP, we use

unitarity condition (40) and the equality of the pairs of SðmÞ
I0
3
;I3

obtained from the up and down components of the columns
in Eq. (34).
We now turn to a discussion of the numerical results. We

consider only fermion scattering on the elementary (n ¼ 1)
topological soliton of the nonlinear Oð3Þ σ-model. The
scattering corresponds to the “in” fermionic state with
isospin I3 ¼ 1=2; from Eqs. (41), it follows that scattering
with “in” isospin I3 ¼ −1=2 is in essence equivalent to the
case considered here. The size parameter r0 and the
Yukawa coupling constant h are the only parameters of
the IVP. In order for the external field approximation to be
valid, the mass of the fermion, which is equal to h in
dimensionless units (3), should be much lower than the
mass of the soliton 4π. Hence, we set the parameters h and
r0 equal to 0.1 and 1, respectively. According to Eq. (45),
the numerical solution corresponding to these values h and
r0 will also give us information about the partial elements
of the S-matrix for which the parameters satisfy the
condition hr0 ¼ 0.1 The presence of the inelastic scattering

channel I3 → I03 (I3 ≠ I03) results in SðmÞ
1=2;1=2 leaving the

unitary circle, and thus the description of the scattering in
terms of a phase shift loses its advantage. In view of this, we
shall describe the partial elements of the S-matrix in terms
of their real and imaginary parts.
It was found that the p-dependences of the partial matrix

elements Sð0ÞI0
3
;I3
, Sð�1Þ

I0
3
;I3
, and Sðjmj≥2Þ

I0
3
;I3

are substantially differ-

ent, and we therefore consider them separately here. For
better visualization of the p-dependences, we show them
on log-linear plots. Figure 1 shows the p-dependences

related to the partial matrix elements Sð0Þ�1=2;1=2. We can see
that all of the curves in Fig. 1 are regular functions of the
fermion momentum p. In particular, they all tend to

nonzero limits as p → 0, and jSð0Þ1=2;1=2 − 1j2, jSð0Þ−1=2;1=2j2,
jRe½Sð0Þ1=2;1=2 − 1�j, and jIm½Sð0Þ−1=2;1=2�j reach their maximal
values at p ¼ 0.
Figures 2–7 show the real parts, imaginary parts, and

squaredmagnitudes of the partialmatrix elementsSðmÞ
�1=2;1=2 as

functions of the fermion momentum p. The p-dependences
are shown for jmj ¼ 2, 3, 4, and 5. We can see that for

jmj ≥ 2, the curves of Re½SðmÞ
1=2;1=2ðpÞ − 1�, Im½SðmÞ

1=2;1=2ðpÞ�,

jSðmÞ
1=2;1=2ðpÞ − 1j2, Re½SðmÞ

−1=2;1=2ðpÞ�, Im½SðmÞ
−1=2;1=2ðpÞ�, and

jSðmÞ
−1=2;1=2ðpÞj2 have similar forms. All of them have wide

extrema at moderate values of p, and tend to zero as
p → ∞ and to constant values asp → 0. The only difference

is that for jmj ¼ 2, 3, and 4, the Re½SðmÞ
−1=2;1=2ðpÞ� curves have

a node located to the right of themaximumatmoderatevalues
of p.
It follows from Fig. 3 that the imaginary parts of the

elastic partial elements of the S-matrix satisfy the approxi-
mate relation

Re S1 2,1 2
0 1

Im S1 2,1 2
0

S1 2,1 2
0 1 2

Re S 1 2,1 2
0

Im S 1 2,1 2
0

S 1 2,1 2
0 2

0.001 0.01 0.1 1 10 100
0.6

0.4

0.2

0.0

0.2

p

FIG. 1. Dependence of Re½Sð0Þ1=2;1=2 − 1�, Im½Sð0Þ1=2;1=2�, jSð0Þ1=2;1=2j2,
Re½Sð0Þ−1=2;1=2�, Im½Sð0Þ−1=2;1=2�, and jSð0Þ−1=2;1=2j2 on the fermion
momentum p.
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FIG. 2. Dependence of Re½SðmÞ
1=2;1=2 − 1� on the fermion mo-

mentum p for jmj ¼ 2, 3, 4, and 5.
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Im½SðmÞ
1=2;1=2ðpÞ� ≈ Im½Sð−mþ1Þ

1=2;1=2 ðpÞ�: ð66Þ

Since jIm½SðmÞ
1=2;1=2�j≫ jRe½SðmÞ

1=2;1=2−1�j, approximate equal-
ity (66) results in the approximate equality of the squared

magnitudes jSðmÞ
1=2;1=2 − 1j2 ≈ jSð−mþ1Þ

1=2;1=2 − 1j2, as shown in
Fig. 4. It follows from Eqs. (17) and (18) that for n ¼ 1,
the changem → −mþ 1 of the grand spin K3 leads only to
the interchange of the absolute values of the orbital angular
momenta jl11j and jl21j. It follows from Eq. (26) that the
centrifugal barrier does not change as a whole for the elastic
channel of fermion scattering, and thus the fermion-soliton
interaction is of the same order for the partial elastic

channels with K3 ¼ m and K3 ¼ −mþ 1. This may
explain the close values of the dominant imaginary parts
in Eq. (66).
We also found that the position of the maximum in

jSðmÞ
1=2;1=2 − 1j2 is approximately determined by the linear

expression

pmax ≈ 0.64jm − 1=2j; ð67Þ

whereas the heights of the maxima decrease monotonically
(approximately ∝ jmj−2) with an increase in jmj. Note that
Eq. (67) is compatible with Eq. (66) since jm − 1=2j is
equal to m − 1=2 for positive m and ð−mþ 1Þ − 1=2 for
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FIG. 3. Dependence of Im½SðmÞ
1=2;1=2� on the fermion momentum

p for jmj ¼ 2, 3, 4, and 5.
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FIG. 4. Dependence of jSðmÞ
1=2;1=2−1j2 on the fermion momentum

p for jmj ¼ 2, 3, 4, and 5.
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FIG. 5. Dependence of Re½SðmÞ
−1=2;1=2� on the fermion momentum

p for jmj ¼ 2, 3, 4, and 5.
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FIG. 6. Dependence of Im½SðmÞ
−1=2;1=2� on the fermion momentum

p for jmj ¼ 2, 3, 4, and 5.
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negative m. Eq. (67) can be explained as follows. The

partial matrix elements SðmÞ
1=2;1=2 describe the elastic fermion

scattering in the state with grand spin K3 ¼ m. Eq. (15)
tells us that with an increase in jmj, the main contribution to
K3 comes from the orbital part. Next, it follows from
Eqs. (17) and (18) that for n ¼ 1, the orbital angular
momenta of the elastic components c11 and c21 of the
fermion radial wave function are l11 ¼ m − 1 and l21 ¼ m,
respectively. We see that both l11 and l21 depend linearly on
m. In the classical limit, the absolute value of the orbital
angular momentum jlj ¼ bp, where b is an impact param-
eter. In our case, the impact parameter b should be on the
order of the soliton’s size r0. In the momentum represen-
tation, the fermion radial wave function cia that corre-
sponds to the state withK3 ¼ m should have a maximum in
the neighborhood of the classical value p ¼ jlj=b, in
accordance with Eq. (67).
It follows from Figs. 5–7 that in accordance with

Eq. (44), the inelastic partial matrix elements SðmÞ
−1=2;1=2

coincide when they have opposite values of m.
Furthermore, similarly to Eq. (67) and for the same reasons,

the position of the maximum of jSðmÞ
−1=2;1=2j2 is also deter-

mined by the linear expression

pmax ≈ 1.37jmj: ð68Þ

From a comparison between the p-dependences related

to Sð0Þ�1=2;1=2 and those related to Sðjmj≥2Þ
�1=2;1=2, we can see two

main differences. Firstly, there are no pronounced maxima

for jSð0ÞI0
3
;I3

− δI0
3
;I3 j2 at nonzero p, since for m ¼ 0, the

contribution of the orbital part to the grand spin K3 is not

dominant in comparison with those of the spin and isospin

parts. Secondly, the limiting values of jSð0ÞI0
3
;I3

− δI0
3
;I3 j2 are

much greater than those of jSðjmj>2Þ
I0
3
;I3

− δI0
3
;I3 j2 as p → 0.

This is because according to Eq. (18), both l21 and l12
vanish when m ¼ 0 and n ¼ 1. It follows that in this case,
the centrifugal barrier is absent for both elastic and inelastic
fermion scattering. This leads to intense interactions
between the fermions and the core of the soliton. In turn,
this results in large squared magnitudes for both the elastic
and inelastic partial elements of the S-matrix.
Using numerical methods, we were also able to ascertain

some other features of the curves shown in Figs. 1–7. In
particular, we ascertained the asymptotic behavior of

SðmÞ
I0
3
;I3
ðpÞ as p → ∞

Re½SðmÞ
1=2;1=2 − 1� ∼ αðmÞp−2; ð69aÞ

Im½SðmÞ
1=2;1=2� ∼ βðmÞp−1; ð69bÞ

Re½SðmÞ
−1=2;1=2� ∼ γðmÞp−1; ð69cÞ

Im½SðmÞ
−1=2;1=2� ∼ −πhp−1; ð69dÞ

where αðmÞ, βðmÞ, and γðmÞ are m-dependent constants.

Note that for Im½SðmÞ
−1=2;1=2�, we were able to find the exact

form of the coefficient of the leading asymptotic term. This
is because the Born approximation (58b) perfectly

describes the behavior of Im½SðmÞ
−1=2;1=2� for p≳ 10. At the

same time, the Born approximation (58a) gives only a

qualitative description of Im½SðmÞ
1=2;1=2�; it gives the correct

(∝p−1) leading asymptotic behavior, but an incorrect factor
before the leading asymptotic term. Note that in Eq. (69a),
the leading asymptotic term is ∝ p−2, while in Eqs. (69b)–
(69d), the leading asymptotic terms are ∝p−1. This differ-

ence is due to the fact that Im½SðmÞ
1=2;1=2�, Re½SðmÞ

−1=2;1=2�, and
Im½SðmÞ

−1=2;1=2� tend to zero as p → ∞, while Re½SðmÞ
1=2;1=2�

tends to one in this limit. It can then easily be shown that
asymptotic behavior (69a) follows from the fulfillment of

the unitarity condition jSðmÞ
1=2;1=2j2 þ jSðmÞ

−1=2;1=2j2 ¼ 1 in the
leading order in inverse powers of p.
It follows from Figs. 1–7 that as p tends to zero, the real

and imaginary parts of the difference SðmÞ
I0
3
;I3

− δI0
3
;I3 tend to

some constants whose absolute values decrease monoton-
ically with an increase in jmj. Then, Eqs. (33) and (37) tell
us that both the elastic and inelastic partial cross sections

σðmÞ
I0
3
;I3

¼ p−1jSðmÞ
I0
3
;I3

− δI0
3
;I3 j2 diverge as p−1 when p → 0.

Next we turn to the partial matrix elements Sð�1Þ
�1=2;1=2. The

dependence of the real and imaginary parts of Sðþ1Þ
�1=2;1=2 on
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FIG. 7. Dependence of jSðmÞ
−1=2;1=2j2 on the fermion momentum p

for jmj ¼ 2, 3, 4, and 5.
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the fermion momentum p is shown in Fig. 8. We can see
that the p-dependences in Fig. 8 are in sharp contrast to
those in Figs. 1–7. In particular, the p-dependence of the

elastic partial element Sðþ1Þ
1=2;1=2 shows pronounced resonance

behavior at extremely low values of p. We were able to
achieve extremely small values of p to reveal two reso-

nance valleys of Re½Sðþ1Þ
1=2;1=2�. The positions of the extrema

in Re½Sðþ1Þ
1=2;1=2� coincide with those of the zeros of

Im½Sðþ1Þ
1=2;1=2�, as expected for resonance structures. Note

that Re½Sðþ1Þ
1=2;1=2� (and hence jSðþ1Þ

1=2;1=2j) reaches the unitary
boundary of 1 at its maxima. Hence, the elastic partial cross

section σðþ1Þ
1=2;1=2 vanishes at the maxima of Re½Sðþ1Þ

1=2;1=2� as
well as the inelastic partial cross section σðþ1Þ

−1=2;1=2. Note that

both Re½Sðþ1Þ
1=2;1=2� and Im½Sðþ1Þ

1=2;1=2� do not reach the unitary
boundary of −1 at their minima, although these are in close
proximity. This follows from the fact that the inelastic

scattering does not vanish at the minima of Re½Sðþ1Þ
1=2;1=2� and

Im½Sðþ1Þ
1=2;1=2�. For a similar reason, Im½Sðþ1Þ

1=2;1=2� also does not
quite reach the unitary boundary of 1 at its maxima.
The p-dependences of the real and imaginary parts of the

inelastic partial matrix element Sðþ1Þ
−1=2;1=2 also have a

resonance structure at small values of p. Moreover, the

positions of the minima (maxima) of Re½Sðþ1Þ
−1=2;1=2� coincide

with those of the maxima (minima) of Re½Sðþ1Þ
1=2;1=2�, and

a similar situation holds for the imaginary parts

Im½Sðþ1Þ
−1=2;1=2� and Im½Sðþ1Þ

1=2;1=2�. The positions of the zeros

of Re½Sðþ1Þ
−1=2;1=2�, Im½Sðþ1Þ

−1=2;1=2�, and Im½Sðþ1Þ
1=2;1=2� also

coincide, since Re½Sðþ1Þ
1=2;1=2� reaches the unitary boundary

of 1 at this point. Note that in Fig. 8, the behavior of the
curves is in accordance with the unitarity condition

jSðþ1Þ
1=2;1=2j2 þ jSðþ1Þ

−1=2;1=2j2 ¼ 1.
Figure 9 presents the p-dependence of the real and

imaginary parts of the partial matrix elements Sð−1Þ�1=2;1=2. We
see that in accordance with Eq. (44), the curves of

Re½Sð−1Þ−1=2;1=2� and Im½Sð−1Þ−1=2;1=2� coincide with the curves

for Re½Sðþ1Þ
−1=2;1=2� and Im½Sðþ1Þ

−1=2;1=2� shown in Fig. 8. In

particular, the curves of Re½Sð−1Þ−1=2;1=2� and Im½Sð−1Þ−1=2;1=2� have
the same resonance structure as those of Re½Sðþ1Þ

−1=2;1=2� and
Im½Sðþ1Þ

−1=2;1=2�, respectively. In Fig. 9, the curves that
correspond to the real and imaginary parts of the elastic

partial matrix element Sð−1Þ1=2;1=2 also show resonancelike
behavior. However, the behavior of these curves differs
from those of the other resonance curves in Figs. 8 and 9. In

particular, the points of the maxima in jSð−1Þ1=2;1=2j2 and

Re½Sð−1Þ1=2;1=2� do not coincide, and Im½Sð−1Þ1=2;1=2� does not

vanish at these points. Hence, it can be said that Sð−1Þ1=2;1=2

does not show true resonance behavior. Instead, the

resonancelike behavior of Sð−1Þ1=2;1=2 is caused by the unitarity

condition jSð−1Þ1=2;1=2j2 þ jSð−1Þ−1=2;1=2j2 ¼ 1 and the true reso-

nance behavior of the inelastic partial element Sð−1Þ−1=2;1=2 of
the S-matrix.
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FIG. 8. Dependence of Re½Sðþ1Þ
1=2;1=2 − 1�, Im½Sðþ1Þ

1=2;1=2�, jSðþ1Þ
1=2;1=2j2,

Re½Sðþ1Þ
−1=2;1=2�, Im½Sðþ1Þ

−1=2;1=2�, and jSðþ1Þ
−1=2;1=2j2 on the fermion

momentum p.
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In Figs. 8 and 9, all p-dependencies are shown
on a logarithmic scale. We see that in the resonance

region, the p-dependences of jSð�1Þ
�1=2;1=2 − δ�1=2;1=2j2,

Re½Sð�1Þ
�1=2;1=2 − δ�1=2;1=2�, and Im½Sð�1Þ

�1=2;1=2� have the Breit-
Wigner form on this scale. Also, the positions of resonance
peaks are at extremely low values of the fermion momenta.
Another feature is a periodic structure of the resonances in
Figs. 8 and 9. In particular, the distance between the
resonance peaks is approximately the same on the loga-
rithmic scale. We were able to identify the two resonance

peaks of jSð�1Þ
�1=2;1=2 − δ�1=2;1=2j2 and reach the beginning of

the third one. Therefore, we may suppose the existence of a
sequence of resonances (possibly infinite) condensing to
the zero fermion momentum.
Finally, we compare the numerical results with those

obtained within the framework of the Born approximation.
Figure 10 presents the p-dependences of the imaginary

parts of the inelastic partial matrix elements SðmÞ
−1=2;1=2

obtained both numerically and in the framework of the
Born approximation. We see that for p≳ 3, the numerical
and analytical results perfectly match with each other.
Moreover, the area of applicability of the Born approxi-
mation increases with an increase in jmj. This is because
the magnitudes of the fermion’s orbital quantum numbers
also increase in this case, resulting in the extension of the
applicability of the Born approximation [32,33]. In Fig. 11,
we can see the curves, which present the imaginary parts of

the elastic partial matrix elements SðmÞ
1=2;1=2 obtained by

numerical methods and those obtained in the Born

approximation. The curves are presented only for m ≥ 0
because their behavior has a similar character for m < 0.
Unlike Fig. 10, the solid and dashed curves that correspond
to the same value ofm do not coincide with each other even
for large values of the fermion momentum. We see that the
elastic fermion scattering cannot be correctly described
within the framework of the first Born approximation, in
accordance with the conclusions of Sec. IV.

VI. CONCLUSION

In the present paper, fermion scattering in the back-
ground fields of the topological solitons of the nonlinear
Oð3Þ σ-model has been investigated both analytically and
numerically. In particular, we have ascertained the asymp-
totic behavior of the fermion wave functions for both large
and small values of the radial variable r. The symmetry
properties of the partial elements of the S-matrix under
discrete transformations of the Dirac Hamiltonian have
been determined. In the framework of the first Born
approximation, a complete analytical investigation of
fermion scattering in the background field of the elemen-
tary topological soliton with winding number n ¼ 1 has
been carried out. In particular, the Born amplitudes, differ-
ential cross sections, and total cross sections of fermion
scattering have been obtained in analytical form. The
asymptotic behavior of the partial Born amplitudes has
been investigated for extreme values of the fermion
momentum, momentum transfer, and grand spin.
We have also performed a numerical study of fermion

scattering in the background field of the elementary
topological solition of the nonlinear Oð3Þ σ-model. In
particular, we have obtained the p-dependences of the
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FIG. 10. Dependence of Im½SðmÞ
−1=2;1=2� on p obtained numeri-

cally (solid lines) is compared with that obtained analytically
within the framework of the Born approximation (dashed lines)
for jmj ¼ 0; 1; 2, 3, 4, and 5. For m ¼ 0, the presented results are
multiplied by the scale factor 1=5.
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FIG. 11. Dependence of Im½SðmÞ
1=2;1=2� on p obtained numerically

(solid lines) is compared with that obtained analytically within
the framework of the Born approximation (dashed lines) for
m ¼ 0; 1; 2, 3, 4, and 5.
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partial elements SðmÞ
I0
3
;I3

of the S-matrix for jmj ≤ 5, and have

ascertained their main features. In particular, we found that

the partial elements Sð�1Þ
I0
3
;I3

of the S-matrix show resonance

behavior at small values of the fermion momentum.
The nonlinear Oð3Þ σ-model has no potential term, and

we therefore discuss the influence of a potential term on the
soliton properties and the fermion scattering. Derrick’s
theorem [7] tells us that in the case of (2þ 1)-dimensional
scalar field models, static solitons can exist only if the term
of higher order in the field derivatives is added to the
Lagrangian together with the potential term. The baby
Skyrme model [9,10] is obtained by the addition of a
potential term and a fourth-order term in the field deriv-
atives (the Skyrme term) to the Lagrangian (1) of the
nonlinear Oð3Þ σ-model, and therefore we consider the
baby Skyrmion and the σ-model’s soliton. The presence of
the potential and Skyrme terms in the baby Skyrme model
leads to significant differences in the properties of these
two solitons. Firstly, the asymptotic behavior of their fields
differs substantially. At large distances, the scalar fields of
the σ-model’s soliton approach the vacuum ϕvac ¼
ð0; 0;−1Þ according to the power law ϕ − ϕvac ∼ r−1,
whereas those of the baby Skyrmion approach it according
to the exponential law ϕ − ϕvac ∼ r−1=2 expð−mrÞ, where
m is the mass parameter of the potential term. Hence, the
asymptotic behavior of the scalar fields is of the long-range
type for the σ-model’s soliton and the short-range type for
the baby Skyrmion. Secondly, the spatial size of the σ-
model’s soliton is not fixed due to the presence of the
arbitrary scale parameter r0 in Eq. (8), whereas the spatial
size of the baby Skyrmion is fixed and fully determined by
the parameters of the baby Skyrme model.
These differences lead to differences in the fermion-

soliton scattering. In particular, it follows from the theory of
scattering [32,33] that the short-range exponential asymp-
totics of the scalar fields of the baby Skyrmion leads to the
finite elastic differential cross section at zero-scattering
angle. Furthermore, due to the fixed size of the baby
Skyrmion, the fermion scattering does not depend on an
arbitrary scale parameter, unlike the case of the σ-model’s
soliton. At the same time, some properties of the fermion-
soliton scattering remain the same. In particular, the general
formulas of partial expansion (32)–(35) and symmetry
properties (41)–(44) remain unchanged because the
σ-model’s soliton and the baby Skyrmion are described
by the same ansatz (7).
In three-dimensional space, a two-dimensional soliton

can be considered as an object extended in one spatial
dimension. The one-dimensional extended objects that
correspond to two-dimensional vortex solutions of gauge
models can play an important role in cosmology [38]. In
particular, the interaction of these objects (called cosmic
strings) with fermions results in the fermionic supercurrent
flowing along the cosmic string [39]. The fermionic

superconductivity of the cosmic string is due to the
presence of the bound fermionic state (fermionic zero
mode) in the background field of the corresponding two-
dimensional vortex. In addition, the two-dimensional
vortex also has unbound fermionic states, which can be
used to describe the fermion scattering on the cosmic string.
It can be assumed that the fermion scattering on cosmic
strings shares some common features with the fermion
scattering studied in this paper. In particular, a resonance
scattering is also possible at small-fermion momenta. As in
the previous case, the resonance scattering of fermions on
cosmic strings is only possible in the absence of the
centrifugal barrier, i.e., only for the lower fermion partial
waves. It follows that cosmic strings interact intensively
with slow-moving fermions. The scattering of fermions on
a cosmic string leads to a transfer of the momentum and (if
the backreaction of fermions on the cosmic string is taken
into account) the energy. Hence, we can suppose that a
sufficiently dense and cold fermionic gas can influence the
dynamics of a slow-moving cosmic string.
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APPENDIX A: FREE FERMIONS

Let the isovector scalar field ϕ be a constant field that
takes the value ð0; 0;−1Þ. This situation corresponds to the
vacuum state in the topologically trivial sector (n ¼ 0) or
distant regions in the topologically nontrivial sectors
(n ≠ 0). In this case, the Dirac equation (6) is written as

iγμ ⊗ I∂μψ − hI ⊗ τ3ψ ¼ 0; ðA1Þ

or in the Hamiltonian form

i
∂ψ
∂t ¼ H0ψ ; ðA2Þ

where the free Hamiltonian

H0 ¼ αk ⊗ Ið−i∂kÞ þ hβ ⊗ τ3: ðA3Þ

The Dirac equation (A1) is invariant under the C, P, and
Π2T transformations,

ψðt;xÞ → ψCðt;xÞ ¼ iγ1⊗ Iψ�ðt;xÞ; ðA4Þ

ψðt;xÞ → ψPðt;xÞ ¼ γ0⊗ Iψðt;−xÞ; ðA5Þ

ψðt;xÞ → ψΠ2Tðt;xÞ ¼ ψ�ð−t; x1;−x2Þ: ðA6Þ

The Hamiltonian (A3) commutes with the operator of grand
spin (15), which is reduced to the operator of the usual
angular momentum in the topologically trivial background
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vacuum field ϕvac ¼ ð0; 0;−1Þ. It also commutes with the
isospin generator I3 ¼ τ3=2 and the momentum operator
p̂ ¼ −i∇. It therefore follows that the free fermionic states
can be characterized either by the momentum p and the
third isospin component I3 (plane waves) or by the grand
spin K3 and the third isospin component I3 (cylindri-
cal waves).
In the compact matrix form, the plane-wave fermionic

states ψ�p;I3 with positive and negative energies can be
written as

ψp;1=2 ¼
1ffiffiffiffiffi
2ε

p
� ffiffiffiffiffiffiffiffiffiffiffi

εþ h
p

0

i
ffiffiffiffiffiffiffiffiffiffiffi
ε − h

p
eiθp 0

�
e−ipx; ðA7aÞ

ψp;−1=2 ¼
1ffiffiffiffiffi
2ε

p
�
0 −i

ffiffiffiffiffiffiffiffiffiffiffi
ε − h

p
e−iθp

0
ffiffiffiffiffiffiffiffiffiffiffi
εþ h

p
�
e−ipx; ðA7bÞ

ψ−p;1=2 ¼
1ffiffiffiffiffi
2ε

p
�
−i

ffiffiffiffiffiffiffiffiffiffiffi
ε − h

p
e−iθp 0ffiffiffiffiffiffiffiffiffiffiffi

εþ h
p

0

�
eipx; ðA7cÞ

ψ−p;−1=2 ¼
1ffiffiffiffiffi
2ε

p
�
0

ffiffiffiffiffiffiffiffiffiffiffi
εþ h

p

0 i
ffiffiffiffiffiffiffiffiffiffiffi
ε − h

p
eiθp

�
eipx; ðA7dÞ

where p ¼ ðε;pÞ, px ¼ εt − p·x, and θp is the azimuthal
angle of the momentum p. Note that the negative energy
wave functions are C conjugates of the positive energy
wave functions, ψ−p;I3 ¼ ðψp;I3ÞC ¼ σ1 ⊗ Iψ�

p;I3
. The

wave functions ψ�p;I3 and their amplitudes u�p;I3 defined
by the formula ψ�p;I3 ¼ ð2εÞ−1=2u�p;I3e

∓ipx satisfy the
normalization conditions

ψ̄�p;I3γ
μ ⊗ Iψ�p;I3 ¼

�
1;
px

ε
;
py

ε

�
¼ ð1; vÞ ðA8Þ

and

ū�p;I0
3
u�p;I3 ¼ ð−1Þ1=2∓I32hδI0

3
;I3 ; ūp;I03u−p;I3 ¼ 0: ðA9Þ

It follows that the wave functions ψ�p;I3 have the
normalization

Z
ψ̄�p0;I0

3
ðxÞψ�p;I3ðxÞd2x ¼ ð−1Þ1=2∓I3

h
ε
ð2πÞ2

× δI0
3
;I3δ

ð2Þðp − p0Þ; ðA10Þ

where it is understood that in Eqs. (A8)–(A10), the
summation is performed over the spin and isospin indices
of the corresponding wave functions and amplitudes.
Let us consider the cylinder-wave fermionic states

ψp;m;I3 that possess definite values of the grand spin K3

and the isospin I3. For free fermions, the matrix Λ in
Eq. (24) takes the form

Λia;jb ¼

0
BBBBB@

l11
r 0 εþ h 0

0 l12
r 0 ε − h

−εþ h 0 − l21
r 0

0 −ε − h 0 − l22
r

1
CCCCCA
; ðA11Þ

where the orbital quantum numbers lia are defined in
Eq. (18). We see that system (24) can be split into two
independent subsystems that correspond to the two isospin
states �1=2. These two subsystems can be solved analyti-
cally, and their positive energy regular solutions are

ψp;m;1=2 ¼

0
B@

ffiffiffiffiffiffiffiffiffiffiffi
pðεþhÞ

2ε

q
Jl11ðprÞeil11θ 0

−
ffiffiffiffiffiffiffiffiffiffiffi
pðε−hÞ

2ε

q
Jl21ðprÞeil21θ 0

1
CAe−iεt ∼

ffiffiffiffiffi
2

πr

r 0
B@

ffiffiffiffiffiffi
εþh
2ε

q
sin ½pr − πð2l11 − 1Þ=4�eil11θ 0ffiffiffiffiffiffi

ε−h
2ε

q
sin ½pr − πð2l21 þ 3Þ=4�eil21θ 0

1
CAe−iεt; ðA12aÞ

ψp;m;−1=2 ¼

0
B@ 0 −

ffiffiffiffiffiffiffiffiffiffiffi
pðε−hÞ

2ε

q
Jl12ðprÞeil12θ

0

ffiffiffiffiffiffiffiffiffiffiffi
pðεþhÞ

2ε

q
Jl22ðprÞeil22θ

1
CAe−iεt ∼

ffiffiffiffiffi
2

πr

r 0
B@ 0

ffiffiffiffiffiffi
ε−h
2ε

q
sin ½pr − πð2l12 þ 3Þ=4�eil12θ

0
ffiffiffiffiffiffi
εþh
2ε

q
sin ½pr − πð2l22 − 1Þ=4�eil22θ

1
CAe−iεt; ðA12bÞ

where p ¼ jpj and JνðprÞ are the Bessel functions of the first kind. The negative energy regular solutions are obtained from
Eq. (A12) by means of C conjugation (A4). Wave functions (A12) satisfy the normalization condition

Z
ψ�
p0;m0;I0

3
ðr; θÞψp;m;I3ðr; θÞrdrdθ ¼ 2πδm0;mδI0

3
;I3δðp − p0Þ: ðA13Þ

Unlike wave functions (A7), wave functions (A12) have definite parity under P-transformation (A5)
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ψP
p;m;I3

ðt;xÞ ¼ γ0 ⊗ Iψp;m;I3ðt;−xÞ
¼ ð−1Þm−nI3−1

2ψp;m;I3ðt;xÞ ðA14Þ

and are invariant under Π2T-transformation (A6).
The plane-wave fermionic states ψp;I3 can be expanded

in terms of the cylinder-wave fermionic states ψp;m;I3 . To do
this, we use the well-known expansion of the plane wave in
terms of cylinder waves

eipx ¼ eipr cosðθÞ ¼
X∞
i¼−∞

imJmðprÞeimθ: ðA15Þ

Eqs. (A7), (A12), and (A15) give us the expansion

ψ ðε;p;0Þ;I3 ¼
X∞

m¼−∞
ap;m;I3ψp;m;I3 ; ðA16Þ

where the expansion coefficients

ap;m;I3 ¼ im−I3ðnþ1Þp−1=2 ðA17Þ

and all components of the (2þ 1)-dimensional momentum
of the plane-wave state are explicitly shown on the left-
hand side of Eq. (A16). Note that Eq. (A17) is valid only
for the positive energy fermionic states. To obtain the
expansion coefficients for the negative energy fermionic
states, we must take the complex conjugate of the right-
hand side of Eq. (A17).

APPENDIX B: RESONANCES OF PARTIAL
AMPLITUDES AT SMALL FERMION MOMENTA

Let us ascertain the cause of occurrence of the resonance
peaks in the partial channel with grand spin m ¼ 1. It
follows from Eqs. (18), (26), and (34) that the characteristic
feature of this partial channel is the absence of both the
kinematic suppression factor ðε − hÞ1=2 and the centrifugal
barrier for the c11 component of the radial wave function
ciaðrÞ. As a result, the c11 component is much larger than
the other three components of ciaðrÞ. Using this fact, we
can find an approximate solution to system (24) for small
values of p. To do this, we perform two iterations. At the
first iteration, we suppose that c11ðrÞ is a constant α0 and
find c12ðrÞ, c21ðrÞ, and c22ðrÞ neglecting all terms except
centrifugal and those that proportional to α0. At the second
iteration, we substitute c12ðrÞ, c21ðrÞ, and c22ðrÞ into the
differential equation for c11ðrÞ and integrate this equation.
As a result, we obtain the approximate iterative solution for
the radial wave function ciaðrÞ

c11ðrÞ ¼
α0
12

f12 − 3p2r2 − hr20ðεþ hÞ
× ðπ2 − 3 ln ½ðr2 þ r20Þr−20 �
× ð2þ ln ½r20ðr2 þ r20Þr−4�Þ
−6Li2½r20ðr2 þ r20Þ−1�Þg; ðB1aÞ

c12ðrÞ ¼ β0r − 2−1α0hr30ðεþ hÞr−1
× ln ½ðr2 þ r20Þr−20 �; ðB1bÞ

c21ðrÞ ¼ −2−1α0ðε − hÞr − α0hr20r
−1

× ln ½ðr2 þ r20Þr−20 �; ðB1cÞ

c22ðrÞ ¼ α0hr0ðr20r−2 ln ½ðr2 þ r20Þr−20 � − 1Þ; ðB1dÞ

where α0 and β0 are constants, and Li2 is the dilogarithm
function.
At small r, the components of the radial wave function

can be written as

c11ðrÞ ¼ α0 − 2−2α0p2r2 þOðr4Þ; ðB2aÞ

c12ðrÞ ¼ ðβ0 − 2−1α0hr0ðεþ hÞÞrþOðr3Þ; ðB2bÞ

c21ðrÞ ¼ −2−1α0ðεþ hÞrþOðr3Þ; ðB2cÞ

c22ðrÞ ¼ −2−1α0hr−10 r2 þOðr4Þ; ðB2dÞ

in accordance with Eq. (26). It was found that in a wide area
of r, the components of the radial wave function satisfy the
conditions

jc11j ≳ α0ð1 − 13.6τ2Þ; ðB3aÞ

jc12j≲ 0.8α0τ2; ðB3bÞ

jc21j≲ 0.8α0τ; ðB3cÞ

jc22j≲ α0τ; ðB3dÞ

where the parameter τ ¼ hr0. We see that under the
condition τ ≪ 1, the absolute value of the c11 component
is much larger than those of the other three components of
the radial wave function.
When the distance from the core of the soliton is

sufficiently large, we can neglect the fermion-soliton
interaction. In this case, the general solution to system
(24) is written as

c11ðrÞ ∼ C1J0ðprÞ þ C2Y0ðprÞ; ðB4aÞ

c12ðrÞ ∼ −
ffiffiffiffiffiffiffiffiffiffiffi
ε − h
εþ h

r
ðC3J1ðprÞ þ C4Y1ðprÞÞ; ðB4bÞ
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c21ðrÞ ∼ −
ffiffiffiffiffiffiffiffiffiffiffi
ε − h
εþ h

r
ðC1J1ðprÞ þ C2Y1ðprÞÞ; ðB4cÞ

c22ðrÞ ∼ C3J2ðprÞ þ C4Y2ðprÞ; ðB4dÞ

where C1–C4 are constant coefficients, Jν and Yν are the
Bessel and Neumann functions of corresponding orders,
respectively. Using standard methods from the theory of
scattering [32,33], we obtain the expressions for the partial
elements of the S-matrix in terms of the coefficients C1–C4

Sðþ1Þ
1=2;1=2 ¼

C1 − iC2

C1 þ iC2

; ðB5aÞ

Sðþ1Þ
−1=2;1=2 ¼

2p
ε − h

C3

C1 þ iC2

: ðB5bÞ

To express the coefficients C1—C4 in terms of physical
parameters, we join solutions (B1) and (B4) at r ¼ κr0,
where κ is a positive coefficient greater than one. The
resulting expressions for C1–C4 are too lengthy to be
presented here. Expanding these expressions in p, holding
lower-order terms, and substituting the resulting expres-
sions in Eq. (B5), we obtain the partial matrix elements

Sðþ1Þ
1=2;1=2 ¼

Aþ π−1Γ ln ½pr0� þ iΓ=2
Aþ π−1Γ ln ½pr0� − iΓ=2

; ðB6Þ

and

Sðþ1Þ
−1=2;1=2 ¼

−iτΓ
Aþ π−1Γ ln ½pr0� − iΓ=2

ðB7Þ

where

A ¼ 1þ κ2 −
1

6
τ2ðð12γ þ π2Þκ2 þ π2Þ

þ 1

2
τ2f2κ2 ln ½4ðκ2 þ 1Þκ−2�

þ f4ðκ2 þ 1Þðγ þ ln ½2−1ðκ2 þ 1Þ1=4�Þ þ 2g
× ln ½κ2 þ 1�g þ τ2ðκ2 þ 1ÞLi2½ðκ2 þ 1Þ−1�; ðB8Þ

Γ ¼ 2πτ2ððκ2 þ 1Þ ln ½κ2 þ 1� − κ2Þ; ðB9Þ

and γ is the Euler-Mascheroni constant.
Using Eqs. (B6), (B7), and (33), we obtain the expres-

sions for the squared magnitudes of the partial amplitudes

fðþ1Þ
1=2;1=2 and fðþ1Þ

−1=2;1=2:

jfðþ1Þ
1=2;1=2j2 ¼

2

πp
ðΓ=2Þ2

ðAþ π−1Γ ln ½pr0�Þ2 þ ðΓ=2Þ2 ; ðB10Þ

and

jfðþ1Þ
−1=2;1=2j2 ¼

1

2πp
ΓrΓ

ðAþ π−1Γ ln ½pr0�Þ2 þ ðΓ=2Þ2 ; ðB11Þ

where

Γr ¼ τ2Γ: ðB12Þ

We can see that the squared magnitudes of the partial

amplitudes fðþ1Þ
1=2;1=2 and f

ðþ1Þ
−1=2;1=2, considered as functions of

the logarithmic variable π−1Γ ln ½pr0�, show resonance
behavior of the Breit-Wigner type with total decay width
equal to Γ. It follows that on the logarithmic scale, the

squared magnitudes jSðþ1Þ
I0
3
;I3

− δI0
3
;I3 j2 ¼ 2πpjfðþ1Þ

I0
3
;I3
j2 are of

the symmetric Breit-Wigner form in the resonance region,
as it is in Fig. 8. At the same time, the resonance peaks of

jSðþ1Þ
I0
3
;I3

− δI0
3
;I3 j2 have a strongly asymmetric form in the

linear scale. In particular, the resonance peaks have maxima
at pmax ¼ r−10 exp ð−πA=ΓÞ and reach half of the maxima at
p�1=2 ¼ r−10 exp ð−πA=Γ� π=2Þ. The asymmetry of the
resonance peaks is reflected in the relations

pþ1=2

pmax
¼ pmax

p−1=2
¼ exp ðπ=2Þ ≈ 4.81048; ðB13aÞ

and

pmax − p−1=2

pþ1=2 − pmax
¼ exp ð−π=2Þ ≈ 0.20788: ðB13bÞ

The position of the maxima of the resonance peaks depends
exponentially on the ratio A=Γ, which, in turn, depends on
the parameters τ and κ. This results in extremely low values
of pmax when τ ≲ 0.1 and 1≲ κ ≲ 102 in accordance with
Figs. 8 and 9.
The existence of the resonance peaks and their loga-

rithmic character are due to the term ln ½pr0� in Eqs. (B6)
and (B7). In turn, this term results from the leading term
of the expansion of the Neumann function Y0ðprÞ in
the neighborhood of zero; Y0ðprÞ ¼ 2π−1ðγ − lnð2Þ þ
ln ½pr�Þ þOððprÞ2 ln ½pr�Þ. Only the Neumann function
Y0ðprÞ has the leading asymptotic behavior ∝ ln½pr� as
pr → 0, whereas the other Neumann functions Yl>0ðprÞ ∝
ðprÞ−l in this limit. Therefore, the Neumann functions
Yl>0ðprÞ cannot lead to resonance peaks of the logarith-
mic type.
It follows from Eq. (B6) that the squared magnitude of

Sðþ1Þ
1=2;1=2 is equal to one. Therefore, the unitarity condition

jSðþ1Þ
1=2;1=2j2 þ jSðþ1Þ

−1=2;1=2j2 ¼ 1 is not satisfied in the used
approach. Eq. (B7) tells us that the squared magnitude of

Sðþ1Þ
−1=2;1=2 does not exceed the value of 4τ

2 ¼ ð2hr0Þ2, which
is equal to 0.04 for the values of h and r0 used in Sec. V.
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It follows that the violation of the unitarity is small when
the parameter τ ¼ hr0 is much smaller than one.
The partial matrix elements (B6) and (B7) have a simple

pole located at ppol¼ ir−10 expð−πA=ΓÞ¼ ipmax. According
to the theory of scattering [32,33], a pole of an elastic partial
element of the S-matrix located at a positive imaginary
momentum corresponds to a bound state. In our case,
however, the presence of the pole is only an artifact of the
used approach. Indeed, this pole exists for arbitrary small

values of h and r0, which is impossible for bound states. We
also failed to find fermion bound states in the partial channels
with m ¼ �1 using numerical methods.
The obvious drawback of the used approach is that it is

unable to explain the periodic structure of the resonance
peaks in Figs. 8 and 9. This approach, however, can explain
the location of the resonance peaks at extremely low
fermion momenta and the Breit-Wigner form of these
peaks on the logarithmic scale.
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